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8.1 HMM (end)

As a reminder, the message propagation algorithm for Hidden Markov Models requires 2

recursions to compute o (2;) := p(2, Y1, - .-, y) and By(z¢) = p(Yes1, - - -, Yr|2e):
Oét+1(2t+1) =P (yt+1 | Zt+1) ZP (Zt+1 | Zt) e% (Zt) (8-1)
Bi(z) =Y p Wesr | 241) P (241 | 2) Ba (241) (8.2)

Zt+1

Addressing practical implementation issues

Since oy and f; are respectively joint probabilities of ¢ + 1 and 7" — ¢ variables they tend to
become exponentially small respectively for ¢ large and ¢ small. A naive implementation of
the forward-backward algorithm therefore typically leads to rounding errors. It is therefore
necessary to work on a logarithmic scale.

So when considering operations on quantities say a, ..., a, whose logarithms are ¢; =
log(a;), the log of the product is easily computed as iy = log [ [, a; = >, ¢; and the log of the
sum can be computed with the smallest amount of numerical errors by factoring the largest
element. Precisely if ¢, = argmax; a; and ¢, = loga;, then

Uy, =log Z a; = log Z exp(¥;) = log [exp(f*) Z exp(&—ﬁ*)} = l,+log (H—Z exp(&—&))
i i i i
provides a stable way of computing the logarithm of the sum.

For hidden Markov models, remember that the max-product (aka Viterbi) algorithm
allows to compute the most probable sequence for hidden states.

8.2 Multiclass classification
We return briefly to classification to mention two simple yet classical and useful models for
multi-class classification: the naive Bayes model and the multiclass logistic regression. We

consider classification problems where the input data is in X = RP and the output variable
is a binary indicator in Y = {y € {0, 1} |y + ... + yx = 1}.
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8.2.1 Naive Bayes classifier

The naive Bayes classifier is relevant when modeling the joint distribution of p(z|y) is too
complicated. We will present it the special case where the input data is a vector of binary
random variable. X*: Q — {0,1}?

A practical example of classification problem in this setting is the problem of classifica-
tion of documents based on a bag of word representation. In the bag-of-word approach, a
document is represented as a long binary vector which indicates for each word of a reference
dictionary whether that word is present in the document considered or not. So the document
i would be represented by a vector z* € {0,1}?, with 2% = 1 iff word j of the dictionary is
present in the ith document.

As we saw in the second lecture, it is possible to approach the problem using directly a
conditional model of p(y | x) or using a generative model of the joint distribution modeling
separately p(y) and p(z|y) and computing p(y|z) using Bayes rule. The naive Bayes model
is an instance of a generative model. By contrast the multi class logistic regression of the
following section is an example of a conditional model.

Y is naturally modeled as a multinomial distribution with p(y’) = [[r_, 7T . However
p(x'ly’) = p(x}, ..., z}|y") has a priori 2¥ — 1 parameters. The key assumption made in the
naive Bayes model is that X7,..., X are all independent conditionally on Y. This assump-
tion is not realistic and simplistic, hence the term “naive". This assumption is clearly not
satisfied in practice for documents where one would expect that there would be correlations
between words that are not just explained by a document category. The corresponding
modeling strategy is nonetheless working well in practice.

These conditional independence assumptions correspond to the following graphical model:

Yz'

o O ... O

X X! X

p

The distribution of Y is a multinomial distribution which we parameterize with (74, ..., 7x),
and we write pj, = P(X]@ =1]Y;") = 1) We then have

p
p(X' =2 Y =) = plai,y) = p(a'ly )p(y') = [ [ o}y (')
j=1
which leads to
r K K ;
[HHM R (1 — ) % )yk} [
j=1k=1 k=1
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and

p

K
logp(z',y') =Y <j£: Gréyélogﬁgk-+-(l—-Ié)yilog(l-—ﬁwk))-+>y210g(ﬂk))
k=1  j=1

We can then use Bayes’ rule (hence the “Bayes” in “Naive Bayes”), which leads to
log p(y'[a") = n(z") 'y — A(n(z"))
with n(x) = (m(z),...,nx(z)) € RE and

_Hik

, b =logm.
L — ik

77k(37) :wl;ra:"'bk, wy € RP, [wk]j = log
Note that, in spite of the name the naive Bayes classifier is not a Bayesian approach to
classification.

Multiclass logistic regression

In the light of the course on exponential families, the logistic regression model can be seen
as resulting from a linear parameterization as a function of = of the natural parameter n(z)
of the Bernoulli distribution corresponding to the conditional distribution of Y given X = z.
Indeed for binary classification, we have that Y|X = = ~ Ber(u(z)) and in the logistic
regression model we set u(z) = exp(n(z)—A(n(z))) = (1+exp(—n(z)) "t and n(z) = w' x+b.

It is then natural to consider the generalization to a multiclass classification setting. In
that case, Y| X = z is multinomial distribution with natural parameters (n;(z),...,nx(x)).
To again parameterize them linearly as a function of x, we need to introduce parameters
wy, € RP and by € R, for all 1 < k < K and set ny(7) = w] x + b,. We then have

P(Yy =1|X = 2) = exp(ne(z) — A(n(z))) = = )
( k | ) ( k( ) ( ( ))) 2521 o () 2521 ew,j,m—kbk/

and thus
K

K
logP(Yy =y|X =2) = Zyk(w,;rx + by) — log [Z ewlj’“bk’} :
k=1 k=1
Like for binary logistic regression, the maximum likelihood principle can used to learn
(wg, b)1<k<rk using numerical optimization methods such as the IRLS algorithm.

Note that the form of the parameterization obtained is the same as for the Naive Bayes
model; however, the Naive Bayes model is learnt as a generative model, while the logistic
regression is learnt as conditional model.

We have not talked about the multi class generalization of Fisher’s linear discriminant.
It exists as well as the multi class counterpart of the model seen for binary regression. It
relies like in the binary case on the assumption that p(x|y) is Gaussian. This is good exercise
to derive it.
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8.3 Learning on graphical models

8.3.1 ML principle for general Graphical Models
Directed graphical model

Proposition : Let G be a directed graph with p nodes. Assume that (X!,...X™) are i.i.d.,
with p features : ie Vi € {1,..,n}, X; € RP | and that are fully observed, i.e., there is no
latent or hidden variable among them. Then the ML principle decouples in p optimisation
problems.

Proof : Let us assume we have a decoupled model Pg, i.e. :

Po = {po() Hp TilTe,,0;) | 0= (01,....,0,) €O =01 x ... x O,}

Zzlogp s 05)-

Then the ML principle reduces to solving p optimization problems of the form

mgaxfj(@j) st 0, €0, with 0;(6 Zlogp zr..05).

J

Undirected graphical model

— The ML problem is convex with respect to canonical parameters if: the data is fully
observed (no latent or hidden variable), and the parameters are decoupled.

— In general, if the data is not fully observed, the EM scheme or similar scheme is used.

If the parameters are coupled, the problem remains convex in some cases (e.g linear cou-
pling), but not in general.

— If the model is a tree, one can reformulate the model as a directed tree to get back to the
directed case.

— In general, to compute the gradient of the log partition function and thus to compute the
gradient of the log-likelihood, it is necessary to perform probabilistic inference on the model
(i.e. to compute VA(0) = u(0) = Ep[o¢(X)]). If the model is a tree, this can be done with
the sum-product algorithm and if the model is a close to a tree, the junction tree theory can
be leveraged to perform probabilistic inference; however in general probabilistic inference is
NP-hard and so one needs to use approximate probabilistic inference techniques.
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8.4 Approximate inference with Monte Carlo methods

8.4.1 Sampling methods

We often need to compute the expectation of a function f under some distribution p that
cannot be computed. Let X be a random variable following the distribution p, we want to
compute p = E[f(X)].

Example 8.4.1 For X = (Xy,...,X,) the vector of variables corresponding to a graphical
model,

f(X) =06(Xa=14)
E[f(X)] =P(X4 = 14)

If we know how to sample from p, we can use the following method :

Algorithm 1 Monte Carlo Estimation
1: Draw X, .. xm "y

2 1= %Z?:l f(X(i))

This method relies on the two following propositions :
Proposition 8.1 (Law of Large Numbers (LLN))
p==pdif pll < oo

Proposition 8.2 (Central Limit Theorem (CLT)) For X a scalar random variable, if
Var(f(X)) = 0% < oo, then

V(i — 1) = N(0,02)
thus B(||fi — u|)2) = 2

How to sample from a specific distribution ?
1. Uniform distribution on [0, 1] : use rand
2. Bernoulli distribution of parameter p : X = 1y, with U ~ U([0, 1])

3. Using inverse transform sampling :

VreR F(x) = /w p(t)dt =P(X € [—o0,z])

X = F1(U) avec U ~ U([0,1])
Proof P(X <y)=P(F'(U) <y)=P(U < F(y)) = F(y) u
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Example 8.4.2 Exponential distribution (one of the rare cases admitting an explicit
inverse CDF")
pla) = Ae 1, (2)

1

8.4.2 Ancestral sampling

Consider the problem of sampling from a directed graphical model, whose distribution takes

the form
d

p(ry, ..., 2q) = Hp(x, | r,).

i=1
We assume, without loss of generality, that the variables are indexed in a topological order.
Consider the following algorithm

Algorithm 2 Ancestral sampling
fori=1toddo
Draw z; from P,(X; = .| X_; = z,)

end for
return (zy,..., 2g)
Proposition 8.3 The random variable (Zy, ..., Z;) returned by the ancestral sampling al-
gorithm follows exactly the distribution p(x1,...,2q).

This result is intuitively obvious by induction, but proving it formally is somewhat tedious.
We first prove the results for a graph with two nodes.

Lemme 8.4 If X is drawn from px and given the value X obtained then Y is drawn from
the conditional distribution py x (-|X) then the pair (X,Y") follows the joint distribution px y .

Proof This result is fairly obvious by construction. To prove it formally, we consider the
case where the quantities px, py|x and pxy are densities with respect to the Lebesgue
measure. We will prove that for any function f of the pair (z,v), we have, that for (X,Y)
drawn sequentially as above,

E[f(X.7)) = / £(@, ) pxy(x,y) dedy,

as, this is true if and only if the joint distribution of ()~( , 17) is pxy.

LCumulative Distribution Function
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Since Y is drawn from Dy x (-] X) we have that

BIF(E.T) K] = [ £ prix(ul Xy,
But then
BIF(.7)) = BB D) | X)) = [ ([ 5.0 prixloidy)px(a)ds.
~ [[ eyl pxte) dyds,

which shows the result simply because px,y (z,y) = pyx (y|z)px (z). |

Proof of proposition 8.3. The proof we did in class is the generalization of the proof of
the lemma for n variables, involving a backward recursion on E[f(Xq,..., X,,) | Xi,..., Xk
However, we can use the result of the lemma to construct another proof based on a forward
recursion: we will prove by induction on k that (Z1,...,Z;) has the same distribution as
(X1,...,Xk). The induction hypothesis is true for k = 1, since Z; is drawn from p(z;) and
has thus the same distribution as X;. Then, assuming the induction hypothesis is true for
k — 1 we prove it for k. First, by the induction hypothesis, we know that (Z1,..., Zx_1)
follows the same distribution as (Xi,..., X;-1) and Zj is drawn from px, x,, (-, Zr,). Then,
we know that pXlerk(W Zr,) = Dxy1X1s1 (> Z1.6—1) Dy construction of the graphical model
and the fact that in a directed graphical model a node is independent of its ancestors given
its parents. If we identify Z, with Y and (Zy,...,Z,_;) with X in the previous lemma,
then by that lemma we know that (Z1, ..., Z;) follows the joint distribution pz, , Pz, |z, , .
with pz, ., = px, ,_, and Pz Zy k1 = PXplX1 k1o which proves that pz, , = px, ,, so the
induction hypothesis is true for k. By induction result is also true for n. [ |

8.4.3 Rejection sampling

Assume that p(z) is the density of = with respect to some measure p (typically the Lebesgue
measure for a continuous random variable and the counting measure for a discrete variable)
is known up to a constant

Assume that we can construct and compute ¢, such that
p(z) < kgr(x)

with ¢, a probability distribution. Assume we can sample from ¢q. We define the rejection
sampling algorithm as :
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Algorithm 3 Rejection Sampling Algorithm
1: Draw X from q

2: Accept X with probability JZ I(ji) € [0, 1], otherwise, reject the sample

Proposition 8.5 Accepted draws from rejection sampling follow exactly the distribution p.
Proof We write the proof for the case of a discrete random variable X.

P(X =z, X is accepted) = P(X = x, X is accepted)
= P(X is accepted|X = z)P(X = z)

q
kq ()
)
k

and ~ P
P(X is accepted) = Z p_(];”ﬁ) = ?p

so that <) E

P(X = x| X is accepted) = plx) k- = p(x).
k Z,

To write the general version of this proof formally for any random variable (continuous
or not) that has a density with respect to a measure p, we would need to define Y to be the
Bernoulli random variable such that {Y = 1} = {X is accepted}, and to consider pxy the
joint density of (X,Y’) with respect to the product measure p x v, where v is the counting
measure on {0,1}. The computations of pxy(z,y) and pxy(z,1) then lead to the exact
same calculations as above, but with less transparent notations. [ |

Remark 8.4.1 In practice, finding q and k such that acceptance has a reasonably large

probability is hard, because it requires to find a fairly tight bound on p(x) over the entire
space.

8.4.4 Importance Sampling

Assume X ~ p. We aim to compute the expectation of a function f :
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E,(f(X)) = / f(@)p(a)dz

- [
)

w(Y;) = Z gj; are called importance weights. Remember that

Thus we get
5) = 2 Y [ awe = [ s
Var(p) = %Varq(x) f(z()i)(x))

Lemme 8.6 IfVz, |f(z)| < M,

Var(fi) < E/p(x)2dx.

Proof
A\ f(@)p(z)
Var(f) = %Varq(x)< q(;’) )
xX 2 X 2
%f f(q)(:sg) q(x)dx

M2 [ p(z)?
m f e dz.

VAN VAN
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Remark 8.4.2
pl@)? [ p*(x) = 2p(x)q(x) + ¢*(z) . 2p(x)q(z) — ¢*(x) .
/q(fﬂ) = / q(x) a +/ q(x) !
B /(p(ﬂﬂ)—q(I))QdQj 1
q(z)

x2 divergence between p and q.

Hence, importance sampling will give good results if ¢ has mass where p has. Indeed, if
for some y, q(y) < p(y), importance weights Var(ft) may be very large.

Extensmn of Importance Sampling Assume we only know p and ¢ up to a constant :
p(x) = p( and ¢g(z) = £*, and only p(x) and ¢(x) are known.

E(fm%) - = (0mz) -

Zy
Z
o (Y;) as Z
— _Zf 7

133

Yavy
Take f to be a constant, we get
; 1~ 2(Y) as, Z
7 2 “Zp
p/q n ZZI q<}/;) Zq
~ ﬁl, a.s.
= =— —p
Zn/q

Remark 8.4.3 Even if Z, = Z, = 1, renormalizing by Zp/q often improves the estimation.

8.5 Markov Chain Monte Carlo (MCMC)

Unfortunately, the previous techniques are often insufficient, especially for complex mul-
tivariate distributions, so that it is not possible to draw exactly from the distribution of
interest or to obtain a reasonably good estimates based on importance sampling. The idea
of MCMUC is that in many cases, even though it is not possible to sample directly from a
distribution of interest, it is possible to construct a Markov Chain of samples X, X, ...
whose distribution ¢,(x) = p(X; = ) converges to a target distribution p(x).
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The idea is then that if T} is sufficiently large, we can consider that for all ¢ > T}, X,
follows approximately the distribution p and that

1 T 1 T
T o SR T D S R EIY)]

t=To+1 t=Top+1

Note that there is a double approximation: one due to the use of the law of large numbers
and the second due to the approximation ¢, ~ p for ¢ sufficiently large. Note also that the
draws of X;, X;;1 etc are not independent (but this is not necessary here to have a law of
large numbers). The times before T} is often called the burn in period. The most classical
procedure to obtain such a Markov Chain in the context of graphical models is called Gibbs
sampling. We will see it in more details later.

N.B.: In this whole section we write X, instead of X® which would match better with
other sections. Indeed, here X; should be thought typically as the whole vector of variables
corresponding to a graphical model X; = (X, ;)i1<j<q. We write ¢ as an index just to simplify
notations.

In the rest of this section we will assume that we work with random variables taking
values in a set X with |X| = K < co. However K is typically very large since it corresponds
to all the configurations that the set of variables of a graphical model can take.

8.5.1 Review of Markov chains

Consider an order 1 homogenous Markov chain, i.e. such that for all ¢,
P(Xt = y|Xt,1 = .I‘) = ]P)(Xt,1 = y|Xt,2 = I‘)

Definition 8.7 (Time Homogenous Markov chain)

Vt20> V(x,y) €X7 p(Xt+1:y ‘ Xt:antfla"wXU)
=p(Xi1 =y | Xy =)
=p(X1=y | Xo= 1)
= 5(z,y)

Definition 8.8 (Transition matrix) Let k = card(X) < oo. We define the matriz S €
R*** such that Vz,y € X,S(x,y) = P(X; = y|X;_1 = x). S is called transition matrix of
the Markov chain (Xy)g.

Properties 8.5.1 If k = card(X) < oo, then:
e Vr,ye X, S(z,y) >0
e S1=1 (i.e. row sums are equal to 1)

S is a stochastic matrix
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Definition 8.9 (Stationary Distribution) The distribution © on X is stationary if

e or equivalently Yy € X, m(y) = ZW(I‘)S(Z‘, Y).

zeX

If P(X,, = z) = w(x) with m a stationary distribution of S, then we have

P(Xp1=y) = ZP X1 = y| X = 2)P( ZS:By m(y)

Stn=rn with 7= (n(z))

Theorem 8.10 (Perron-Frobenius) FEuvery stochastic matriz S has at least one stationary
distribution.

Definition 8.11 (Regular Markov Chain) A Markov chain is reqular (or equivalently
aperiodic irreductible) if Ve,y € X,S(x,y) >0

Proposition 8.12 If a Markov chain is regular, then its transition matrix has a unique
stationary distribution m and for any initial distribution qo on Xo, if ¢:(-) = P(X; = ), then
Qs t—+> 7w Let q, be the distribution of X,,, then for all distribution qo we get

—+00

gn — T

Goal We want to construct a regular transition S whose stationary distribution is

1
= E H ¢c(xc)

Definition 8.13 (Detailed Balance) A Markov chain is reversible if for the transition
matrix S,
Im, Ve, y € X, 7m(2)S(x,y) = n(y)S(y, v)

This equation is called the detailed balance equation. It can be reformulated
P(Xpr1 =y, Xy =2) =P(Xpp1 = 2, Xy = y)

Proposition 8.14 If w satisfies detailed balance, then 7 is a stationary distribution.

Proof ZS z,Y)p Zp p(y)ZS(y,x) =p(y)- u

8.5.2 Metropolis-Hastings Algorithm
Proposal transition T(z,z2) =P(Z = z|X = z)

Acceptance probability «(x,t) = P(Accept z | X = 2,7 = 2)

@ o 1s not a transition matrix.

8-12



Cours 8 — November 18 Fall 2015

Algorithm 4 Metropolis Hastings

1: Initialize xy from Xy ~ ¢

2: fort=1,...,7 do

3: Draw z; from P(Z = | Xy, 1 = x41) = T(x4_1, ")

4: With probability a(z;, x4_1), set x; = z;, otherwise, set z; = x4
5: end for

Proposition 8.15 With that choice of a(x,z), if T(-,-) is reqular and if m(x) > 0 for all
x € X, then the Metropolis-Hastings algorithm defines a Markov chain that converges to 7.

Proof P(X; = 2| X; 1 =21) = S(z_1, 7¢)

Vz#x,S(x,2) = T(z,2)a(z,z)

S(z,x) = T(x,z)+ Y T(x,2)(1-a(z,z))
zH#x

Let 7 be given; we want to choose S such that we have detailed balance: The fact that we
have detailed balance for a transition from x to x is obvious because When z # z, we have

()T (z, 2)a(z,2) = 7(2)T(z,2)a(z, )
Then
a(z, 2) _ ()T (2, z) ()
a(z,z)  w(x)T(z,=2)
' (OT(:.7)
a(z,z) = min (1, T (@, 2))
then

{ a(z,z) € [0,1]

(%) is satisfied = detailed balance
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