
ConjunctiveQueries With Self-Joins, Towards a Fine-Grained
Enumeration Complexity Analysis

Nofar Carmeli

DI ENS, ENS, Université PSL, CNRS, Inria

Paris, France

Luc Segoufin

INRIA, ENS Paris, PSL

Paris, France

ABSTRACT
Even though query evaluation is a fundamental task in databases,

known classifications of conjunctive queries by their fine-grained

complexity only apply to queries without self-joins. We study how

self-joins affect enumeration complexity, with the aim of building

upon the known results to achieve general classifications. We do

this by examining the extension of two known dichotomies: one

with respect to linear delay, and one with respect to constant delay

after linear preprocessing. As this turns out to be an intricate inves-

tigation, this paper is structured as an example-driven discussion

that initiates this analysis. We show enumeration algorithms that

rely on self-joins to efficiently evaluate queries that otherwise (i.e.,

if the relation names were replaced to eliminate self-joins) cannot

be answered with the same guarantees. Due to these additional

tractable cases, the hardness proofs are more complex than the

self-join-free case. We show how to harness a known tagging tech-

nique to prove hardness of queries with self-joins. Our study offers

sufficient conditions and necessary conditions for tractability and

settles the cases of queries of low arity and queries with cyclic cores.

Nevertheless, many cases remain open.

CCS CONCEPTS
• Theory of computation → Database query processing and
optimization (theory).

KEYWORDS
conjunctive query, self-joins, enumeration, fine-grained, complex-

ity, constant delay

ACM Reference Format:
Nofar Carmeli and Luc Segoufin. 2023. Conjunctive Queries With Self-Joins,

Towards a Fine-Grained Enumeration Complexity Analysis. In Proceedings of

the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3584372.3588667

1 INTRODUCTION
Query evaluation is one of the most central problems in database

systems. This task asks to compute the set of solutions to a given

query over a given database. In this paper we focus on joins and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0127-6/23/06. . . $15.00

https://doi.org/10.1145/3584372.3588667

sometimes projections, the basic building blocks of queries, ex-

pressed as conjunctive queries. When treating both the database

and the query as input, query evaluation is then NP-complete [6].

Here, we adopt the data complexity point of view: the complex-

ity is analyzed with respect to the database size, while the query

size (which is usually small) is considered constant. In this setting,

query answering takes polynomial time. However, not all queries

are equally hard as for some queries this polynomial is much smaller

than for others. Ideally, we would like to understand, given any

specific query, how fast this query can be evaluated. As the number

of solutions may be much larger than the input, considering the

delay between solutions and not just the total computation time can

be meaningful: the user does not have to wait for the entire com-

putation to be done before seeing some of the solutions. The ideal

time guarantee we can hope to achieve is linear time before the first

solution (required to read the input and determine whether a first

solution exists) and constant time between successive solutions

(required to print the output).

We know that any acyclic query with a free-connex form can be

answered with linear preprocessing and constant delay. For acyclic

queries that are not free-connex, we do not have an algorithm with

such guarantees, but we do have algorithms with linear delay (and

linear preprocessing). At this point, it is natural to ask: Are free-

connex and acyclic queries the only ones for which such efficient

algorithms exist or should we keep looking for efficient algorithms

for additional queries?

To answer this question, we have conditional lower bounds show-

ing that other queries cannot be answered within these time bounds

unless there would be a significant breakthrough in well-studied

problems. However, these hardness results were only proved for

self-join-free conjunctive queries, queries in which each relation

appears at most once. More specifically, if a self-join-free query is

acyclic but not free-connex, then the set of all its solutions cannot

be computed in time linear in the input and output sizes, assum-

ing Boolean matrices cannot be multiplied in quadratic time [1].

Moreover, one cannot even produce a single solution to a self-join-

free cyclic query in linear time, assuming hypercliques cannot be

detected in linear time [3]. The hardness results described in this

introduction also assume the hardness of the two aforementioned

algorithmic problems.

For years, database researchers were satisfied with these hard-

ness results despite the limitation to self-join-free queries, as self-

joins are known to be problematic. We remark that self-joins are

very common in some contexts (e.g., graph databases). It was be-

lieved that the above characterization would extend to queries with

self-joins and that this restriction is merely a limitation of our

lower-bound tools. This extension was even claimed along with a

proof sketch [3]. However, Berkholz, Gerhardt, and Schweikardt [2]

https://doi.org/10.1145/3584372.3588667
https://doi.org/10.1145/3584372.3588667

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nofar Carmeli and Luc Segoufin

recently refuted this claim by showing a cyclic query with self-joins

that can be evaluated efficiently. That is, we now know that queries

with self-joins can be easier than self-join-free queries of the same

form. Now that we have an example that shows it is possible, we

would like to understand how, and in which cases, self-joins can be

used to streamline query evaluation. Here, we initiate the complex-

ity analysis for the evaluation of conjunctive queries with self-joins.

To illustrate the intricacies that arise with self-joins, consider

the task of finding all occurrences of the following patterns in a

node-colored directed graph (where the red circle denotes a red

node). Note that these tasks can be phrased as conjunctive queries

with self-joins, containing one binary relation describing the edges

and one unary relation describing the red nodes.

1

4

3

2

q1

1

4

3

2

q2

1

4

3

2

q3

Figure 1: Variants of a 4-cycle with different complexities.

We will see that q1, even though cyclic, can be enumerated

with constant delay after a linear preprocessing time. Unlike the

self-join-free case, adding a unary atom to a query may change

its complexity: we will see that q2 can be answered with linear

delay but not with constant delay (after only linear preprocessing).

However, for q3 (that differs from q1 by the direction of one edge),

we cannot even produce one solution in linear time. This again

differs from the self-join-free case, in which the variable order in

atoms cannot affect the complexity.

In this paper, we explore the effects of self-joins on query eval-

uation complexity from an enumeration point of view. The aim

is to use known results for the self-join-free case to reason about

general queries that may contain self-joins. We show enumeration

algorithms that rely on self-joins to efficiently evaluate queries that

otherwise cannot be answered with the same guarantees. That is,

existing conditional lower bounds suggest that similar queries with

unique relation names (the same query structure but no self-joins)

cannot be answered within the time guarantees obtained by our

algorithms. Due to these additional tractable cases, the hardness

proofs also require additional complications compared to the self-

join-free case. We show how to harness a known tagging technique

to prove hardness of queries with self-joins.

We discuss the difficulty in proving lower bounds for querieswith

self-joins in Section 3 and then define the tagging technique and

explain the importance of endomorphism images for its analysis.

Section 4 uses this technique to establish that self-joins do not

change whether a query of arity two or less can be enumerated

with constant delay. In Section 5, we show that queries with a cyclic

“core” are hard in the sense that they cannot be answered with only

linear preprocessing, even if they contain self-joins. As a result, we

focus on queries with an acyclic core in the rest of the paper.

Next, we focus on full conjunctive queries, with no projection. In

Section 6, we phrase a sufficient condition and a necessary condition

for enumeration with linear delay, but we also give examples of

cases that are not covered by either of these conditions. In Section 7,

we identify a class of cyclic queries that can be answered with

constant delay (we call these mirror queries). We then provide an

example-driven discussion of how simple acyclic additions (unary

atoms and spikes) to tractable queries can affect the complexity. We

finish with a simple (single-cycle) query of unknown complexity.

Missing details appear in the appendix.

2 PRELIMINARIES
A database D is a finite relational structure consisting of a relational

schema σ , a finite domain V , and for each relational symbol R of σ
of arity r , a subset RD of V r

. A term R(ā) where ā ∈ RD is called a

fact of D.
In this paper, query always refers to a conjunctive query, i.e., a

conjunction of atoms R(x̄), where R ∈ σ and x̄ is a tuple of variables

of the appropriate arity, with some of the variables existentially

quantified. The variables that are not quantified in q are called the

free variables of q. The arity of a query is the number of its free

variables. A Boolean/unary/binary query is a query of arity 0/1/2

respectively. A query is full if it contains no quantified variables,

i.e., all the variables are free. A query has self-joins if it contains two

atoms with the same relational symbol; otherwise, it is called self-

join-free. For example, the query R(x1, x2) ∧ R(x2, x3) has self-joins

while the query R(x1, x2) ∧ S(x2, x3) is self-join-free.

We will often specify full conjunctive queries using a colored

hypergraph rather than a formula. Each node represents a variable

of the query and is depicted by the number of the variable or a black

dot when this number is not relevant. Each colored edge represents

a binary atom, and each colored circle around a node represents a

unary atom. The exact relation names are not depicted, but they are

irrelevant to the complexity analysis. As an example, q2 of Figure 1

defines the query E(x1, x2)∧E(x2, x3)∧E(x1, x4)∧E(x4, x3)∧Red(x2).

We sometimes use a big circle to represent a relation of arity three

or more (as in q6 of Figure 3). When we do so, the order of the

variables in this relation is not important for the example.

A query is acyclic if it has a join tree. A join tree for the query q is

a treeT such that the nodes ofT are the atoms ofq and, for each vari-
able x of q, the nodes of T whose atoms contain x are connected in

T . An acyclic query q is said to be free-connex if we obtain an acyclic
query by adding to q a new atom containing all the free variables of

q. As an example, the acyclic query ∃x2R(x1, x2) ∧ S(x2, x3) is not

free-connex because the query ∃x2R(x1, x2) ∧ S(x2, x3) ∧T (x1, x3)

is cyclic; however, the full acyclic query R(x1, x2) ∧ S(x2, x3) is

free-connex because the query R(x1, x2) ∧ S(x2, x3) ∧T (x1, x2, x3)

is acyclic. In fact, it follows from the definition of free-connexity

that full acyclic queries are always free-connex. Similarly, Boolean

or unary acyclic queries are free-connex as well.

The solutions of a query q over a database D are denoted by q(D).
They correspond to the set of tuples ā such that: there exists an

assignment of the elements of the domain of D to the variables of q
making every atom of q a fact of D, and ā is the assignment to the

free variables ofq.Whenwe specify a solution to a query, we assume

the free variables are ordered according to their numbering. The

output size is the number of tuples in the setq(D). Two queriesq and
q′ are said to be equivalent if for every database D, q(D) = q′(D).

An endomorphism of q is a mapping from the variables of q to

the variables of q that preserves the atoms of q; that is, if R(x̄) is an
atom of q and ν is an endomorphism of q, then R(ν (x̄)) is also an

CQs With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis PODS ’23, June 18–23, 2023, Seattle, WA, USA

atom of q. An automorphism is a bijective endomorphism. A query q
is said to be minimal

1
if any endomorphism of q that is the identity

on the free variables of q is an automorphism of q. Notice that every
self-join-free query is minimal as the only endomorphism in such

a query is the identity mapping. Any query q has an equivalent

minimal query, called the minimal form of q in what follows.

The problems we consider are parameterized by a query q and

take as input a database D. The evaluation problem computes the

set of solutions q(D). The testing problem asks whether q(D) is
empty. The enumeration problem is decomposed into two phases:

the preprocessing phase computes a data structure that is used

during the enumeration phase for outputting the solutions of q(D)
one by one and with no repetition. The maximal time between two

consecutive answers during enumeration is called the delay.

We use the RAM computation model with uniform addition and

multiplication, andwe adopt the data complexity point of view. That

is, the constants hidden in the big O notation may depend on the

query but not the database. The input size, denoted ||D ||, corresponds

to the size of a reasonable encoding of the database D, linear in the

number of database tuples. Note that an enumeration algorithm

with linear preprocessing implies that the testing problem can be

solved in linear time. A constant delay after linear preprocessing

enumeration algorithm implies that the evaluation problem can be

solved in linear input plus output time.

Many known enumeration algorithms for database queries con-

form to a strict definition of linear preprocessing and constant delay

where the memory used during preprocessing is linear and the extra

memory used after the preprocessing remains bounded by a con-

stant [1, 7–10]. Our enumeration algorithms use the allowed time

in the most general way, without memory restrictions. In particular,

we assume we can test in constant time whether a given tuple is a

fact of the database. It is not clear how to do this test without using

perfect hashing, which requires polynomial memory in the size of

the input database. The enumeration phases of our algorithms may

also require a total memory of a similar size. This is required to

store each produced solution (or parts of the solution), used later

for producing more solutions. As this distinction is important, we

will make it explicit when we use this extra memory. This is in

particular the case in the proof of the Cheater’s Lemma [5] that we

use to eliminate duplicate answers.

Lemma 1 (Cheater’s Lemma) [5]. Let q be a conjunctive query.

If there is an algorithm evaluating q with linear preprocessing time

and constant/linear delay, where the number of times each output

is produced is bounded by a constant, then there is an enumeration

algorithm for q that runs with linear preprocessing time and con-

stant/linear delay, producing the solutions with no repetition. This

new algorithm may use during the enumeration phase a memory of

size O(||D || |q |) over an input database D.

As usual in this area, our lower bounds assume algorithmic

conjectures, described next. A hypergraph is (k − 1)-uniform if

every hyperedge is of size k − 1. A k-hyperclique is a set of k nodes

such that any subset of these nodes of size k − 1 forms a hyperedge.

• sBMM conjectures that two Boolean matricesA and B, repre-
sented as lists of their non-zero entries, cannot be multiplied

1
It is called minimal as there is no smaller (with strictly fewer atoms) equivalent query.

in time O(m), wherem is the number of non-zero entries in

A, B, and AB.
• sHypercliqe conjectures that for all k ≥ 3, it is not possible

to determine the existence of a k-hyperclique in a (k − 1)-

uniform hypergraph withm hyperedges in time O(m).

• Hypercliqe conjectures that for all k ≥ 3, it is not possible

to determine the existence of a k-hyperclique in a (k − 1)-

uniform hypergraph with n nodes in time O(nk−1).

Notice that sHypercliqe implies that we cannot detect a triangle

in an undirected graph in linear time. Hypercliqe implies the

sparse hypotheses sHypercliqe and sBMM.

We can now state the known results for query evaluation.

Theorem 2. Let q be a self-join-free conjunctive query.

• If q is cyclic, the testing problem cannot be solved in linear

time, assuming sHyperclique [3].

• If q is acyclic, the enumeration problem can be solved with

linear delay and linear preprocessing [1].

• If q is acyclic but not free-connex, the evaluation problem

cannot be solved in linear time in the input plus output sizes,

assuming sBMM [1].

• If q is acyclic and free-connex, the enumeration problem can

be solved with constant delay and linear preprocessing [1].

In the above theorem, the upper bounds also hold for queries

with self-joins. The enumeration algorithms obtained in [1] use the

strict definition of constant delay, where the total memory used

during the enumeration phase only adds a constant to the memory

used during the preprocessing phase.

3 PROVING HARDNESS WITH SELF-JOINS
Since we have a good understanding of the complexity of self-

join-free queries, we are interested in comparing the complexity

of general conjunctive queries to self-join-free queries with the

same shape. More formally, we associate a self-join-free query q′ to
any query q by giving distinct names to all relation symbols. As an

example, the self-join-free query associated to R(x1, x2) ∧ R(x2, x3)

is R1(x1, x2) ∧ R2(x2, x3). Notice that this modification does not

affect properties such as acyclicity or free-connexity.

Going from a query q to its associated self-join-free query q′

can only make the evaluation task harder. This folklore proposition

holds since q′ can be used to compute q, and it implies that the

upper bounds of Theorem 2 also hold for queries with self-joins.

Proposition 3. For any conjunctive query q, its associated self-
join-free query q′ is at least as hard as q for the evaluation problem,

the testing problem, and the enumeration problem.

When trying to show the other direction, reducing the self-join-

free query to its initial query with self-joins, we need more care.

Let us now explain why the lower bounds of Theorem 2 only apply

to self-join-free queries.

Example 4. Consider the self-join-free variant q′
1
of q1 from

Figure 1: R1(x1, x2)∧R2(x2, x3)∧R3(x1, x4)∧R4(x4, x3). Theorem 2

proves that the ability to determinewhetherq′
1
has answers in linear

time would imply finding triangles in an undirected graph in linear

time, which is conjectured to be impossible. The reduction works

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nofar Carmeli and Luc Segoufin

as follows: for every edge (a,b) of the input graph with a < b,2 we
add to the database the facts: R1(a,b), R2(a,b), R3(a,b), and R4(b,b).
With this construction, every answer to q′

1
is of the form (a,b, c, c)

such that (a,b, c) is a triangle. If we try to use the same technique to

prove the hardness of q1, we encounter the problem that we cannot

assign different atoms with different relations. In particular, if we

add to the database the facts R(a,b) and R(b,b) for every edge (a,b)
of the graph, the query q1 will also have solutions corresponding

to 2-paths (where every atom maps to the edge relation and x2 and

x4 map to the same value). Thus, we do not get that the query has

a solution iff the graph has a triangle.

To prove the hard cases, we need a technique that allows us to

assign different relations to different atoms despite the self-joins.

For this reason, we will use variations of the tagging technique

described below that aims to assign different variables with different

domains by concatenating the variable names to the domain values.

Tagging technique.3 Let q be a minimal conjunctive query and

q′ be its associated self-join-free query. Let D ′
be a database for q′.

We construct a database D for q as follows. Let R1(x̄) be an atom of

q′ associated to the atom R(x̄) of q, where R is of arity l . For every
fact R1(ā) of D

′
, we add to D the fact R(⟨a1, x1⟩, . . . , ⟨al , xl ⟩).

With this construction, every element of the domain of D is of

the form ⟨a, x⟩. We refer to a as the data part and to x as the tag.

Let us now inspect q(D). Every solution (⟨a1,y1⟩, . . . , ⟨ak ,yk ⟩) in
q(D) is witnessed by an assignment µ associating an element of D
to every variable of q. As above, µ can be split into two parts: a data

map associating ai to xi whenever µ(xi) = ⟨ai ,yi ⟩ and a tagging

map associating yi to xi in the same cases. The data part of the

solution of µ is (a1, · · · ,ak). Notice that every solution to q′(D ′)

appears as a data part of a solution of q(D) with an identity tagging

map. For the converse direction, consider a solution of q(D). There
are two cases.

(1) If the tagging map ν is an automorphism, then the data

map contains a solution of q′(D ′) as follows. Consider the

mapping µ ′ defined by µ ′(x) = µ(ν−1(x)). It clearly witnesses
a solution of q(D) with an identity tagging map whose data

part then belongs to q′(D ′).

(2) If the tagging map is not an automorphism, the data part of

the solution may then not correspond to a solution in q′(D ′).

If q is minimal and the tagging map ν is the identity on the free

variables, then ν must be an automorphism. Thus, when using the

tagging technique, solutions with the identity tagging map are

the ones we wish to return in order to answer q′, and we need

to ensure that there are not too many interfering solutions of the

other cases. We will see that if the query is of low arity, then the

number of extra solutions remains small, and so they can be ignored

without incurring a high cost. For full queries, other solutions of

the first case are not a problem: As we are given the assignment

to all variables as part of a solution, we can compute µ ′ and an

answer to q′ given any such solution to q. Every solution to q′ will

2
To go from an undirected graph to a binary relation we can either order the vertices

of the graph as we do here or construct symmetric relations.

3
This technique was suggested by Bagan, Durand and Grandjean [1] to show the

hardness of queries with disequalities. It was later used to show the hardness of unions

of conjunctive queries [5]. Brault-Baron [3, Chapter 4, Lemma 9] claimed that it can

be used to show that queries with self-joins are as hard as queries without them, but

this claim, which was later refuted, was not accompanied by a proof.

be obtained a constant number of times this way, once for each

automorphism, and these duplicates can be eliminated using the

Cheater’s Lemma. Solutions of the second case are the ones we need

to beware of. For this technique to result in a useful reduction, we

need to limit the number of these extra solutions, and this cannot

always be achieved. We summarize the discussion above into the

following lemma.

Lemma 5. Let q′ be the self-join-free query associated with a min-

imal conjunctive query q, and let D be the database for q constructed

using the tagging technique from a database D ′
for q′. Then, q′(D ′)

is precisely the data parts of those solutions to q(D) in which every

free variable is assigned itself as a tag. Moreover, if q is full, then each

solution to q(D) tagged by an automorphism can be translated in

constant time to a solution of q′(D ′) such that each solution of q′(D ′)

is obtained a constant number of times.

The following is an example of the tagging technique and how it

can fail to prove hardness due to extra solutions. Later in the paper,

we will see how this difficulty can be circumvented in some cases

so that the tagging technique works.

Example 6. Consider q′
1
and q1 from Example 4. Notice that q1

has two automorphisms: the identity and the one that switches

x2 and x4. It also has two other endomorphisms: the one that

maps x2 and x4 to x2, and the one that maps them both to x4. Con-

sider the database D ′
consisting of the four facts R1(a,b), R2(b, c),

R3(a,d) andR4(d, c). Then,q
′
1
(D ′) consists of one solution (a,b, c,d).

The database D constructed by the tagging technique consists of

the facts R(⟨a, x1⟩, ⟨b, x2⟩), R(⟨b, x2⟩, ⟨c, x3⟩), R(⟨a, x1⟩, ⟨d, x4⟩), and

R(⟨d, x4⟩, ⟨c, x3⟩). The solutions q1(D) contain the solutions of the

first case: (⟨a, x1⟩, ⟨b, x2⟩, ⟨c, x3⟩, ⟨d, x4⟩) and (⟨a, x1⟩,⟨d, x4⟩, ⟨c, x3⟩,

⟨b, x2⟩). In other words, these answers contain two copies of the

initial solution (a,b, c,d), one per automorphism of q1. However,

q1(D) also contains the solutions (⟨a, x1⟩,⟨b, x2⟩, ⟨c, x3⟩, ⟨b, x2⟩) and

(⟨a, x1⟩, ⟨d, x4⟩, ⟨c, x3⟩, ⟨d, x4⟩), whose data parts correspond to the

paths of length two (a,b, c) and (a,d, c). In this case, the tagging

technique may produce too many solutions on general databases

(a solution for each 2-path), and so this trick cannot be used for

showing the hardness of q1. In fact, we will see in Section 7 that q1

can be answered with constant delay and is therefore easier than

its self-join-free form.

4 QUERIES OF LOW ARITY
We use the tagging from the previous section to show that self-joins

do not affect the tractable cases for constant delay enumeration of

conjunctive queries with few free variables.

For Boolean and unary queries, the number of solutions is at

most linear in the database size. If we could compute the entire

solution set in linear time then constant delay enumeration easily

follows. This situation is characterized by the following result.

Theorem 7. Let q be a minimal conjunctive query of arity at most

one. Then, its solutions can be computed in linear time iff it is acyclic,

assuming sHyperclique.
4

4
In fact, the proof of the unary case can be applied to any minimal conjunctive query

in which one atom contains all free variables.

CQs With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis PODS ’23, June 18–23, 2023, Seattle, WA, USA

Proof sketch. If q is cyclic then its associated self-join-free

query q′ is also cyclic and therefore hard by Theorem 2. We reduce

the evaluation of q′ to the evaluation of q using the tagging tech-

nique and extract the solutions to q′ as in Lemma 5. As q is at most

unary, it has a linear number of solutions, and so we can ignore the

extra solutions at a low cost. □

We remark that, while Theorem 7 implies that cyclic unary

queries cannot be enumerated with constant delay, it does not imply

the same for linear delay. In fact, we can show that the cyclic unary

queryq4(x) defined as ∃yuvE(u,y)∧E(y,v)∧E(u, x)∧E(x,v)∧P(y)
can be enumerated with linear delay. It remains open to characterize

the unary queries with respect to linear delay.

We show a similar result to that of Theorem 7 for binary queries

using the non-sparse version of the hypothesis.

Theorem 8. Let q be a minimal binary conjunctive query. If q
is not acyclic free-connex, then there is no linear preprocessing and

constant delay enumeration algorithm for answering q, assuming

Hyperclique.

Proof sketch. Let q be a minimal binary query and q′ be its
associated self-join-free query. Assume that q is cyclic. In the self-

join-free case, a known construction [3] encodes the hyperclique

detection problem into solving any cyclic query over a database

with n domain values, where n is the number of vertices in the

hypergraph. Hence, a solution to q′ cannot be computed in linear

time, assuming Hypercliqe. Using the tagging technique, the

number of extra solutions to q(D) is bounded by O(n2). So, for any

k ≥ 3, the time necessary to ignore the unwanted solutions falls

within the allowed time of O(nk−1) for testing the existence of a

k-hyperclique. The acyclic non-free-connex case is similar. □

5 QUERIES WITH A CYCLIC CORE
Given a conjunctive query q with free variables x̄ , let p be the

minimal form of the Boolean query ∃x̄q. We denote by the core

of q the query constructed from p by removing all quantifications.

Notice that the core of q is a full query that may not be equivalent

to q. Notice also that an acyclic query has an acyclic core but the

converse is not necessarily true: the core of the cyclic query q1

of Figure 1 is acyclic. Observe that a query has a solution iff its

core has a solution. Hence the following result is an immediate

consequence of Theorem 7.

Theorem 9. It is possible to test in linear time whether a con-

junctive query has a solution iff it has an acyclic core, assuming

sHyperclique.

Example 10. Consider the full conjunctive query q3 depicted by

Figure 1. The core of the query is the query itself and is therefore

cyclic. It follows from Theorem 9 that the query is hard, i.e., we

cannot test whether it has a solution in linear time.

6 FULL CONJUNCTIVE QUERIES AND
LINEAR DELAY

Assuming sHypercliqe, acyclic self-join-free queries can be enu-

merated with linear delay (after linear preprocessing) while cyclic

self-join-free queries cannot. We now ask how self-joins affect this

classification. Following Proposition 3 and Theorem 9, it remains to

handle cyclic queries with an acyclic core. In this section, we begin

this investigation by considering only full queries of this form. We

start with a simple example showing that some cyclic queries with

self-joins can be enumerated with linear delay.

Example 11. Consider the full query q2 of Figure 1. It can be enu-

merated with linear delay as follows. We enumerate the solutions

of the core of q2, depicted by
1 2 3

. As the core is acyclic

and free-connex, by Theorem 2, this can be done with constant

delay after linear preprocessing. For each solution (a,b, c) of the
core, we try all elements d of the database and test, in constant

time, whether d is connected to a and c as specified by q2. If it is,

we output the solution (a,b, c,d). Remark that any solution (a,b, c)
to the core gives rise to a solution (a,b, c,b) to q2. Thus, at least

one solution to q2 is printed for each solution to the core, and so

the delay is at most linear.

6.1 Sufficient condition
We now present a sufficient condition for enumeration with linear

delay that builds on two key concepts: image and untangling. Con-

sider an endomorphism ν of a full query q. The full query consisting
of all atoms R(ν (®x)) such that R(®x) is an atom of q is called an image

of q. Figure 2 depicts examples of images. By definition, the core of

q is an image. Another trivial image is the query q itself.

1

8

7

6

5

2

3

4

q5

1

2

3

1

8

7

2

3

1

5

2

3

4

Figure 2: The query q5 and its images. We depict images in
dark and the corresponding endomorphisms in dotted gray.
Self-loops are not depicted for readability.

The key property of images is that any solution to the image

yields a solution to the full query: Simply instantiate any variable

of the query by the value of its image. As an example, for the query

q5 depicted in Figure 2. Every solution (a,b, c) of the core yields the
solution (a,b, c,b,a,b, c,b) of q5, and every solution (a,b, c,d, e) of
the rightmost depicted image yields the solution (a,b, c,d, e,d, c,b)
of q5. Hence, if the image is acyclic, we can use it to generate many

“simple” solutions in linear time and constant delay, giving us some

time to compute more complicated solutions.

The restriction of a conjunctive query q to a set of its variables

S , denoted q |S , is the query obtained from the self-join-free query

associated to q by removing all variables not in S from its atoms.

Notice that the arities of the relations may change. An untangling

of q is a sequence of images I0, . . . , Ik of q such that: I0 = q, Ik
is acyclic, and for all 0 ≤ i < k : Ii+1 is an image of Ii and the

restriction of Ii to its variables that do not appear in Ii+1 is acyclic.

Example 12. Consider the queries q6 and q7 depicted in Figure 3.

They have the same acyclic core, namely the ternary relation and

the three binary relations forming a triangle inside of it. The figure

shows an untangling for q6 and illustrates why there is no such

untangling forq7. Another example of a query that can be untangled

is given in Figure 9 in the appendix.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nofar Carmeli and Luc Segoufin

q6 I

1

2

3

4

5

6

7

8

q7 J

Figure 3: The query q6 (the circle depicts a ternary relation)
followed by an acyclic image I and the result of the corre-
sponding restriction, making the sequence q6, I an untan-
gling ofq6. By Theorem 13,q6 can be enumeratedwith linear
delay. The sequence q7, J is not an untangling of q7 because
the resulting query is cyclic. In fact, q7 cannot be untangled
and we show in Example 14 that its enumeration is hard.

Theorem 13. Any full conjunctive query that has an untangling

can be enumerated with linear delay (after linear preprocessing time).

Proof sketch. Let I0, I1, · · · , Ik be an untangling ofq. The proof
goes by induction on k . If k = 0, then the query is acyclic and can

be enumerated with linear delay by Theorem 2. If k > 0, consider

the image I1. Let q
′
be the restriction of q to its variables not in I1.

By construction, q′ is acyclic and can be enumerated with linear

delay. By induction, I1 can be enumerated with linear delay. We

show that q can then be enumerated with linear delay as well.

On an input database D, the enumeration of q works as follows.

We start the enumeration for I1. For each solution ā to I1, as wit-
nessed by a mapping µ from the variables of I1 to the elements of

D, we compute in linear time a database D ′
over the schema of q′

as follows. By definition, each atom R′(x̄) of q′ is computed from

an atom R(ȳ) of q by removing all variables in I1. We filter R(®y) to
only keep the tuples that “agree” with ®a, and then we project the

result to only keep the columns corresponding to ®x . More formally,

let ®u be the variables of ȳ occurring in I1 and ®v those not occurring

in I1. Then, R
′(D ′) consists of all the tuples ν (®v) such that ν is a

mapping from ȳ to a tuple of R with µ(®u) = ν (®u).
We then start the enumeration for q′ on D ′

. Every solution to q′

can be combined with ā to form a solution to q, and the algorithm

outputs all solutions with no repetitions. Since I1 is an image, each

ā yields at least one solution to q′, and we get linear delay. □

6.2 Necessary condition
We provide a condition identifying full queries that cannot be enu-

merated with linear delay, assuming sHypercliqe. We essentially

reduce sHypercliqe to the computation of a constant number of

solutions to the query in linear time. The construction is illustrated

in the next example.

Example 14. Consider again the query q7, depicted in Figure 3.

We show that we cannot produce 3 solutions to q7 in linear time

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⟨⊥, x1 ⟩

⊥

⊥

⊥

⟨⊥, x5 ⟩

⊥

⊥

⊥

⟨⊥, x1 ⟩

⊥

⊥

⊥

⟨⊥, x5 ⟩

⟨b , x6 ⟩

⟨a, x7 ⟩

⟨c , x8 ⟩

Figure 4: Illustrations of solutions to q7 obtained by the core
tagging map, the tagging that maps the right side to the left,
and the identity tagging map.

unless we can test in O(m) time whether a graph with m edges

contains a triangle (which is not possible assuming sHypercliqe).

Given an input graph G, we construct a database D as follows.

For every edge (a,b) of G with a < b, we add to D the facts

R(⟨a, x6⟩, ⟨b, x8⟩), R(⟨b, x8⟩, ⟨a, x7⟩), R(⟨a, x7⟩, ⟨b, x6⟩),

R(⟨⊥, x1⟩, ⟨a, x7⟩), and R(⟨b, x8⟩, ⟨⊥, x5⟩). We also add toD the facts

R(⊥,⊥), R(⟨⊥, x1⟩,⊥), R(⊥, ⟨⊥, x5⟩), and S(⊥,⊥,⊥). The number of

facts ofD is linear in the number of edges ofG , and this construction
can be done in linear time in the size of G.

A case analysis on the tagging map, displayed in Figure 4, shows

that the data part of each solution to q7 contains either the elements

with ⊥ or we can extract from it a triangle of G. As there are only
a constant number of solutions of the first kind, any linear delay

algorithm will test the existence of a triangle of G in linear time.

Theorem 15 builds upon the idea outlined in Example 14, and

provides a necessary condition for linear delay tractability. An endo-

morphism of a query is said to be idempotent if it is the identity on

its image. As an example, in Figure 3 the endomorphism witnessing

J is idempotent while the one for I is not.

Theorem 15. Let q be a full conjunctive query. If q contains a

set S of variables such that the restriction q |S is cyclic, and all its

endomorphisms are idempotent and have an image containing either

all the variables in S or none of them, then q cannot be enumerated

with linear delay (and linear preprocessing), assuming sHyperclique.

Proof sketch. We show that the enumeration for q is at least as
hard as the enumeration for q |S , using a construction that assigns

the constant ⊥ to the extra variables and a case analysis according

to the endomorphism producing each answer. The idempotency

and the fact that each image that contains a variable of S contains

all variables of S guarantee that each answer that contains a non-

constant value corresponds to an answer to q |S . □

6.3 Other cases
The conditions from Section 6.1 and Section 6.2 do not cover all

queries. We conclude this section with an example-driven illustra-

tion of the difficulty in achieving a full classification for full queries.

We first give an example of a query that cannot be enumerated

with linear delay but does not fulfill the condition of Theorem 15.

We next give one example of a query that can be enumerated with

linear delay but cannot be untangled. Finally, we specify a third

query whose complexity remains unknown.

Example 16. Consider the query q8 of Figure 5. The core of the

query is the ternary atom and the triangle within it and is therefore

acyclic. The query cannot be untangled because the core is the

CQs With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis PODS ’23, June 18–23, 2023, Seattle, WA, USA

1

2

3
4

5

6

7

8

q8

2

3

14

q9
q10

Figure 5: The hard query q8 of Example 16, the easy query q9

of Example 17, and the unresolved query q10 of Example 18.

only acyclic image and the result of the associated restriction yields

a query with a cyclic core. The reader can also verify that the

condition of Theorem 15 is not met. Nevertheless, q8 cannot be

enumerated with linear delay unless we can find a triangle in a

graph in time linear in the number of its edges, a special case of

sHypercliqe. The proof idea is that we encode the triangles of the

graph into both query triangles that are not covered by a ternary

relation and assign constants to all other variables. Except for one

solution, all solutions over this encoding identify triangles in the

input graph, though they do not all originate in the same query

triangle. The details can be found in the appendix.

Example 17. Consider the query q9 depicted in Figure 5. Its core

is a self-loop and is acyclic. One can verify that this query cannot

be untangled. However, its solutions can be efficiently enumerated

as follows. For each edge (b, c) of the database, we maintain two

lists: the list of self-loops a such that (a,b) and (c,a) are edges, and
a similar list of self-loops where (a,b) and (a, c) are edges. The

algorithm goes through all self-loops a, and for each such self-loop,

we consider all edges (b, c). If the triple (a,b, c) satisfies any of

the two patterns, we add a to the corresponding list for (b, c). In
addition, if (a,b, c) satisfies the first pattern, then for each a′ in the

second list for (b, c), we output the solution (a,b, c,a′). Similarly, if

(a,b, c) satisfies the second pattern, then for each a′ in the first list

for (b, c), we output the solution (a′,b, c,a) (unless a′ = b = c = a
for avoiding duplicates). It can be easily verified that all solutions

are printed and that no solution is printed twice. Moreover, as every

self-loop a results in a solution (a,a,a,a), the algorithm exhibits

linear delay. It is worth noting that, as before, the memory this

algorithm uses may be linear in the output size (which may be

larger than linear in the database size).

Example 18. Finally, consider the query q10 of Figure 5. It cannot

be untangled. The ideas used in Example 17 can no longer be used

as the middle part is now a path of length two and there may be

more than a linear number of those. The idea from Example 16 does

not work either because similarly encoding triangles yields a linear

number of non-triangle solutions. Whether q10 can be enumerated

with linear delay remains open.

7 FULL CONJUNCTIVE QUERIES AND
CONSTANT DELAY

In this section, we aim to distinguish the queries that can be enu-

merated with constant delay after a linear time preprocessing from

those where this is not possible. As in the previous section, all our

queries will be full cyclic queries with an acyclic core.

7.1 Mirror queries
We start by showing that some cyclic queries can be solved with

constant delay following linear preprocessing due to self-joins. This

happens when half of the query can be seen as a reflection of the

other half, as demonstrated in the following example.

Example 19. The cyclic query q1 of Figure 1 can be enumerated

with constant delay as we describe next. First notice that the core

p of q1, depicted by 1 2 3, is acyclic and free-connex, and

so by Theorem 2, p can be enumerated with constant delay after

linear preprocessing time. We will maintain a table, initialized as

empty, that on entry a pair (a,b) returns a list of elements c such
that (a, c,b) is a solution to p. The enumeration of q1 works as

follows. We perform the preprocessing necessary for p, start its
enumeration, and for every solution (a, c,b) we do the following.

First, we output the solution (a, c,b, c). Then, for every c ′ that is
given by the table for the entry (a,b), we output the solutions

(a, c,b, c ′) and (a, c ′,b, c). Finally, we add c to the table entry (a,b).
We get that the delay is constant, and every result is printed once.

Example 19 puts forward the following sufficient condition. We

call a query amirror if it has an acyclic image I such that the remain-

ing atoms form a query isomorphic to I , where the isomorphism

is the identity on the variables shared between the image and the

remaining atoms.

Proposition 20. Any full mirror conjunctive query can be enu-

merated with constant delay after a linear preprocessing time.

As in Example 19, in the proof of Proposition 20 we use during

the enumeration a memory linear in the output size (which may

not be linear in the input size).

7.2 The effect of unary atoms
In contrast to the self-join-free case, we show that unary atoms can

affect query complexity. Intuitively, when adding a unary atom to

one of the sides of a mirror query, the solutions to this side no longer

form all possible solutions to the other side, and so the algorithm

we proposed for mirror queries fails. The following example differs

from the previous one only by the addition of a unary atom.

Example 21. Consider again the queryq2 depicted in Figure 1.We

have seen in Example 11 that it can be enumerated with linear delay.

It turns out that it cannot be enumerated with linear preprocessing

and constant delay unless we can test in linear time whether a graph

contains a triangle, contradicting sHypercliqe. Given a graph

G withm edges, we construct a database D as follows. For every

edge (a,b) ofG with a < b, we add to D the facts R(⟨a, x1⟩, ⟨b, x2⟩),

R(⟨b, x2⟩, ⟨b, x3⟩),R(⟨a, x1⟩, ⟨b, x4⟩), andR(⟨b, x4⟩, ⟨a, x3⟩), together

with the fact Red(⟨b, x2⟩). By considering all endomorphisms of q2,

as we explained when introducing the tagging technique, we get

that a solution in q(D) is either obtained by the identity automor-

phism and so it is of the form (⟨a, x1⟩, ⟨b, x2⟩, ⟨b, x3⟩, ⟨c, x4⟩) for a

triangle (a,b, c) in G, or it is obtained by the endomorphism that

maps x4 to x2 and so it is of the form (⟨a, x1⟩, ⟨b, x2⟩, ⟨b, x3⟩, ⟨b, x2⟩)

for an edge (a,b) inG . As there are at mostm solutions of the latter

kind, any constant delay enumeration of q in D would be able to

test in O(m) whether G has a triangle.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nofar Carmeli and Luc Segoufin

This added difficulty is caused by any structure that breaks the

symmetry between the two sides. As an example, we could replace

the unary atom in q2 by a directed path of length 2 starting in x2

and still obtain the hardness with a similar proof.

7.3 The effect of “spikes”
While introducing unary atoms can make queries harder, we will

now see that introducing “dangling” binary atomsmaymake queries

easier. Consider the query q5 of Figure 2 together with the three

queries depicted in Figure 6. Notice that all four agree on the cen-

tral loop and have the same acyclic core
1 2 3

. They can

be untangled and therefore enumerated with linear delay due to

Theorem 13. We prove in the sequel that q11 and q12 can even be

enumerated with constant delay, while q5 and q13 cannot without

a major computational breakthrough.

1

8

7

6

5

2

3

4

q11

1

8

7

6

5

2

3

4

q12

1

8

7

6

5

2

3

4

q13

Figure 6: Queries similar to q5 with a different status regard-
ing constant delay enumeration.

Removing the unary atom from q5 results in a mirror query that

can be enumerated with constant delay according to Proposition 20.

This unary atom renders q5 difficult, and the proof (in the appendix)

is similar to that of Example 21. The spikes of q11 make it so that all

cycle edges appear in an acyclic image. This can be used to devise

an efficient algorithm as we explain next.

Example 22. Consider q11 and its images of Figure 7. The top

and left images can be enumerated with linear preprocessing and

constant delay as they are acyclic and free-connex. We start by

enumerating the solutions of the left image, and maintain a lookup

table as follows. To any solution (a,b, c,d, e, f) of the left image,

we add the pair (d, e) to the table at the entry (a,b, c, f). We output

the solution (a,b, c,d, e,d, c,b, f ,b) induced by this image. Once

we are done with the left image, we start the enumeration of the

top image. To any solution (a,b, c,d, e, f) of the top image, we

output the solution (a,b, c,b,a, f , e, f ,b,d) induced by this image.

Moreover, for every pair (u,v) in the table for the entry (a,b, c,d),
the tuple (a,b, c,u,v,d, e, f) is a solution for the main loop. We go

1

8

7

6

5

2

3

4

10

9

1

6

2

3

5

4

10

9

8

7

1

8

7

6

2

3

4

10

9

5

Figure 7: The query q11, its left image, and its top image.

1

82

3

4

7

6

5

9

10

14

11

1312

1

8

6

5

2

3

4

9

10

11

12

7

14

13

1

8

7

2

3

9

10

14

5

4 6

11

1312

Figure 8: The small, left, and top images of q12. We do not
draw the entire endomorphisms for readability.

through all edges outgoing from v and all edges incoming to e to
get a solution to q11 in constant delay. Altogether, we get a constant

delay algorithm that outputs all solutions to q11, possibly 3 times.

We remove the duplicates using the Cheater’s Lemma.

We show next that q12 can also be efficiently solved even though

it does not have acyclic images covering all edges of the main loop.

Example 23. The query q12 can be enumerated with constant

delay using its images depicted in Figure 8. The idea is that we

enumerate the solutions to the small image, and for every such

assignment, we have a way to efficiently find all solutions that

extend it. We first find all of its extensions to the top image and

print the solutions implied by these. While we do this, we store

the possible assignments to x7. Then, we do the same with the left

image and store the possible assignments to x6. Next, we go over

all pairs of a value for x6 and a value for x7 and check whether

there is an edge between them. If there is an edge, we have found

a non-trivial assignment to the cycle, and we can enumerate all

possible spike assignments to get all solutions to the full query.

The crux of this proof is that we can show that the number of

pairs of values we need to check is bounded by the number of

“simple” solutions we find using the two images. Thus, the “simple”

solutions provide enough time to perform this computation while

still achieving constant delay.

The tractability that the spikes of q12 introduce does not stem

from the mere number of spikes. We next give evidence of the

difficulty of enumerating the answers to the queryq13, which differs

from q12 only by the direction of one edge.

Example 24. We can show that efficient enumeration for q13

would imply a breakthrough in algorithms for triangle detection in

unbalanced tripartite graphs, contradicting the following hypothe-

sis. The Vertex-Unbalanced Triangle Detection (VUTD) hypothesis
5

assumes that, for every constant α ∈ (0, 1], it is not possible to test

the existence of a triangle in a tripartite graph with vertex sets

|V | = n and |U | = |W | = Θ(nα) in time O(n1+α). We encode

triangle finding with tagging in the query like before, with two

additional tricks. To handle the two spikes leaving x5, the value

tagged by x5 corresponds to an edge between U and V . The same

idea cannot be applied to x8 as it would result in an image that

contains vertices of the three parts that do not correspond to a

triangle. The spike leaving x8 makes one of the images correspond

to two edges betweenU andW . Here, we rely on the fact that our

5
The VUTD hypothesis [4] is less known than the previous ones used in this paper.

However, it does represent a computational barrier, and relying on it gives evidence of

the difficulty of the task at hand.

CQs With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis PODS ’23, June 18–23, 2023, Seattle, WA, USA

input graph is unbalanced to claim that there are not too many

solutions of this kind.

7.4 An open problem
The techniques developed above for constant delay algorithms or

hardness proofs fail on the full query q14 depicted below, and its

classification is left for future work. Note that q14 is not a mirror,

even though it consists of only one cycle and it has an acyclic image.

8 CONCLUSION
We have initiated the study of the fine-grained complexity of con-

junctive queries with self-joins. We have seen that queries with low

arity can be enumerated with constant delay iff their associated

self-join-free query can. We do not know whether this property

remains true with linear delay enumeration. There are several ways

in which the complexity analysis is more complicated for queries

with self-joins. In particular, the complexity may change with the

reordering of variables inside an atom, with the addition of unary

atoms, or with the addition of binary atoms where only one of their

variables appears in the rest of the query (called “spikes” above).

Despite showing several ways in which self-joins can be used in

algorithms for queries that are otherwise hard, as well as showing

ways to prove the hardness of queries with self-joins, determining

the complexity of some queries (see Example 18 and Section 7.4) is

left open. Most of our results concern full conjunctive queries and

going beyond this would require significant additional work.

ACKNOWLEDGMENTS
We thank Louis Jachiet for his valuable input during our discus-

sions. This work was funded by the French government under

management of Agence Nationale de la Recherche as part of the

“Investissements d’avenir” program, reference ANR-19-P3IA-0001

(PRAIRIE 3IA Institute), and by the ANR project EQUUS ANR-19-

CE48-0019.

REFERENCES
[1] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On acyclic

conjunctive queries and constant delay enumeration. In International Workshop

on Computer Science Logic. Springer, 208–222.

[2] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant

delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7, 1

(2020), 4–33.

[3] Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en

logiques propositionnelle et du premier ordre. Ph.D. Dissertation. Université de

Caen.

[4] Karl Bringmann and Nofar Carmeli. 2022. Unbalanced Triangle Detection and

Enumeration Hardness for Unions of Conjunctive Queries. https://doi.org/10.

48550/ARXIV.2210.11996

[5] Nofar Carmeli and Markus Kröll. 2021. On the enumeration complexity of unions

of conjunctive queries. ACM Transactions on Database Systems (TODS) 46, 2

(2021), 1–41.

[6] Ashok K Chandra and Philip M Merlin. 1977. Optimal implementation of con-

junctive queries in relational data bases. In Proceedings of the ninth annual ACM

symposium on Theory of computing. 77–90.

[7] Wojciech Kazana and Luc Segoufin. 2013. Enumeration of monadic second-order

queries on trees. ACM Transactions on Computational Logic (TOCL) 14, 4 (2013),

1–12.

[8] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. 2022. Enumeration for

FO queries over nowhere dense graphs. ACM Journal of the ACM (JACM) 69, 3

(2022), 1–37.

[9] Luc Segoufin and Wojciech Kazana. 2011. First-order query evaluation on struc-

tures of bounded degree. Logical Methods in Computer Science 7 (2011).

[10] Luc Segoufin andWojtek Kazana. 2020. First-order queries on classes of structures

with bounded expansion. Logical Methods in Computer Science 16 (2020).

[11] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB,

Vol. 81. 82–94.

https://doi.org/10.48550/ARXIV.2210.11996
https://doi.org/10.48550/ARXIV.2210.11996

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nofar Carmeli and Luc Segoufin

A DETAILS OMITTED FROM SECTION 3
Proposition 3. For any conjunctive query q, its associated self-join-free query q′ is at least as hard as q for the evaluation problem, the

testing problem, and the enumeration problem.

Proof. Given a database D for q we compute a database D ′
for q′ such that the answers of q over D can be reconstructed from the

answers of q′ over D ′
. The database D ′

is constructed from D by duplicating each relation R as many times as its number of occurrences in

q, one for each new symbol used in q′ as a replacement of R. The reduction can be done in linear time, and q(D) = q′(D ′). □

B DETAILS OMITTED FROM SECTION 4
Theorem 7. Let q be a minimal conjunctive query of arity at most one. Then, its solutions can be computed in linear time iff it is acyclic,

assuming sHyperclique.
6

Proof. If q is acyclic, since it is Boolean or unary, it is free-connex, and so it can be answered with constant delay after linear preprocessing
time by Theorem 2. This finds all solutions in linear time. Assume now that q is cyclic.

To show that q is hard, we use a reduction based on the tagging technique. Let q′ be the self-join-free query associated to q. As q′ is cyclic,
its set of solutions cannot be computed in linear time by Theorem 2, assuming sHypercliqe. Let D ′

be a database for q′ and let D be the

database constructed from D ′
using the tagging technique.

If q is Boolean, since it is also minimal, every endomorphism is an automorphism, so by Lemma 5, q(D) is true iff q′(D ′) is true too.

Otherwise, q is unary, and let x be the free variable of q. From Lemma 5, we get that q′(D ′) = {a | ⟨a, x⟩ ∈ q(D)}. As q is unary, the total

size of q(D) is linear in the size of D and so also in the size of D ′
. Hence, if we could compute all the solutions q(D) in linear time, we could

compute all the solutions to q′(D ′) at the same time simply by ignoring the solutions in q(D) that are not tagged by x . □

Missing details for q4. The enumeration of q4 in linear delay can be done as follows. We first precompute the set S of all elements a
such that P(a) is a fact of the database and a has incoming and outgoing edges. Notice that this is an acyclic property and therefore S can be

computed in linear time. Notice also that any element of S is a solution to q. For every element a of S we do the following. First, we consider

all edges E(b, c). If E(b,a) is an edge, then we store c in a temporary table T . Next, we start a new scan of all edges E(b, c). If E(a, c) is an
edge and b ∈ T , then we can safely output b. For each a ∈ S , at least one solution is printed, namely a, and the delay between checking two

elements of S is linear.

Theorem 8. Let q be a minimal binary conjunctive query. If q is not acyclic free-connex, then there is no linear preprocessing and constant

delay enumeration algorithm for answering q, assuming Hyperclique.

Proof. Let q be a minimal binary query, and let q′ be its associated self-join-free query. Assume q is acyclic but not free-connex. See

the paper body for the proof in the cyclic case. We use the following conjecture which is implied by Hypercliqe. BMM conjectures that

two n × n Boolean matrices A and B cannot be multiplied in time O(n2). We show that we cannot compute q(D) in time linear in the input

and output sizes, assuming BMM. To see this, we need to recall how the same result was shown in the self-join-free case. Given two n × n
matrices, there is a construction that encodes their multiplication task into any acyclic non-free-connex query using n domain values [1].

If the query could be solved in time linear in the input and output sizes, this construction would multiply the matrices in O(n2) time. We

use the same construction to define a database D ′
for q′. Using the tagging technique to produce D from D ′

, the data part of q(D) contains
q′(D ′) and possibly additional answers. But, as the query is binary, the size of q(D) is at most O(n2). Hence, if we could compute q(D) in
linear time, we would compute q′(D ′) with an overhead of no more thanO(n2) by ignoring the unwanted solutions, contradicting BMM. □

C DETAILS OMITTED FROM SECTION 5
Theorem 9. It is possible to test in linear time whether a conjunctive query has a solution iff it has an acyclic core, assuming sHyperclique.

Proof. Let q be a conjunctive query with free variables x̄ , and let p be the Boolean version of the core of q. Notice that p has a solution iff

q has a solution. If p is acyclic, then we can test whether it has a solution in linear time using the Yannakakis algorithm [11]. Otherwise, p is

a minimal cyclic Boolean query. By Theorem 7, p cannot be tested in linear time assuming sHypercliqe. Hence, one cannot test in linear

time whether q has a solution. □

D DETAILS OMITTED FROM SECTION 6
Theorem 15. Let q be a full conjunctive query. If q contains a set S of variables such that the restriction q |S is cyclic, and all its endomorphisms

are idempotent and have an image containing either all the variables in S or none of them, then q cannot be enumerated with linear delay (and

linear preprocessing), assuming sHyperclique.

Proof. According to Theorem 2, the testing problem for q |S cannot be solved in linear time since it is cyclic and self-join free, assuming

sHypercliqe. In particular, it cannot be enumerated in linear delay. According to the following Lemma 25, this implies the same for q.

6
In fact, the proof of the unary case can be applied to any minimal conjunctive query in which one atom contains all free variables.

CQs With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis PODS ’23, June 18–23, 2023, Seattle, WA, USA

I3 I2 I1 I0

Figure 9: This query can be untangled, as witnessed by the sequence I0, I1, I2 I3, where the Ii are the images corresponding to
the part to the left of each dotted vertical line.

Lemma 25. Let q be a full conjunctive query whose endomorphisms are all idempotent, and let S be a set of variables of q such that every

image of q contains either all of S or none of them. Then, q is at least as hard for enumeration as q |S .

Proof of Lemma 25. Let D ′
be a database for q |S . We construct a database D for q as follows. Consider an atom R(®y) of q, and let R′(®x)

be its restriction in q |S . For every fact R′(®a), we construct the tuple ®b from ®a by inserting ⊥ in all positions of ®y that do not contain variables

of S . We then insert to D the fact R(c̄) with ci = ⟨bi ,yi ⟩. Notice that, by construction, the elements of D are pairs of the form ⟨a, x⟩ such that

a is either ⊥ or an element of D ′
and x is a variable of q. Moreover, whenever x ∈ S then a is an element of D ′

.

Consider now an answer ā of q on D. Let µ be the mapping witnessing the fact that ā is a solution. As in the tagging technique, we

perform a case analysis depending on the endomorphism ν of q induced by µ. If the image of ν does not intersect with S , then the data part

of µ contains only the elements ⊥ and, as there is only a constant number of such solutions, we can safely ignore them. Otherwise, by our

assumption, the image of ν must contain S , and ν is the identity on S . This implies that for any variable x ∈ S , µ(x) is of the form ⟨b, x⟩
where b is an element of D ′

. We claim that the mapping µ ′ defined by µ ′(x) = b whenever x ∈ S and µ(x) = (b, x) witnesses a solution of q |S
on D ′

. For all R′(®x) in q |S , consider R(®y). Let ®u be the variables of y occurring in S . Since µ(®y) ∈ R and ν is idempotent, we have that µ(®u) is a
tuple of R′

tagged by ®x . Hence, our construction “filters enough”, and the data part gives a solution of q |S . Notice also that all solutions to

q |S can be obtained this way. Hence, the enumeration of q will enumerate all the solutions to q |S . □

□

Missing details in Example 16. The condition of Theorem 15 is not met because any set S of variables containing a cycle must contain

the variable x5; if it also contains x7 and x8 then the image x1, · · · , x6 intersects with S in x5 but does not contain x7. The case where S
contains x4 and x6 is symmetric.

The query q8 cannot be enumerated with linear delay unless we can find a triangle in a graph in time linear in the number of its edges,

a special case of sHypercliqe. To show this, we use the tagging technique as follows. Given an input graph G, we construct in linear

time the following database D. To each edge (a,b) with a < b, we add to D the facts R(⟨a, x4⟩, ⟨b, x5⟩), R(⟨a, x5⟩, ⟨b, x6⟩), R(⟨b, x6⟩, ⟨a, x4⟩),

R(⟨a, x5⟩, ⟨b, x8⟩), R(⟨b, x8⟩, ⟨a, x7⟩), R(⟨a, x7⟩, ⟨b, x5⟩). We also add to D the facts R(⟨⊥, x1⟩, ⟨a, x4⟩) and R(⟨⊥, x1⟩, ⟨a, x7⟩). Finally we also

add the facts R(⟨⊥, x1⟩, ⟨⊥, x2⟩), R(⟨⊥, x2⟩, ⟨⊥, x3⟩), R(⟨⊥, x3⟩, ⟨⊥, x1⟩) and S(⟨⊥, x1⟩, ⟨⊥, x2⟩, ⟨⊥, x3⟩). Consider now a solution to q over D.
Due to the tagging technique, the solution induces an endomorphism of q (the tagging map). Let I be the corresponding image. If I is
the core, then the data part of the solution is (⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥). If I is the top or bottom image, then the data part of the solution is

(⊥,⊥,⊥,a,b, c,a, c) such that (a,b, c) is a triangle in G with a < b < c . If I is q8, then the data part of the solution is (⊥,⊥,⊥,a1,b, c1,a2, c2)

such that (a1,b, c1) and (a2,b, c2) are triangles in G with a1,a2 < b < c1, c2. Overall, there is only one solution that does not correspond to a

triangle in G . Hence, if we can enumerate the solutions to the query with linear delay and linear preprocessing, then we can detect in linear

time the presence of a triangle in G.

1

2

3
4

5

6

7

8

1

2

3
4

5

6

7

8

1

2

3

7

5

8

4

6

Figure 10: From left to right: query q8, its “top” image, and its “bottom” image.

E DETAILS OMITTED FROM SECTION 7
Proposition 20. Any full mirror conjunctive query can be enumerated with constant delay after a linear preprocessing time.

Proof. We essentially do as in Example 19. Let I be the acyclic image witnessing the mirror, and let x̄ be the shared variables (that is,

variables that appear in I and also in atoms of the query that are not in I). Assume the free variables are ordered such that x̄ appear first,

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nofar Carmeli and Luc Segoufin

then the other image variables, and then the remaining variables. We will maintain a table that upon entry ā returns a list of tuples
¯b such

that ā ¯b forms a solution to I . As I is full and acyclic, it can be enumerated with constant delay after a linear preprocessing time. We perform

the preprocessing of I and start its enumeration. For every solution ā ¯b to I , we do the following. First, we output the solution ā ¯b ¯b. Then, for
every b ′ given by the table for ā, we output the solutions ā ¯b ¯b ′ and ā ¯b ′ ¯b. Finally, we add ¯b to the table with entry ā. Notice that the delay is

constant, and all solutions are printed with no repetition. □

Missing details for the query q5. The query q5 of Figure 6 cannot be enumerated with constant delay assuming the hardness of triangle

detection as conjectured in sHypercliqe. Let G be a graph. We construct the following database D. For every node a of G, we add the

following facts to D: R(⟨a, x1⟩, ⟨a, x2⟩), R(⟨a, x2⟩, ⟨a, x3⟩), R(⟨a, x4⟩, ⟨a, x3⟩), R(⟨a, x5⟩, ⟨a, x4⟩), R(⟨a, x1⟩, ⟨a, x8⟩), and Red(⟨a, x2⟩). For every

edge (a,b) of G with a < b, we add the following facts to D: R(⟨a, x5⟩, ⟨b, x6⟩), R(⟨a, x6⟩, ⟨b, x7⟩), R(⟨a, x8⟩, ⟨b, x7⟩). Consider now a solution

in q5(D). It induces an endomorphism of q5 as explained in Section 3. We do a case analysis depending on the image I of this endomorphism.

If I is the core, then the data part of the solution involves only one node a of G. The same holds if I involves only the left part of q5: the

variables from x1 to x5. If I involves the top part of q5, the variables x1, x2, x3, x8, x7, then the data part of the solution corresponds to an

edge of G. The data part of all the remaining images induces a triangle in G. Hence, the data part of all the solutions in q5(D) contain a

triangle of G except for a number of solutions linear in the size of G. Hence, a constant delay enumeration algorithm for q5 with linear

preprocessing would induce a linear test of whether G contains a triangle.

The reader may verify that the encoding used to prove the hardness of q5 does not work for q11 as the spikes make bigger images. With

this encoding, there would be one solution per path of distance two in G, and so the triangles might be detected only after quadratic time,

which does not contradict sHypercliqe.

Missing details for the query q12 of Example 23. We first enumerate the solutions of the “small” image, depicted in Figure 8. For each

such solution (a,b, c,d, e), we do the following.

We compute all possible assignments to x7 while producing some solutions to q12 using the top image as follows. We refer to the subquery

induced by x7, x8, x14 as the top complement. We enumerate the solutions to the top complement in which x8 maps to e . For each such

solution (j, e,k), we insert the value j to the set T7(e). Notice that (a,b, c, j, e, e,d,k) is a solution for the top image. We then output the

solution to q12 derived from this solution using the mapping of the top image. This is the solution (a,b, c,b,a, e, j, e, e,d,a,b, e,k).
We continue similarly with the left image as follows. We refer to the subquery induced by x4, x5, x6, x11, x12 as the left complement. We

enumerate the solutions to the left complement in which x4 maps to d . For each such solution (d, f ,д,h, i), we insert the value д to the set

T6(d), and we insert the value f to the set T5(d,д). Notice that (a,b, c,d, f ,д, e,d,h, i) is a solution for the left image. We then output the

solution to q12 derived from this solution using the mapping of the left image. This is the solution (a,b, c,d, f ,d, c,b, e,d,h, i,д, c).
Next, for each value u inT6(d) and each value v inT7(e) we check whether there is an edge (u,v) in our database. If there is, for each value

w in T5(d,u), we have found a solution (a,b, c,d,w,u,v, e) to the query induced by the cycle. We enumerate all possible spike assignments

to get all solutions to the full query. More specifically, for each s1 with an edge (a, s1), for each s2 with an edge (s2, c), for each s3 with an

edge (s3,d), for each s4 with an edge (w, s4), for each s5 with an edge (w, s5), and for each s6 with an edge (e, s6), we print the solution

(a,b, c,d,w,u,v, e, s1, s2, s3, s4, s5, s6) to q12.

The process described in the last paragraph finds every solution to q12 exactly once. The previous two paragraphs find some of the

solutions to q12, where the process described in each paragraph alone does not yield duplicate solutions. Overall, we find all solutions to q12,

and every solution is obtained at most 3 times.

Let us now discuss the time complexity. Each time we enumerate something in our algorithm, it is acyclic and can be done with linear

preprocessing and constant delay. The “danger” is that we need to go over all pairs of a value inT6(d) and a value inT7(e) and check whether

they share an edge. In the worst case, if this check always fails, we can get a step of quadratic delay, which is a problem if we want linear

preprocessing and constant delay. However, we will show later that the number of such pairs is bounded by the number of solutions we

print before these checks, using the top and left images. Overall, we get that, for all n, the time from the beginning of the execution until

printing the nth solution is linear in the input size plus n. A general version of the Cheater’s Lemma [5, Lemma 7] relies on this to deduce

that our algorithm can be tweaked into working with linear preprocessing and constant delay with no duplicates, by withholding some of

the solutions before printing them.

Denote by SolTop(e) and SolLeft(d) the number of solutions printed in the second and third paragraphs respectively. It is left to prove that

|T6(d)| · |T7(e)| ≤ SolTop(e) + SolLeft(d). Denote by In(a) and Out(b) respectively the set of all values that go into a and out of b in the input

database; that is In(a) = {v |(v,a) ∈ R} and Out(b) = {v |(b,v) ∈ R}. We have that |T7(e)| ≤ Out(e) and |T6(d)| ≤
∑
f ∈In(d) Out(f), and also

SolTop(e) = |Out(e)|2 and SolLeft(d) =
∑
f ∈In(d) |In(d)| |Out(f)|

2
. Using the known inequality between the arithmetic and quadratic means,

we get:

|T6(d)| · |T7(e)| ≤ |T6(d)|
2 + |T7(e)|

2 ≤
©«

∑
f ∈In(d)

Out(f)
ª®¬

2

+ (Out(e))2 ≤ |In(d)|
∑

f ∈In(d)

Out(f)2 + Out(e)2 = SolTop(e) + SolLeft(d)

CQs With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis PODS ’23, June 18–23, 2023, Seattle, WA, USA

This concludes the proof that q12 can be enumerated with linear preprocessing and constant delay.

Missing details for the query q13 of Example 24. LetG be an unbalanced tripartite graph. We construct the following database D. For
each node u ∈ U , we add to D the facts R(⟨u, x1⟩, ⟨u, x2⟩), R(⟨u, x2⟩, ⟨u, x3⟩), R(⟨u, x4⟩, ⟨u, x3⟩), R(⟨u, x1⟩, ⟨u, x8⟩), and Red(⟨u, x2⟩). For each

edge (u,v) ∈ U ×V of G, we add to D the facts R(⟨(u,v), x5⟩, ⟨u, x4⟩) and R(⟨(u,v), x5⟩, ⟨v, x6⟩). For each edge (v,w) ∈ V ×W of G, we add
to D the fact R(⟨(v, x6⟩, ⟨w, x7⟩). Finally for each edge (w,u) ∈W ×U of G , we add to D the fact R(⟨u, x8⟩, ⟨w, x7⟩). Consider now a solution

in q13(D). We perform a case analysis according to the tagging map, as explained in Section 3, see Figure 11. The only images that contain

x5 or x6 and also x7 come from the endomorphisms which are the identity on the main loop, and so a solution with this tagging detects a

triangle ofG. Images that do not contain x5, x6, or x7 result in solutions whose data part is a single node u ∈ U . For images that contain x5

and possibly also x6 but not x7, the data part is an edge (u,v) betweenU and V . For the image that contains x7 and not x5, the data part is a

triple (w,u,w ′) corresponding to two edges betweenU andW . AsU andW are small vertex sets, there cannot be too many solutions of the

latter kind. Altogether the number of solutions that do not provide a triangle of G is in O(n1+α). Hence, a constant delay algorithm after

linear preprocessing time will identify a triangle in G in time O(n1+α).

u

u

w

v

(u,v)

u

u

u

u

u

w’

u

vu

u

u

u

u

(u,v)

u

u

u

u

u

u

u

vu

u

u

w

u

u

u

u

u

u

u

w’

u

uu

Figure 11: Data parts of solutions in Example 24 with a tagging map that: is the identity on the main loop (left), has x5 in its
image but not x7 (center), and has x7 in its image but not x5 (right).

Notice that, for the construction of Example 24, it is important that the bottom-left spike points outwards. Otherwise, as in q12, the left

image may produce triplets of the form (u,v1,v2) corresponding to two edges between V and U , and there may be n1+2α
of them, which is

too many for solving the VUTD problem in the desired time.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proving Hardness with Self-Joins
	4 Queries of Low Arity
	5 Queries With a Cyclic Core
	6 Full Conjunctive Queries and Linear Delay
	6.1 Sufficient condition
	6.2 Necessary condition
	6.3 Other cases

	7 Full Conjunctive Queries and Constant Delay
	7.1 Mirror queries
	7.2 The effect of unary atoms
	7.3 The effect of ``spikes''
	7.4 An open problem

	8 Conclusion
	Acknowledgments
	References
	A Details omitted from Section 3
	B Details omitted from Section 4
	C Details omitted from Section 5
	D Details omitted from Section 6
	E Details omitted from Section 7

