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Abstract. This paper addresses the problem of defining and providing
proofs of knowledge for a general class of exponentiation-based formu-
lae. We consider general predicates built from modular exponentiations
of secret values, combined by products and connected with the logi-
cal operators “AND”, “OR”, “NOT”. We first show how to deal with
non-linear combination of secret exponents. Next,we extend the work by
Brands [4] to a strictly larger class of predicates, allowing a more liberal
use of the logical operator “NOT”. We sketch two applications by which
we enhance group signatures schemes with revocation of identity and
multi-signer features. Such features can be useful to protect privacy or
for collabrative use of group signatures, respectively.

1 Introduction

1.1 Proof of Knowledge

Zero-knowledge has been introduced by Goldwasser, Micali and Rackoff in [23]
to quantify the amount of information leaked in an interactive protocol. The
(interactive) protocols are thus proved zero-knowledge when they reveal no in-
formation apart from the validity of the statement. Almost at the same time,
the concept of proof of knowledge [21] introduced the notion of extractor for a
secret and became a building block in public-key cryptography. The property
of zero-knowledge is useful as soon as one wants to perform some operations
with secret values without revealing them. Classical examples are authentica-
tion, identification [5,20,21], digital signatures [21] and group signatures [10,
18].

From a more general point of view, the idea of satisfying boolean statements
(predicates) without leaking any information has been first introduced by Chaum
et al. [13,15,22]. Numerous schemes [14] allow to combine several proofs to prove
more elaborated statements about discrete logarithms; the very first only covered
the case of a single equations connected by “AND” statement. In 1994, De Santis
et al. [25] and Cramer et al. [19] independently discovered a general method to
deal with the “OR” connective. Using their method, one can design proof sys-
tems for monotone formulae (i.e. statements without negations). An application
to group signature was made in an earlier paper [18] that mentioned [19]. Both



papers were based on a protocol proposed by Schoenmakers in [26]. Later, Ca-
menisch and Stadler [11,7] introduced a formal model for building and proving
general linear relations about discrete logarithms, and combining them by the
logical operators “OR” and “AND”.

In 1997, Brands [4] described a general method allowing to prove any boolean
combination of linear or affine relations on secrets exponents, including relations
obtained by “NOT” operator. Note that, strictly speaking, this method does not
encompass the entire class of boolean formulae obtained by connecting exponen-
tiations of elements since one may wish to state that an exponential term differs
from an element whose discrete logarithm is unknown. This will be precisely
where the core of our paper can be found.

1.2 Contributions

Our contribution is on two points. We first explain how to prove non-linear
relations on secret values and give as an example a protocol to efficiently prove
knowledge of roots of discrete logarithms.

Next we define zero-knowledge proofs for statements involving negations (i.e.
operator “NOT?”), in a framework which is strictly larger than the one used in [4].
We explain why in some situations that we believe to be practical, the scheme
proposed in [4] is not sufficient. As a concrete application of this particular
extension, we give two examples related to group signatures. The first formalizes
the work of [6,27] to perform member revocation while the second introduces
multi-signer features in that context.

2 A General Class of Exponentiation-Based Formulae

We describe here a formal class of predicates, seen as boolean statements built
from modular exponentiations of secret values, combined by products and con-
nected with the logical operators “AND”, “OR”, “NOT”.

2.1 Preliminaries

We follow the notation of [4, 3]. We denote a polynomial-time prover by P and a
possibly unlimited verifier by V. The notation x € S means that x is chosen in
the set S randomly; we assume uniform distribution, unless otherwise specified.
Finally, we fix a cyclic group G of prime-order ¢ (e.g. a subgroup of Zj, where p is
alarge prime and ¢g|p—1). Note that ¢ is made public. For any polynomial integer
m, for any element y and generators g1, ..., gn in G, we say that (z1,...,2Zm) €
Zy' is a representation of y with respect to the g;’s if y = [T, g7 Without
loss of generality, we assume that the generators appearing in such a product
are different.
The following lemma is a critical part of our construction.



Lemma 1 (see [17]). Under the discrete logarithm assumption, it holds that
no probabilistic polynomial-time algorithm, on input q and a randomly chosen,
polynomial-sized tuple of generators (g1,...,9m), can output with non-negligible
probability an element h € G and two different representations of h with respect
to some of the g;’s.

2.2 Knowledge of representations

In the remaining of this paper, we consider a polynomial-sized family of genera-
tors g1, . - -, gm of G, whose relative discrete logarithms are unknown. An atomic
representation-based predicate relatively to some variables (x1,...,z) is build
from a representation of a public value y w.r.t. a subset of the basis gi,.. ., gm:

(T) : Yy = H g5 where S C [1,m], #(S) = k.
l€[L,k],j€S

To avoid using two different indices for the bases and the variables, we con-
sider an appropriate injective function 7 from [1, k] onto [1,m] such that the
predicate can be re-written as follows:

. —_ x
(T) : v= 11 9
le[1,k]
Depending on the values of z1, . .., zx, the above equation may be satisfied or

not, and the predicate is seen as true or false for this set of values. Proving such
atomic representation predicate means proving knowledge of values z; such that
the underlying equality holds. Camenish and Stadler [11] formalize this notion
through knowledge specification and knowledge specification set.

We assume that P holds a set of values satisfying (T'). Using standard zero-
knowledge interactive protocol, P can prove knowledge of such private values
(21,...,7). We denote such a proof:

ZKPK[o; : T(o1,...,04)] = ZKPK[o; : y= [ 97t)]
le[1,k]

which means “some secrets o; are known that make T true”.

Proofs for Monotone Formulae. The prover is able to prove knowledge of
the conjunction of two predicates by running a “multiple proof” in which it
commits to several values using the same random number, receives a unique
challenge, and gives a set of values as an answer. A predicate containing only
“AND” connectives is referred to as a conjunctive representation predicate or
CR-predicate on a set of variables (o1, ...,0y):

k
T(o1,...,00) : A (-%' =11 92(!))

i=1 leS;



where for each i € [1,k], S; is a subset of [1,v] of cardinality at most m and m;
is an injective function from S; onto [1,m].

Also the technique by Cramer et al. [19] can be used to prove knowledge for
a disjunction of atomic predicates. This technique is now classical and consists
in running a simulator on the predicates for which the secrets are unknown,
and in completing the proof on known secrets by an adequate “share” of the
given challenge. Such extensions appear in the literature and details are omitted
here. The reader can refer to [10]. Thus, we can generically obtain proofs for
any disjunctive-conjunctive representation predicate (DCR-predicate) on vari-
ables (01,...,04;)1<i<n Written as:

n k;
(T) : VA (v = 11 97,0

i=1j=1 1€S;;

where for each i € [1,n] and each j € [1, k;], S;; is a subset of [1, v;] of cardinality
at most m and m;; is an injective function from S;; onto [1,m].

Remark 1. DCR-predicates capture as a particular case proofs of knowledge
of discrete logarithms or representations, as well as equality of discrete logs
(“AND”) or knowledge of one discrete log out of n (disjunctive predicate).

They also can be used to demonstrate roots of representation with the tech-
nique explained in [10]. However, in section 4, we show that a much more efficient
technique can be used to demonstrate such statements (logarithmic size instead
of linear size).

2.3 Case where #(G) is unknown

When #(G) is not public, the answers cannot be reduced modulo ¢ anymore,
and zero-knowledge is only statistical. We take the example of G = @Qn, where
Q@n is the set of quadratic residues modulo N. If N is the product of two safe
primes p = 2p' + 1 and ¢ = 2¢’ + 1, then Qu is a cyclic group, and a random
element is a generator with overwhelming probability, as shown in the following
lemma:

Lemma 2. Let p,q,p',q' be four prime numbers such that p = 2p' + 1 and
qg=2¢ +1 and let N = pq. In that case, if an element w € Q% \{1} has order
ord(w) < p'q', then either gcd(w —1, N) or gcd(w + 1, N) is a non-trivial factor
of N.

3 Case of Monotone Formulae

3.1 Proving Linear Relations

We first recall known results on demonstrating linear relations between secret
values using representation-based predicates. Following Brands formalization [4],



we consider a prover P having knowledge of some secret values z1,...,z. The
following result shows how a linear relation between the z;’s can be efficiently
proven without revealing any additional information.

We assume P has published h = gi*g5* as its public key. Let a,b be some
public values in Z, and assume that P wants to prove knowledge of two secrets
01,02 such that the following predicate (T') : h = g7*g952 A (b = a0y + 02) is
true.

It can be shown [4] that under lemma 1, is is equivalent for P to prove
knowledge of o1 and oy satisfying (T') or to prove knowledge of the discrete
logarithm of hgs b to the base g; g5 . To see that, let s be this discrete logarithm.
From the definition of s, we easily get h = gig5~?%. According to lemma 1, P
can know at most one representation of h to the bases g; and g». Thus we have
z1 = s and z2 = b — as. Hence, predicate (T') is true.

Also it must be noted that g1 9, * is generator of G with overwhelming prob-
ability; we assume that it is always the case (for instance if a is chosen by the
verifier).

These proofs can then be combined using standard techniques described in
the previous section. We refer the reader to [4,11] for more details.

3.2 Extension to Quadratic Relations

We now deal with the method for proving non-linear relations. More precisely,
in this section, we describe how to prove that a secret value is the product of two
other secret values (or the square of another secret). Although such a technique
is implicitely used in many papers, we put forward here the very conditions
needed for a safe use.

Let T be a conjunctive representation predicate as defined in section 2: T :
Ny =11, g 0 and consider the following, new predicate:

T : (T)A(%z; = 7 mod q)

This is not a representation predicate anymore. However, we claim that P
can still prove the validity of (7”) when knowing the secrets x; by using the
following technique:

Protocol 1.

1. V sends to P a random generator h of G.
2. P chooses an integer r €g Zj and sends to V: y' = g*ih'.
3. P performs the following proof of knowledge:

ZKPK]|o1,...,00,p,7 : (T)A(y' =9%h*) A (y'7 =g°*h")] (1)

We underline that it is of prime importance that P has no control over g and h,
and that g, h are generators of G with overwhelming probability.

This protocol allows to add any non-linear relation to an arbitrary conjunc-
tive predicate, as stated in the following theorem:



Theorem 1. Let (T') be a conjunctive predicate on the variables (o1,...,0%).
Then under lemma 1, Protocol 1 is a zero-knowledge proof of knowledge for
the predicate (T") := (T) A (z;z; = 2 mod q).

Proof. We prove the following three properties.

Completeness. The verification is straightforward.

Soundness. The soundness property is computational. Let £ be a knowledge
extractor for the proof (1). We show that £ is also a knowledge extractor for
predicate (T"), provided lemma 1 holds.

Let (z1,...,2k,7,t) the secrets extracted by €. If we raise the equation y' =
g% h" to the power of z;, we get:

yIZj — gZiZjh’l“Zj — gzkht

Now, if g and h are randomly chosen by the verifier, lemma 1 applies and
we have with overwhelming probability z;z; = 2z mod g. That is, returning
(#1,...,2) makes an extractor for predicate (T").

Zero-Knowledge. It is easy to see that if  is uniformly distributed over Z,,
sending 4’ to the verifier does not reveal any helpful information. Also, the proof
performed in the third step of the protocol does not reveal anything either. 0O

Corollary 1. When running Protocol 1 withi = j, one can prove that a secret
exponent is the square of another secret exponent.

This simple remark allow us to build new, efficient scheme for proving knowl-
edge of more complex statements, including polynomial relations, as explained
in the next section.

4 Application to Efficient Protocols

While proving knowledge of discrete logarithms or representation is feasible in
efficient ways by classical means, proving the knowledge of a root of a discrete
logarithm is much more difficult. Two ideas have been proposed so far, which
remain quite inefficient or constrained to particular values.

4.1 A Generic Bit-by-bit Solution [28]

M. Stadler proposed in [28] a bit-by-bit protocol which allows to prove knowledge
of the e-th root of the discrete logarithm of an element y, relatively to a base
element g. That is, given y,g € G and e > 2, one proves knowledge of z such
that y = ¢g*".

This can be done as follows. Let £ denote a security parameter.

Protocol 2.

1. P chooses r1,...,7¢ €Eg ZX and sends t; = g™ to V, fori=1,... L.
2. V sends a random /-bit challenge ¢ to P.



3. P answers with (s1,...,s¢) where s; =r; if ¢[i] = 0 and s; = r;/z otherwise.

: . L, _ [gFifci] =0,
4. V acceptsifforalli=1,...,¢ : t; = {ysf otherwise.

4.2 An Alternative Solution for Small e only [10]

In [10], another solution acceptable for small values of e appears. The resulting
proof being linear in e, the usefulness is very limited in practice. One cannot use
it for e > 160, for instance.

Let consider another generator h of group G such that the discrete logarithm
of h to the base g is unknown. The basic idea is to prove a conjunctive predicate
made of some statements like y; = g% A (0; = = X 0;_1), and yo = g such that
one recursively gets o; = z'. However, such a solution reveals partial informa-
tion about x, namely all the intermediate values g° . The solution consists in
“blinding” these intermediate values using another generator h whose discrete
logarithm to the base g is unknown (this can be done by having V choosing h).

More precisely, P performs the following two steps. In the first step, P com-
putes e — 1 random values y; through y._; as y; = h"ig® where r; is a random
secret exponent. P sends these values to V. In the second step, P proves the
following representation predicate:

ZKPK[Jl,...,ae,p:yl=h‘ng” A g =hy A

N Yer =h7""yl , AN y=hTyl_,

According to this proof, and independently of lemma 1, y is actually of the
form h7g*", where p and 7 = o + - - -+ 09p¢ 2 +01p° ! are proven to be known
by P. Also, according to lemma 1, P can know at most one representation of y
to the bases g and h. It follows that: 7 = p® mod ¢, which means that p satisfies
y = g°". It is easy to see that no information is leaked by the values y;’s if the
exponent r;’s are randomly and independently chosen.

4.3 Our Solution in O(loge) Size

We now describe a method that can be used for larger values of e. Let £ be a
security parameter. Our protocol can be used for any e < 2¢/2 and leads to proof
of size O(loge). Such improvment has been also suggested in [7, p. 64]. In this
section, we give the first formal protocol together with a proof of security. Typi-
cally, for £ = 160 our protocol outperforms both Camenish-Stadler protocol [10]
and Stadler protocol [28].

The main idea is as follows. First when proving both A = ¢° and A? = ¢7,
for some values A and g, one proves that 7 = op. That is, we prove that a secret
exponent is the product of two other secret exponents. Second, we note that if



. . . k i J
e=2F42042/4... one can write 2° = 22 22 2% -

like y = g*° can be written as

--. It follows that a statement

Y=g 2k 2t 2f

Hence using the binary representation of e (which is O(log e) long), we obtain
a new form of the statement g*° wherein z¢ is the product of some exponents.
Let us now go into details.

Let k be [log,e] so that e = ¥  e[i]2¥~%, where e[i] is the i-th most
significant bit of e. We denote by e; the integer made of the j+ 1 most significant
bits of e, that is Y 7_, e[i]2/~¢. Note that we have e;, = e and ey = €[0] = 1.
Finally, <e> denote the Hamming weight of e, that is Zf:o eli].

Now we perform a sequence of operations reflecting a square-and-multiply
exponentiation.

Protocol 3.

1. V chooses at random a generator h of G and sends it to P.

2. P chooses at random k+1 secret exponents ¢ through 7y, as well as <e> —1
random exponents s; for all ¢ € [1, k] such that e[i] = 1. Then the following
values are made public:

v;i =g h"  for alli € [0.k]
w; = g% T h# for all i € [1,k] such that €[i] = 1

3. P performs the following proof of knowledge:

ZKPK[JO,...,ak,pO,...,pk 1 vp = g7°hPo A

(/k\ (U" =97 A (o = Ug[i]ag_l))) Ay = ga'k] (2)

i=1

Note that according to Theorem 1, a statement of the form o; = ag[i] o?

can be demonstrated by proving an additional representation of the form v; =
v; ' 7"h% in case e[i] = 0 and two additional representations of the form v; =

o0 pt; . _ Oi—1p ¢l . o
wi® A% A w;q =v; 7 hY% in case efi] = 1.

Theorem 2. Let g be a generator of G and e be a (k+1)-bit integer of Hamming
weight < e >. Then under lemma 1, Protocol 3 is a zero-knowledge proof of
knowledge of the e-th root of the discrete logarithm of y to the base g.

Proof. We have to show the following three properties.

Completeness. Consider P who knows all values z, {r;}, {s;}. An easy ver-
ification ensures that for all ¢ € [0,k], o; = 2% and p; = r; form a correct set
of secrets for the protocol, since we have g; = 2 = gelit2ei-1 = gelil(gei-1)2 =

eli] 2
Op Oj_1-



Soundness. The soundness property is computational. If A is randomly cho-
sen by the verifier, lemma 1 applies and we can consider a knowledge extractor £
for the proof (2). Let (20,...,2k,T0,---,T) the secrets extracted by £. One can
easily check that for any ¢ € [1, k] one has: 2; = 2;' and in particular 2z, = 2§.
Therefore, y = g%, that is, 2o is the e-th root of the discrete logarithm of y to
the base g.

Zero-Knowledge. It is easy to see that if the {r;} and {s;} are uniformly

distributed over Z4, no information is leaked when revealing vy, ..., v; and the
w;’s. Also the proof performed in the third step of the protocol is zero-knowledge
and thus does not reveal anything either. O

5 How to Deny a Predicate

5.1 Motivation

We now turn to the second contribution of our work. In this section, we ex-
plain how a prover can convince a verifier that he knows some secret values
(z1,-..,zr) which verify some equalities but do not verify other ones. Gener-
alization to negate several predicates is easy. The technique can be useful in
several situations:

1. A user wants to prove that he did not use a particular secret or random
value in some signature or encryption he produced.

2. The prover has committed to some values x; and wants to prove [], g7* #Y
for a public value Y (whose representation is not known).

The protocols proposed by Brands [4] can solve the first example, but not
the second one. Briefly speaking, these protocols allow a prover P holding a
secret x namely a discrete logarithm to convince any verifier V that z differs
from another known discrete logarithm. The main (and indeed, critical) point
of these protocols, is that the prover must know these two secrets in order to
perform the interaction.

What if the prover wants to demonstrate a statement like: “I know the dis-
crete log of y to the base g, and it differs from the (unknown) discrete log of z
to the base h” 7 Consider the situation where Alice’s public key is Y4 = g*4
and Bob’s public key is Yg = h*B. Alice knows x4 but not zp; at the same
time, she can easily verify that 4 # zp by computing h”4, which then must
differ from Yp. This is not achievable by Brands’ protocols in which one needs
to know both x4 and xp at the same time.

That’s why we claim that, even for linear relations, Brands’ method only
applies to a restricted class of non-monotone predicates. Indeed, Brands consider
only predicates where relations hold in Z,. Our consider the case of relations
between data obtained by exponentiating these secrets, namely, relations holding
in G. This clearly leads to a larger class of formulae.

The following theorem illustrate the previously known result:



Proposition 1 (Brands, [4]). We denote by (x1,z2) the set of secrets known
to P and by heG the (public) product g7*g3*. Let T(o1,02) be the predicate:
h =g¢7'95% and a,b be some public values in Z,.

Then, under lemma 1, P can prove the predicate T'(o1,02) = T(o1,02) A
(o1 # a+ boz) if and only if it is able to prove knowledge of a representation of

g1 with respect to gth~! and gbgs.

The sketch of the proof consists in considering a knowledge extractor for the
representation of g; and to use lemma 1 to identify these representations with
the trivial representation of g;.

5.2 Equivalent Formulation of a Negation

We are based on the fact that denying an atomic predicate is equivalent to
proving a conjunction of representation predicates, relative to some well-chosen
public parameters. This is also the underlying idea in [4]. But our protocol uses
additional values, which allow “blinding” techniques. Some examples of this
technique can be found in [12, 6].

A Basic Situation. We consider Alice holding public key Y4 = ¢g®4. Bob’s
public key is Yp, but the corresponding secret key Xp = log, Yg is, of course,
not known. If Alice wants to prove that she is actually Alice and not Bob, she
runs the following protocol.

Protocol 4.

1. P chooses an exponent 7 €g Zj and gives to the verifier w = (h®4/Yp)".
2. The verifier V checks that w # 1.
3. P proves the following predicate:

ZKPKlo,p,r = (Ya=g") A (w=N"/Yg) A (T=0p)] (3)

Theorem 3. The above protocol is a zero-knowledge proof of knowledge for the
predicate T(o) : Ya = g° A (0 # log, YB), provided that lemma 1 holds.

Proof. Completeness. Verification is straightforward.

Soundness. The soundness property is computational. Since h and Yp are
not chosen by P, lemma 1 applies and we can consider a knowledge extractor
& for the proof (3). Let (s,r,t) the secrets extracted by £. According to (3),
we have t = sr which leads to w = hfYz" = (h®/Yp)". Consequently, the fact
that w # 1 implies h® # Yp, that is s # log, Yp. Hence, returning s makes an
extractor for predicate Y4 = g% A (o # log, Yi).

Zero-Knowledge. Since h”4 /Yg is a generator with overwhelming proba-
bility (in fact, this is always the case if ¢ is a prime), w is completely random
over G\{1} if r is uniformly distributed over Z}. It follows that neither w nor
the zero-knowledge proof performed in the third step does reveal helpful infor-
mation. O



General Linear Relations. We now consider P holding (21, ..., z;) and whose
public key is h = H’f 97", where 7 is an adequate permutation. Let (ay, ..., ax)
some fixed coefficients, Y be a public element in G (whose no representation is
known) and (T') be the following predicate:

—(log, Y = ag + a1y + - - - + iy mod q)

Note the validity of such predicate can clearly be checked by P by raising g
to the power of the above linear combination. Now assume P wants to convince
V of the validity of the statement without revealing the z;’s. To that goal, P
runs the following protocol:

Protocol 5.

1. P chooses r €g Z; and sends w = (g0t #1ttarze [Y) o V.,
2. The verifier V checks that w # 1.
3. P proves knowledge for the following predicate on variables p, o, 7, w1, . . ., w:

ZKPK [p, 0, T,w; : (hgo‘0 =g’ f[ (g*‘“gi)wi )/\(w = gT/Y”)/\(T = pa)]
i=1

Corollary 2. The above Protocol 5 is a proof of knowledge for the predicate
T(wi) = h=TI(gi") A (a0 + awr + - -- + apwy # log, Y mod q), provided that
lemma 1 holds.

Proof. Completeness. Verification is straightforward.

Soundness. The soundness property is computational. Since g and Y are
not chosen by P, lemma 1 applies and we can consider a knowledge extractor
& for the above proof in step 3. Let (s,r,t,uq,...,ur) the secrets extracted
by £. Since P cannot know two different representations of A with respect to
91, ---, 9k, we have with overwhelming probability s = ag + Zf a;u;. Also the
second statement and the third one lead to w = ¢g™*/Y" = (¢°/Y)". From w # 1,
it follows that s = ag + Z’f a;u; # log, Y. Hence, returning uy, . .., ux makes an
extractor for predicate b = [](g;") A (a0 + a1wi + -+ + agwy # log, Y).

Zero-Knowledge. Since g@ot T2k /Y ig a generator of the cyclic group
G with overwhelming probability, w is completely random over G\{1} if r is
uniformly distributed over Zj. It follows that neither w nor the zero-knowledge
proof performed in the third step does reveal helpful information. O

6 Applications

In this section, we show some applications of our technique to classical group
signature schemes. We emphasize that our solutions are generic, and we define a
class of group signature schemes for which we can get some additional properties.
Such schemes are derived from some general schemes for large groups originally
proposed in 1997 by Camenish and Stadler [10].



6.1 Group signatures

The concept of group signature, although extremely useful, appeared relatively
recently in cryptography [16,18]. It allows a member of a group to sign docu-
ments anonymously on behalf of the group, in an unlinkable but publicly ver-
ifiable way. As a feature, a group signature scheme considers a group leader,
also called group manager. The group manager deals with membership, and is
allowed to “open” a group signature in order to reveal the identity of the ac-
tual signer. This can be necessary in case of legal dispute. However, he is not a
trusted party and the security of a group signature scheme must consider attacks
involving him. To provide separability, we can consider two different entities, a
membership manager and a revocation manager. The latter should be needed
only to open signatures. Separability is considered in [9,24]. However, in this
paper, and to avoid confusion in the context of member exclusion, we call him
the judge rather than the revocation manager.
A group signature scheme consists of the following five procedures:

— KEY GENERATION (K@) : provides every player with its initial data.
— JOIN (J) : adds a member to a group.

— SIGN (S) allows a member to sign messages.

— VERIFY (V) : checks validity of a group signature.

— OPEN ({£2) : allows an authority to reveal the identity of a signer.

Requirements We briefly recall the desirable security requirements for a group
signature scheme. Additionally to the usual properties of correctness (i.e., a cor-
rectly generated signature is always accepted by the verification algorithm), a
group signature scheme must ensure that signatures are anonymous and un-
linkable: it must be computationally infeasible to find the identity of the signer
within the group. Moreover, deciding whether two signatures have been issued
by the same member has to be hard. Also the scheme must ensure that opening
is always possible, without cheating (i.e. the judge, when revealing the signer’s
identity, cannot falsely accuse an honest member). The last property is coalition
resistance, which have been proven for the first time in the recent scheme [1].
Coalition resistance means that a subset of dishonest members cannot gener-
ate a valid group signature which, in case of opening, would reveal an honest
(non-colluding) member as the signer.

6.2 A Class of Group signature schemes

The class of group signatures that we define contains the most recent and efficient
schemes [1,8,10]. It is characterized by the following criteria:

— Computations are made in a group G = (g) in which the discrete logarithm
problem is hard.

— The judge holds an ElGamal public key y = g which is an element of G.
The secret key is w.



— When registering, each member chooses a secret membership key x and re-
ceives a membership certificate for which demonstration of the corresponding
secret key can be done using disjunctive-conjunctive representation predicate
as defined in section 2.

— A group signature on a message m consists of a verifiable ElGamal encryp-
tion, under the judge’s public key, of the public membership key, as well as
an anonymous ZK proof of knowledge for the membership certificate and
the corresponding secret key. It means that the proof can be verified using
only the group public key, and not a particular member’s key. We generically
denote by T the underlying predicate contained in the zero-knowledge proof,
and by (A, B) the ElGamal encryption containing the signer’s identity.

Definition 1 (Camenish-Stadler -derived group signatures). We call a
CS-Group Signature Scheme any group signature scheme that uses algorithms
matching the above features.

6.3 Member Revocation

In this section, we illustrate the use of our technique to achieve member revoca-
tion in a group signature scheme. Revocation of members consists in preventing
some officially excluded members to sign document on behalf of the group (for
instance, after some abusive use). The general and most delicate problem encoun-
tered is how to preserve anonymity of past signatures for a revoked member? For
instance, if one reveals its secret key, its previously issued signatures might be
linked, which is undesirable.

We provided the first solution to the member revocation problem in [6].
We explain below how it is related to our general technique. Later, Song [27]
proposed a slightly different solution; the resulting scheme is more efficient (in
constant size rather than in linear size), however, it implicitly assumes that the
registration of a new member is done using an authentic, private channel be-
tween the membership manager and the joining member!; nevertheless such an
assumption follows [1]. Note that this is not necessarily the case in [6], where
the revocation mechanism is done via Zero-Knowledge proofs, and was originally
designed for [10]. In this section, we propose a more abstract and general frame-
work which allows such member revocation for all efficient recent schemes [1,8,
10].

6.4 Owur method

We can use the technique of section 5 to build a revocation feature for any
CS-group signature scheme. The protocol described in section 5 can be used
to demonstrate that a given fair ElGamal encryption (A, B) = (¢9",Yay") does

1 If it is not the case, any signature can be opened in a linear time (in the number of
members).



not contain a fixed plaintext Yg. To do so, it is sufficient to prove the following
predicate:

ZKPK[p . p=1log,(B/Y) # log, Al

This yields to a simple mechanism of revocation. Firstly, the authority pub-
lishes via a CRL (Certificate Revocation List) the identities of revoked members.
Now, the signer becomes able to show anonymously that he is not on the black-
list using non-montone DCR-proofs, since a CS-group signature is partially made
of an ElGamal encryption of the signer’s identity.

Theorem 4. Let S be a CS-group signature scheme and let us denote (A, B) the
ElGamal encryption of the signer’s identity, and T (o;) the predicate contained
in the zero-knowledge proof of knowledge. Then member revocation is achieved
by proving the following predicate instead of T :

ZKPK |p,0; + (T(0:)) NA=g" A p#log,(B/Y)] (4)

where Y is the identity of a revoked member.

The generic transformation thus works as follows. Instead of proving 7 when
signing a document, a member is required to prove (4), that is to show that he
holds a membership certificate, but that he is not a revoked member. If several
members are revoked, one has to prove a linear number of negations. We refer
the reader to [6] for further details.

6.5 Multi-signer group signatures

We are now interested in providing multi-signer features to any CS-group signa-
ture scheme. A multi-signer mechanism for a group signature scheme consists in
generating extended group signatures that can convince a verifier that a minimal
number of members have actually cooperated to produce the signature, while
hiding their identity at the same time. In other words, the signers (e.g., the ma-
jority among a board of directors), can prove they have cooperatively generated
such a signature, while remaining anonymous. The main point lies in the fact
that a group signatures being anonymous, the signers have to prove that the
same group member did not sign many times.

A multi-signer (threshold) feature is of interest when a document needs to
be signed by several persons who cooperate to authenticate the document while
hiding their identities. For instance, several parties have to agree on a contract
and prove that at least half of the group signed it, without revealing exactly
who. In this section, we show how to extend our result in section 5 to correctly
provide an efficient solution to such a scenario. We consider the case where two
signers want to cooperate, and refer this scenario as a double-signer mechanism.

We first note that the problem is different from the one of member revoca-
tion. In the former, the signer has to prove that the identity contained in the
signature (within the ElGamal encryption) differs from a public value, namely



the identity of the revoked member. The subtlety in proving that two mem-
bers P; and P, have actually signed is that one must prove that the identity
in the first encryption differs from the hidden identity contained in the second
encryption. More formally, if member P; and member Ps have encrypted their
respective identities Y3 and Y, under ElGamal, using the judge’s public key (g, v)
they have to prove in Zero-Knowledge that Y7 # Y5. A first solution has been
proposed in [7, p.118]. However, this solution was designed to suit the scheme
by Camenisch and Stadler [10] only. Our solution is more generic, and can be
applied to more efficient and secure scheme, such like [1].
We present the following protocol:

Protocol 6.

1. Py and P2 choose an exponent u €g Zj and compute 7' = (Y1/Y3)". They
send it to V.

2. V checks that T # 1.

3. Py and P, prove knowledge for the following predicate:

A 14
[‘71702>P>T : Ap =g  NAy =g AT = (B1/B)"y" A (Al) = g_T]
2

Theorem 5. Under lemma 1, the above protocol is a proof of knowledge of (u,v)
for the predicate: T(o1,02) : (A1 = g°) A (B1 =Yy ) A (A = g72) A (By =
Yay2) A (Y1 #Y2)

Proof. Let (A;,B1) = (¢9",y"Y1) and (As, Bs) = (9°,y°Y>) be the encryptions
of Y1 and Y5, respectively.

Completeness. Verification is easy.

Soundness. Let £ be an extractor for the proof of knowledge performed in
the third step of the protocol and (s1,sa2,7,t) be the values output by £. From
the first, second and fourth statement, we get: (s1 — s2)r = —t. It follows that:

T = (Bl [y > ’
B, [y®
Consequently the fact that T differs from 1 ensures that the plaintext corre-
sponding to (41, By) differs from the plaintext corresponding to (As, B>). Hence,
returning (s1,s2) makes a knowledge extractor for the predicate: T (oy,02)
(A1 =g7") A (B1 = Y1y7') A (A2 = g72) A (B = Yay”) A (Y1 # Ya).
Zero-Knowledge. We note that if r and s are randomly chosen, B; /B is
a generator with overwhelming probability, thus 7" is randomly distributed over
G\{1}. Also the proof performed in step 3 does not leak any information neither.
O

Corollary 3. Let S be a CS-group signature scheme in which a signature is
made of an ElGamal encryption (A, B) of the signer’s identity, together with
a proof of knowledge for a predicate T (p;). Then a double-signer mechanism is
achieved by providing in the signature



— (A1, B1) = (¢°*,h"' Y1) and (A2, B2) = (9°2,h*?Y2) for 51,82 €R L.
— the following proof of knowledge:

ZKPKI:p%,p%,O'l,O'z) : T(pi) A T(pf) N (A1 :gal) A\ (Blzyvlyo'l)
A(ds=g™) A (By=Yay™) A (Vi #5)

where Y1,Ys are the identities of two different signers.

Proof. Tt is easy to see that the first two ElGamal encryptions allows the judge
to recover the signers’ identities. Also the zero-knowledge proof can be generated
only by two different members (soundness). Finally, the signature is anonymous
(apart the fact that two people have signed) and unlinkable , due to the security
of ElGamal and the zero-knowledgeness. O

7 Conclusion

In this paper, we extended in several ways the class of boolean predicates that
can be efficiently proved by means of zero-knowledge proofs. We showed how to
compose such predicates to demonstrate polynomial relations among variables,
as well as negations of predicates. Also we gave generic applications of such
mechanisms to group signature schemes.
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