
Sum Product Algorithm and Hidden Markov Model 2014/2015

Cours 7 — 12th November 2014

Enseignant: Francis Bach Scribe: Pauline Luc, Mathieu Andreux

7.1 Sum Product Algorithm

7.1.1 Motivations

Inference, along with estimation and decoding, are the three key operations one must be able
to perform efficiently in graphical models.

Given a discrete Gibbs model of the form: p(x) = 1
Z

∏
C∈C ψC(xC), where C is the set of

cliques of the graph, inference enables:

• Computation of the marginal p(xi) or more generally, p(xC).

• Computation of the partition function Z

• Computation of the conditional marginal p(xi|Xj = xj, Xk = xk)

And as a consequence

• Computation of the gradient in a exponential family

• Computation of the expected value of the loglikelihood of an exponential family at step
E of the EM algorithm (for example for HMM)

Example 1: Ising model

Let X = (Xi)i∈V be a vector of random variables, taking value in {0, 1}|V |, of which the
exponential form of the distribution is:

p(x) = e−A(η)
∏
i∈V

eηixi
∏

(i,j)∈E

eηi,jxixj (7.1)

We then have the log-likelihood:

l(η) =
∑
i∈V

ηixi +
∑

(i,j)∈E

ηi,jxixj − A(η) (7.2)

We can therefore write the sufficient statistic:

φ(x) =

(
(xi)i∈V

(xixj)(i,j)∈E

)
(7.3)

7-1

Cours 7 — 12th November 2014 2014/2015

But we have seen that for exponential families:

l(η) = φ(x)Tη − A(η) (7.4)

∇η l(η) = φ(x)−∇η A(η)︸ ︷︷ ︸
Eη [φ(X)]

(7.5)

We therefore need to compute Eη[φ(X)]. In the case of the Ising model, we get:

Eη[Xi] = Pη[Xi = 1] (7.6)

Eη[XiXj] = Pη[Xi = 1, Xj = 1] (7.7)

The equation 7.6 is one of the motivations for solving the problem of inference. In order
to be able to compute the gradient of the log-likelihood, we need to know the marginal laws.

Example 2: Potts model

Xi are random variables, taking value in {1, . . . , Ki}. We note ∆ik the random variable such
that ∆ik = 1 if and only if Xi = k. Then,

p(δ) = exp

∑
i∈V

Ki∑
k=1

ηi,kδik +
∑

(i,j)∈E

Ki∑
k=1

Kj∑
k′=1

ηi,j,k,k′δikδjk′ − A(η)

 (7.8)

and

φ(δ) =

(
(δik)i,k

(δikδjk′)i,j,k,k′

)
(7.9)

Eη[∆ik] = Pη[Xi = k] (7.10)

Eη[∆ik∆jk′] = Pη[Xi = k,Xj = k′] (7.11)

These examples illustrate the need to perform inference.

� Problem: In general, the inference problem is NP-hard.

For trees the inference problem is efficient as it is linear in n.

For ”tree-like” graphs we use the Junction Tree Algorithm which enables us to bring the
situation back to that of a tree.

In the general case we are forced to carry out approximative inference.

7-2

Cours 7 — 12th November 2014 2014/2015

7.1.2 Inference on a chain

We define Xi a random variable, taking value in {1, . . . , K}, i ∈ V = {1, . . . , n} with joint
distribution p(x) defined as:.

p(x) =
1

Z

n∏
i=1

ψi(xi)
n∏
i=2

ψi−1,i(xi−1, xi) (7.12)

We wish to compute p(xj) for a certain j. The naive solution would be to compute the
marginal

p(xj) =
∑
xV \{j}

p(x1, . . . , xn) (7.13)

Unfortunately, this type of calculation is of complexity O(Kn). We therefore develop the
expression

p(xj) =
1

Z

∑
xV \{j}

n∏
i=1

ψi(xi)
n∏
i=2

ψi−1,i(xi−1, xi) (7.14)

=
1

Z

∑
xV \{j}

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)ψn(xn)ψn−1,n(xn−1, xn) (7.15)

=
1

Z

∑
xV \{j,n}

∑
xn

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)ψn(xn)ψn−1,n(xn−1, xn) (7.16)

Which allows us to bring out the messaged passed by (n) to (n−1): µn→n−1(xn−1). When
continuing, we obtain:

p(xj) =
1

Z

∑
xV \{j,n}

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)
∑
xn

ψn(xn)ψn−1,n(xn−1, xn)︸ ︷︷ ︸
µn→n−1(xn−1)

(7.17)

=
1

Z

∑
xV \{j,n,n−1}

n−2∏
i=1

ψi(xi)
n−2∏
i=2

ψi−1,i(xi−1, xi)×

×
∑
xn−1

ψn−1(xn−1)ψn−2,n−1(xn−2, xn−1)µn→n−1(xn−1)︸ ︷︷ ︸
µn−1→n−2(xn−2)

(7.18)

=
1

Z

∑
xV \{1,j,n,n−1}

µ1→2(x2) . . . µn−1→n−2(xn−2) (7.19)

7-3

Cours 7 — 12th November 2014 2014/2015

In the above equation, we have implicitely used the following definitions for descending and
ascending messages:

µj→j−1(xj−1) =
∑
xj

ψj(xj)ψj−1,j(xj−1, xj)µj+1→j(xj) (7.20)

µj→j+1(xj+1) =
∑
xj

ψj(xj)ψj,j+1(xj, xj+1)µj−1→j(xj) (7.21)

Each of these messages is computed with complexity O((n− 1)K2). And finally, we get

p(xj) =
1

Z
µj−1→j(xj) ψj(xj) µj+1→j(xj) (7.22)

With only 2(n−1) messages, we have calculated p(xj) ∀j ∈ V . Z is otained by summing

Z =
∑
xi

µi−1→i(xi) ψi(xi) µi+1→i(xi) (7.23)

7.1.3 Inference in undirected trees

We note i the vertice of which we want to compute the marginal law p(xi). We set i to
be the root of our tree. ∀ j ∈ V , we note C(j) the set of childen of j and D(j) the set of
descendants of j. The joint probability is:

p(x) =
1

Z

∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj) (7.24)

For a tree with at least two vertices, we define by reccurence,

F (xi, xj, xD(j)) , ψi,j(xi, xj)ψj(xj)
∏
k∈C(j)

F (xj, xk, xD(k)) (7.25)

Then by reformulating the marginal:

7-4

Cours 7 — 12th November 2014 2014/2015

p(xi) =
1

Z

∑
xV \{i}

ψi(xi)
∏
j∈C(i)

F (xi, xj, xD(j)) (7.26)

=
1

Z
ψi(xi)

∏
j∈C(i)

∑
xj ,xD(j)

F (xi, xj, xD(j)) (7.27)

=
1

Z
ψi(xi)

∏
j∈C(i)

∑
xj ,xD(j)

ψi,j(xi, xj)ψj(xj)
∏
k∈C(j)

F (xj, xk, xD(k)) (7.28)

=
1

Z
ψi(xi)

∏
j∈C(i)

∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈C(j)

∑
xk,xD(k)

F (xj, xk, xD(k))︸ ︷︷ ︸
µk→j(xj)

(7.29)

=
1

Z
ψi(xi)

∏
j∈C(i)

∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈C(j)

µk→j(xj)︸ ︷︷ ︸
µj→i(xi)

(7.30)

Which leads us to the recurrence relation for the Sum Product Algorithm (SPA):

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈C(j)

µk→j(xj) (7.31)

7.1.4 Sum Product Algorithm (SPA)

Sequential SPA for a rooted tree

For a rooted tree, of root (i), the Sum Product Algorithm is written as follows:

1. All the leaves send µn→πn(xπn)

µn→πn(xπn) =
∑
xn

ψn(xn)ψn,πn(xn, xπn) (7.32)

2. Iteratively, at each step, all the nodes (k) which have received messages from all their
children send µk→πk(xπk) to their parents.

3. At the root we have

p(xi) =
1

Z
ψi(xi)

∏
j∈C(i)

µj→i(xi) (7.33)

7-5

Cours 7 — 12th November 2014 2014/2015

This algorithm only enables us to compute p(xi) at the root. To be able to compute all the
marginals (as well as the conditional marginals), one must not only collect all the messages
from the leafs to the root, but then also distribute them back to the leafs. In fact, the
algorithm can then be written independently from the choice of a root.

SPA for an undirected tree

The case of undirected trees is slightly different:

1. All the leaves send µn→πn(xπn)

2. At each step, if a node (j) hasn’t send a message to one of his neighbours, say (i) (Note:
(i) here is not the root) and if it has received messages from all his other neighbours
N (j)\i, it send to (i) the following message

µj→i(xi) =
∑
xj

ψj(xj)ψj,i(xi, xi)
∏

k∈N (j)\{i}

µk→j(xj) (7.34)

Parallel SPA (flooding)

1. Initialise the messages randomly

2. At each step, each node sends a new message to each of its neighbours, using the
messages received at the previous step.

Marginal laws

Once all messages have been passed, we can easily calculate all the marginal laws

∀ i ∈ V, p(xi) =
1

Z
ψi(xi)

∏
k∈N (i)

µk→i(xi) (7.35)

∀ (i, j) ∈ E, p(xi, xj) =
1

Z
ψi(xi) ψj(xj) ψj,i(xi, xi)

∏
k∈N (i)\j

µk→i(xi)
∏

k∈N (j)\i

µk→j(xj) (7.36)

Conditional probabilities

We can use a clever notation to calculate the conditional probabilities. Suppose that we
want to compute

p(xi|x5 = 3, x10 = 2) ∝ p(xi, x5 = 3, x10 = 2)

We can set
ψ̃5(x5) = ψ5(x5) δ(x5, 3)

7-6

Cours 7 — 12th November 2014 2014/2015

Generally speaking, if we observe Xj = xj0 for j ∈ Jobs, we can define the modified potentials:

ψ̃j(xj) = ψj(xj) δ(xj, xj0)

such that

p(x|XJobs = xJobs0) =
1

Z̃

∏
i∈V

ψ̃i(xi)
∏

(i,j)∈E

ψi,j(xi, xj) (7.37)

Indeed we have

p(x|XJobs = xJobs0) p(XJobs = xJobs0) = p(x)
∏
j∈Jobs

δ(xj, xj0) (7.38)

so that by dividing the equality by p(XJobs = xJobs0) we obtain the previous equation with
Z̃ = Zp(XJobs = xJobs0).

We then simply apply the SPA to these new potentials to compute the marginal laws
p(xi|XJobs = xJobs0)

7.1.5 Remarks

• The SPA is also called belief propagation or message passing. On trees, it is an exact
inference algorithm.

• If G is not a tree, the algorithm doesn’t converge in general to the right marginal
laws, but sometimes gives reasonable approximations. We then refer to “Loopy belief
propagation”, which is still often used in real life.

• The only property that we have used to construct the algorithm is the fact that
(R,+,×) is a semi-ring. It is interesting to notice that the same can therefore also be
done with (R+,max,×) and (R,max,+).

Example For (R+,max,×) we define the Max-Product algorithm, also called “Viterbi
algorithm” which enables us to solve the decoding problem, namely to compute
the most probable configuartion of the variables, given fixed parameters, thanks
to the messages

µj→i(xi) = max
xj

[
ψi,j(xi, xj)ψj(xj)

∏
xk

µk→j(xj)

]
(7.39)

If we run the Max-Product algorithm with respect to a chosen root, the collection
phase of the messages to the root enables us to compute the maximal probability
over all configurations, and if at each calculation of a message we have also kept
the argmax, we can perform a distribution phase, which instead of propagating the
messages, will consist of recursively calculating one of the configurations which will
reach the maximum.

7-7

Cours 7 — 12th November 2014 2014/2015

• In practice, we may be working on such small values that the computer will return

errors. For instance, for k binary variables, the joint law p(x1, x2...xn) =
1

2n
can take

infinitesimal values for a large k. The solution is to work with logarithms: if p =
∑

i pi,
by setting ai = log(pi) we have:

log(p) = log

[∑
i

eai

]

log(p) = a∗i + log

[∑
i

e(ai−a
∗
i)

]
(7.40)

With a∗i = maxi ai. Using logarithms ensures a numerical stability.

7.1.6 Proof of the algorithm

We are going to prove that the SPA is correct by recurrence. In the case of two nodes, we
have:

p(x1, x2) =
1

Z
ψ1(xi)ψ2(x2)ψ1,2(x1, x2)

We marginalize, and we obtain

p(x1) =
1

Z
ψ1(x1)

∑
x2

ψ1,2(x1, x2)ψ2(x2)︸ ︷︷ ︸
µ2→1(x1)

We can hence deduct

p(x1) =
1

Z
ψ1(x1)µ2→1(x1)

And

p(x2) =
1

Z
ψ2(x2)µ1→2(x2)

We assume that the result is true for trees of size n− 1, and we consider a tree of size n.
Without loss of generality, we can assume that the nodes are numbered, so that the n−th
be a leaf, and we will call πn its parent (which is unique, the graph being a tree). The first
message to be passed is:

µn→πn(xπn) =
∑
xn

ψn(xn)ψn,πn(xn, xπn) (7.41)

And the last message to be passed is:

µπn→n(xn) =
∑
xπn

ψπn(xπn)ψn,πn(xn, xπn)
∏

k∈N (πn)\{n}

µk→πn(xπn) (7.42)

7-8

Cours 7 — 12th November 2014 2014/2015

We are going to construct a tree T̃ of size n − 1, as well as a family of potentials, such
that the 2(n − 2) messages passed in T (i.e. all the messages except for the first and the
last) be equal to the 2(n − 2) messages passed in T̃ . We define the tree and the potentials
as follows:

• T̃ = (Ṽ , Ẽ) with Ṽ = {1, . . . , n − 1} and Ẽ = E\{n, πn} (i.e., it is the subtree
corresponding to the n− 1 first vertices).

• The potentials are all the same as those of T , except for the potential

ψ̃πn(xπn) = ψπn(xπn)µn→πn(xπn) (7.43)

• The root is unchanged, and the topological order is also kept.

We then obtain two important properties:

1) The product of the potentials of the tree of size n− 1 is equal to:

p̃(x1, . . . , xn−1) =
1

Z

∏
i 6=n,πn

ψi(xi)
∏

(i,j)∈E\{n,πn}

ψi,j(xi, xj)ψ̃πn(xπn)

=
1

Z

∏
i 6=n,πn

ψi(xi)
∏

(i,j)∈E\{n,πn}

ψi,j(xi, xj)
∑
xn

ψn(xn)ψπn(xπn)ψn,πn(xn, xπn)

=
∑
xn

1

Z

n∏
i=1

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj)

=
∑
xn

p(x1, . . . , xn−1, xn)

which shows that these new potentials define on (X1, . . . , Xn−1) exactly the distribution
induced by p when marginalizing Xn.

2) All of the messages passed in T̃ correspond to the messages passed in T (except for
the first and the last).

Now, with the recurrence hypothesis that the SPA is true for trees of size n − 1, we are
going to show that it is true for trees of size n. For nodes i 6= n, πn, the result is obvious, as
all messages passed are the same:

∀ i ∈ V \{n, πn}, p(xi) =
1

Z
ψi(xi)

∏
k∈N (i)

µk→i(xi) (7.44)

For the case i = πn, we deduct:

7-9

Cours 7 — 12th November 2014 2014/2015

p(xπn) =
1

Z
ψ̃πn(xπn)

∏
k∈Ñ (πn)

µk→πn(xπn) (product over the neighbours of πn in T̃)

=
1

Z
ψ̃πn(xπn)

∏
k∈N (πn)\{n}

µk→πn(xπn)

=
1

Z
ψπn(xπn)µn→πn(xπn)

∏
k∈N (πn)\{n}

µk→πn(xπn)

=
1

Z
ψπn(xπn)

∏
k∈N (πn)

µk→πn(xπn)

For the case i = n, we have:

p(xn, xπn) =
∑

xV \{n,πn}

p(x) = ψn(xn)ψπn(xπn)ψn,πn(xn, xπn)
∑

xV \{n,πn}

p(x)

ψn(xn)ψπn(xπn)ψn,πn(xn, xπn)︸ ︷︷ ︸
α(xπn)

Therefore:

p(xn, xπn) = ψπn(xπn)α(xπn)ψn(xn)ψn,πn(xn, xπn) (7.45)

Consequently:

p(xπn) = ψπn(xπn)α(xπn)
∑
xn

ψn(xn)ψn,πn(xn, xπn)︸ ︷︷ ︸
µn→πn (xπn)

Hence:

α(xπn) =
p(xπn)

ψπn(xπn)µn→πn(xπn)
(7.46)

By using (7.31), (7.32) and the previous result, we deduct that:

p(xn, xπn) = ψπn(xπn)ψn(xn)ψn,πn(xn, xπn)
p(xπn)

ψπn(xπn)µn→πn(xπn)

= ψπn(xπn)ψn(xn)ψn,πn(xn, xπn)
1
Z
ψπn(xπn)

∏
k∈N (πn)

µk→πn(xπn)

ψπn(xπn)µn→πn(xπn)

=
1

Z
ψπn(xπn)ψn(xn)ψn,πn(xn, xπn)

∏
k∈N (πn)\{n}

µk→πn(xπn)

7-10

Cours 7 — 12th November 2014 2014/2015

By summing with respect to xπn , we get the result for p(xn):

p(xn) =
∑
xπn

p(xn, xπn) =
1

Z
ψn(xn)µπn→n(xn)

Proposition:

Let p ∈ L(G), for G = (V,E) a tree, then we have:

p(x1, . . . , xn) =
1

Z

∏
i∈V

ψ(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
(7.47)

Proof: we prove it by reccurence. The case n = 1 is trivial. Then, assuming that n
is a leaf, and we can write p(x1, . . . , xn) = p(x1, . . . , xn−1) p(xn|xπn). But multiplying by

p(xn|xπn) = p(xn,xπn)
p(xn)p(xπn)

p(xn) boils down to adding the edge potential for (n, πn) and the node
potential for the leaf n. The formula is hence verified by reccurence.

7.1.7 Junction tree

Junction tree is an algorithm designed to tackle the problem of inference on general graphs.
The idea is to look at a general graph from far away, where it can be seen as a tree. By
merging nodes, one will hopefully be able to build a tree. When this is not the case, one can
also think of adding some edges to the graph (i.e., cast the present distribution into a larger
set) to be able to build such a graph.

The trap is that if one collapses too many nodes, the number of possibles values will
explode, and as such the complexity of the whole algorithm. The tree width is the smallest
possible clique size. For instance, for a 2D regular grid with n points, the tree width is equal
to
√
n.

7.2 Hidden Markov Model (HMM)

The Hidden Markov Model (“Modèle de Markov caché” in French) is one of the most used
Graphical Models. We note z0, z1, . . . , zT the states corresponding to the latent variables,
and y0, y1, . . . , yT the states corresponding to the observed variables. We further assume
that:

1. {z0, . . . , zT} is a Markov chain (hence the name of the model);

2. z0, . . . , zT take K values;

3. z0 follows a multinomial distribution: p(z0 = i) = (π0)i with
∑
i

(π0)i = 1;

7-11

Cours 7 — 12th November 2014 2014/2015

4. The transition probabilities are homogeneous: p(zt = i|zt−1 = j) = Aij, where A

satisfies
∑
i

Aij = 1;

5. The emission probabilities p(yt|zt) are homogeneous, i.e. p(yt|zt) = f(yt, zt).

6. The joint probability distribution function can be written as:

p(z0, ...zT , y0, ..., yT) = p(z0)
T−1∏
t=0

p(zt+1|zt)
T∏
t=0

p(yt|zt).

There are different tasks that we want to perform on this model:

• Filtering: p(zt|y1, . . . , yt−1)

• Smoothing: p(zt|y1, . . . , yT)

• Decoding: max
z0,...,zT

p(z0, . . . , zT |y0, . . . , yT)

All these tasks can be performed with a sum-product or max-product algorithm.

Sum-product

From now on, we note the observations y = {y1, . . . , yT}. The distribution on yt simply
becomes the delta function δ(yt = yt). To use the sum-product algorithm, we define zT as
the root, i.e. we send all forward messages to zT and go back afterwards.

Forward:

µy0→z0(z0) =
∑
y0

δ(y0 = y0)p(y0|z0) = p(y0|z0)

µz0→z1(z1) =
∑
z0

p(z1|z0)µy0→z0(z0)

...

µyt−1→zt−1(zt−1) =
∑
yt−1

δ(yt−1 = yt−1)p(yt−1|zt−1) = p(yt−1|zt−1)

µzt−1→zt(zt) =
∑
zt−1

p(zt|zt−1)µzt−2→zt−1(zt−1) p(zt−1|yt−1)

Let us define the “alpha-message” αt(zt) as:

αt(zt) = µyt→zt(zt)µzt−1→zt(zt)

α0(z0) is initialized with the virtual message µz−1→z0(z0) = p(z0)

7-12

Cours 7 — 12th November 2014 2014/2015

Property 7.1
αt(zt) = µyt→zt(zt)µzt−1→zt(zt) = p(zt, y0, . . . , zt)

This is due to the definition of the messages: the product µyt→zt(zt)µzt−1→zt(zt) represents a
marginal of the distribution corresponding to the sub-HMM {z0, . . . , zt}.
Moreover, the following recursion formula for αt(zt) (called “alpha-recursion”) holds:

αt+1(zt+1) = p(yt+1|zt+1)
∑
zt

p(zt+1|zt)α(zt)

Backward:

µzt+1→zt(zt) =
∑
zt+1

p(zt+1|zt)µzt+2→zt+1(zt+1)p(yt+1|zt+1)

We define the “beta-message” βt(zt) as:

βt(zt) = µzt+1→zt(zt)

As an initialization, we take βT (zT) = 1. The following recursion formula for βt(zt) (called
“beta-recursion”) holds:

βt(zt) =
∑
zt+1

p(zt+1|zt)p(yt+1|zt+1)βt+1(zt+1)

Property 7.2 1. p(zt, y0, . . . , yT) = αt(zt)βt(zt)

2. p(y0, . . . , yT) =
∑
zt

αt(zt)βt(zt)

3. p(zt|y0, . . . , yT) = p(zt,y0,...,yT)
p(y0,...,yT)

= αt(zt)βt(zt)∑
zt

αt(zt)βt(zt)

4. For all t < T, p(zt, zt+1|y0, . . . , yT) = 1
p(y0,...,yT)

αt(zt) βt+1(zt+1) p(zt+1|zt) p(yt+1|zt+1)

Remark 7.3 1. The alpha-recursion and beta-recursion are easy to implement, but one
needs to avoid errors in the indices!

2. The sums need to be coded using logs in order to prevent numerical errors.

7-13

Cours 7 — 12th November 2014 2014/2015

EM algorithm

With the previous notations and assumptions, we write the complete log-likelihood lc(θ)
with θ the parameters of the model (containing (π0, A), but also parameters for f):

lc(θ) = log
(
p(z0)

T−1∏
t=0

p(zt+1|zt)
T∏
t=0

p(yt|zt)
)

= log(p(z0)) +
T∑
t=0

log p(yt|zt) +
T∑
t=0

log p(zt+1|zt)

=
K∑
i=1

δ(z0 = i) log((π0)i) +
T−1∑
t=0

K∑
i,j=1

δ(zt+1 = i, zt = j) log(Ai,j) +
T∑
t=0

K∑
i=1

δ(zt = i) log f(yt, zt)

When applying E-M to estimate the parameters of this HMM, we use Jensen’s inequality to
obtain a lower bound on the log-likelihood:

log p(y0, . . . , yT) ≥ Eq[log p(z0, . . . , zT , y0, . . . , yT)] = Eq[lc(θ)]

At the k-th expectation step, we use q(z0, . . . , zT) = P(z0, . . . , zT |y0, . . . , yT ; θk−1), and this
boils down to applying the following rules:

• E[δ(z0 = i)|y] = p(z0 = i|y; θk−1)

• E[δ(zt = i)|y] = p(zt = i|y; θk−1)

• E[δ(zt+1 = i, zt = j|y; θk−1] = p(zt+1 = i, zt = j|y; θk−1)

Thus, in the former expression of the complete log-likelihood, we just have to replace δ(z0 = i)
by p(z0 = i|y; θk−1), and similarly for the other terms.
At the k-th maximization step, we maximize the new obtained expression with respect to the
parameters θ in the usual manner to obtain a new estimator θk. The key is that everything
will decouple, thus maximizing is simple and can be done in closed form.

7.3 Principal Component Analysis (PCA)

Framework: x1, . . . , xN ∈ Rd

Goal: put points on a closest affine subspace

Analysis view

Find w ∈ Rd such that Var(xTw) is maximal, with ||w|| = 1

7-14

Cours 7 — 12th November 2014 2014/2015

With centered data, i.e. 1
N

N∑
n=1

xn = 0, the empirical variance is:

V̂ar(xTw) =
1

N

N∑
n=1

(xTnw)2 =
1

N
wT (XTX)w

where X ∈ RN×d is the design matrix. In this case: w is the eigenvector of XTX with largest
eigenvalue. It is not obvious a priori that this is the direction we care about.
If more than one direction is required, one can use deflation:

1. Find w

2. Project xn onto the orthogonal of Vect(w)

3. Start again

Synthesis view

min
w

N∑
n=1

d(xn, {wTx = 0})2 with w ∈ RD, ||w|| = 1.

Advantage: if one wants more than 1 dimension, replace {wTx = 0} by any subspace.

Probabilistic approach: Factor Analysis

Model:

• Λ = (λ1, . . . , λK) ∈ Rd×k

• X ∈ Rk ∼ N (0, I)

• ε ∼ N (0,Ψ), ε ∈ Rd independent from X with Ψ diagonal.

• Y ∈ Rd: Y = ΛX + µ+ ε

We have Y |X ∼ N (ΛX + µ,Ψ).
Problem: get X|Y .

(X, Y) is a Gaussian vector on Rd+k which satisfies:

• E[X] = 0 = µX

• E[Y] = E[ΛX + µ+ ε]µ = µY

7-15

Cours 7 — 12th November 2014 2014/2015

• ΣXX = I

• ΣXY = Cov(X,ΛX + µ+ ε) = Cov(X,ΛX) = ΛT

• ΣY Y = Var(ΛX + ε,ΛX + ε) = Var(ΛX,ΛX) + Var(ε, ε) = ΛΛT + Ψ

Thanks to the results we know on exponential families, we know how to compute X|Y :

E[X|Y = y] = µX + ΣXY Σ−1Y Y (y − µY)

Cov[X|Y = y] = ΣXX − ΣXY Σ−1Y Y ΣY X

In our case, we therefore have:

E[X|Y = y] = ΛT (ΛΛT + Ψ)−1(y − µ)

Cov[X|Y = y] = I − ΛT (ΛΛT + Ψ)−1ΛT

To apply EM, one needs to write down the complete log-likelihood.

log p(X, Y)α− 1

2
XTX − 1

2
(Y − ΛX − µ)TΨ−1(Y − ΛX − µ)− 1

2
log det Ψ

Trap: E[XXT |Y] 6= Cov(X|Y)
Rather, E[XXT |Y] = Cov(X|Y) + E[X|Y]E[X|Y]T

Remark 7.4

• Cov(X) = ΛΛT + Ψ: our parameters are not identifiable, Λ ← ΛR with R a rotation
gives the same results (in other words, a subspace has different orthonormal bases).

• Why do we care ?

1. A probabilistic interpretation allows to model in a finer way the problem.

2. It is very flexible and therefore allows to combine multiple models.

7-16

Bibliography

17

