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1 Introduction

Public key cryptography was proposed in the 1976 seminal article of Diffie
and Hellman [6]. One year later, Rivest, Shamir and Adleman introduced the
RSA cryptosystem as a first example. From an epistemological perspective, one
can say that Diffie and Hellman have drawn the most extreme consequence of
a principle stated by Auguste Kerckhoffs in the XIXth century : “le mécanisme
de chiffrement doit pouvoir tomber sans inconvénient aux mains de ’ennemi
17 Indeed, Diffie and Hellman understood that only the deciphering operation
has to be controlled by a secret key : the enciphering method may perfectly be
executed by means of a publicly available key, provided it is virtually impossible
to infer the secret deciphering key from the public data.

Today, algorithms have replaced mechanisms and the wording “virtually im-
possible” has been given a formal meaning using the theory of complexity. This
allows a correct specification of the security requirements, which in turn can be
established by means of a security proof.

2 The RSA cryptosystem

In modern terms, a public-key encryption scheme on a message space M
consists of three algorithms (K, &, D) :

— the key generation algorithm XC(1%) outputs a random pair of private/public

keys (sk, pk), relatively to a security parameter k
— the encryption algorithm &£y (m;r) outputs a ciphertext ¢ corresponding
to the plaintext m € M, using random coins r
— the decryption algorithm Dg (c) outputs the plaintext m associated to the
ciphertext c.
We will occasionnally omit the random coins and write Ex(m) in place of
Eok(m; ). Note that the decryption algorithm is deterministic.

The famous RSA cryptosystem has been proposed by Rivest, Shamir and
Adleman [14]. The key generation algorithm of RSA chooses two large primes p,
g of equal size and issues the so-called modulus n = pq. The sizes of p, ¢ are set
in such a way that the binary length |n| of n equals the security parameter k.
Additionally, en exponent e, relatively prime to ¢(n) = (p — 1)(¢ — 1) is chosen,

! The enciphering mechanism may fall into the enemy’s hands without drawback



so that the public key is the pair (n,e). The private key d is the inverse of e
modulo ¢(n). Variants allow the use of more than two prime factors.
Encryption and decryption are defined as follows :

Ene(m) =m® mod n D,.4(c) = ¢ mod n.

Note that both operations are deterministic and are mutually inverse to each
other. Thus, the RSA encryption function is a permutation. It is termed a trap-
door permutation since decryption can only be applied given the private key.

The basic security assumption on which the RSA cryptosystem relies is its
one-wayness (OW) : using only public data, an attacker cannot recover the plain-
text corresponding to a given ciphertext. In the general formal setting provided
above, an encryption scheme is one-way if the success probability of any adver-
sary A attempting to invert £ (without the help of the private key), is negligible,
i.e. asymptotically smaller than the inverse of any polynomial function of the
security parameter. Probabilities are taken over the message space M and the
randoin coins {2. These include both the random coins r used for the encryption
scheme, and the internal random coins of the adversary. In symbols :

Succ®™(A) = Pr[(pk, sk) + K(1%),m & M : A(pk, Ex(m)) = m).

Formally, the assumption that RSA is one-way is stronger than the hardness
of factoring. Still, it is widely believed and the only method to assess the strength
of RSA is to check whether the size of the modulus n outreaches the current
performances of the various factoring algorithms.

3 From Naive RSA to OAEP

The “naive” RSA algorithm defined in the previous section cannot be used
as it stands : in particular, it has algebraic multiplicative properties which are
highly undesirable from a security perspective. Accordingly, it was found neces-
sary to define formatting schemes adding some redundancy. For several years,
this worked by trials and errors, as shown by the subtle attack against the
PKCS #1 v1.5 encryption scheme devised by Bleichenbacher [4]. In this attack,
the adversary discloses the secret key of an SSL server based on the informa-
tion coming form the error messages received when an incorrectly formatted
ciphertext is submitted to the server. Thus, a more formal approach appeared
necessary.

The starting point of the new appraoch is semantic security, also called po-
lynomial security/indistinguishability of encryptions, introduced by Goldwasser
and Micali [9] : an encryption scheme is semantically secure if no polynomial-
time attacker can learn any bit of information about the plaintext from the
ciphertext, except its length. More formally, an encryption scheme is semanti-
cally secure if, for any two-stage adversary A = (A;, A3) running in polynomial
time, the advantage Adv™™(A) is negligible, where Advi"(A) is formally defined
as
(pk, sk) < K(1%), (mg, my, 8) < A1(pk),
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Fig.1. Optimal Asymmetric Encryption Padding

where the probability space includes the internal random coins of the adversary,
and mg, m, are two equal length plaintexts chosen by A; in the message-space
M.

The above definition only covers passive adversaries. It is a chosen—plaintext
or CPA attack since the attacker can only encrypt plaintext. In extended models,
the adversary is given access to a decryption oracle which returns the decryption
of any ciphertext ¢, with the only restriction that it should be different from the
challenge ciphertext c. This scenario is is termed the adaptive chosen-ciphertext
attack (CCA2) [13].

The OAEP padding scheme (optimal asymmetric encryption padding) was
proposed by Bellare and Rogaway [3] in 1994. It is depicted on figure 1 . For
a long time it was believed that OAEP achieved CCA2 security, based on an
almost mathematical proof relying on the one-wayness of the RSA function.
The word “almost” here refers to the use of the so-called random oracle model
which models G and H in figure 1 as functions which return random independant
values, which is not formally correct.

4 Rise, Fall and Repair of OAEP

In 2001, Victor Shoup [16] showed by means of a subtle counter-example,
the the proof of Bellare and Rogaway only applied in the restricted attack set-
ting where the adversary can query the decryption oracle before it receives the
challenge ciphertext ¢ (sometimes referred as CCAL. Tt did not necessarily mean
that OAEP was itself flawed. In any case, a new proof was needed.

Surprisingly, the repaired proof appeared shortly afterwards in [8]. Albeit
based on the same methodology, it is significantly different and uses additional
algebraic tools, notably two-dimensional lattices, which did not appear in the
earlier proof. Thus, the multiplicative properties of RSA, which motivated the
quest for formatting schemes, help for the security proof. It should also be noted
that alternative formatting schemes, with a more direct security proof have
been recently designed. However, OAEP is a widely used standard [15] and it is
unclear whether it will be replaced by these challengers.
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Conclusion

The lesson to learn from the above is that cryptography should proceed

with care. Twenty-five centuries were needed before the discovery of public key
cryptography by Diffie and Hellman. It took twenty-five more years to unders-
tand how RSA could be correctly practiced. No cryptographic algorithm can
be designed and validated in twenty-five minutes or twenty-five hours, not even
twenty-five days.

Références

1.

10.

11.

12.

13.

14.

15.

16.

M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of Security
for Public-Key Encryption Schemes. In Crypto 98, LNCS 1462, pages 26—45. Springer-Verlag,
Berlin, 1998.

M. Bellare and P. Rogaway. Random Oracles Are Practical : a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62-73. ACM Press, New York, 1993.

M. Bellare and P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt with RSA. In
Eurocrypt 94, LNCS 950, pages 92-111. Springer-Verlag, Berlin, 1995.

. D. Bleichenbacher. A Chosen Ciphertext Attack against Protocols based on the RSA Encryption

Standard PKCS #1. In Crypto ’98, LNCS 1462, pages 1-12. Springer-Verlag, Berlin, 1998.

D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. In Eurocrypt ’96,
LNCS 1070, pages 155-165. Springer-Verlag, Berlin, 1996.

W. Diffie and M.E. Hellman. New Directions in Cryptography, IEEE Transactions on Information
Theory, v. IT-22, 6, Nov 1976, pages 644-654.

D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,
30(2) :391-437, 2000.

E. Fuyjisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure under the RSA
Assumption. In Crypto ’2001, LNCS 2139, pages 260—-274. Springer-Verlag, Berlin, 2001.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28 :270-299, 1984.

C. Hall, I. Goldberg, and B. Schneier. Reaction Attacks Against Several Public-Key Cryptosys-
tems. In Proc. of ICICS’99, LNCS, pages 2-12. Springer-Verlag, 1999.

M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext
Attacks. In Proc. of the 22nd STOC, pages 427-437. ACM Press, New York, 1990.

T. Okamoto and D. Pointcheval. REACT : Rapid Enhanced-security Asymmetric Cryptosystem
Transform. In CT — RSA ’2001, LNCS 2020, pages 159-175. Springer-Verlag, Berlin, 2001.

C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433-444. Springer-Verlag, Berlin, 1992.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21(2) :120-126, February 1978.

RSA Data Security, Inc. Public Key Cryptography Standards — PKCS.

Available from http ://www.rsa.com/rsalabs/pubs/PKCS/.

V. Shoup. OAEP Reconsidered. In Crypto ’2001, LNCS 2139, pages 239-259. Springer-Verlag,
Berlin, 2001.



