The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

March, 2nd. 2018
What is a proof assistant?

A tool to **formalize** and **verify** proofs

The key word is assistant: it *assists* the user in
- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:
- formalization is done with respect to the knowledge of the user, it is **error prone**
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Purpose of Coq and principle

Coq is a programming language

- We can **define data-types** and **write programs** in Coq
- Language similar to a **pure functional language**
- **Very expressive** type system (more on this later)

- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant

- It allows to **express theorems** and **proofs**
- It can **verify** a proof
- It can also **infer some proofs** or **proof steps**

- Proof search is usually mostly manual and takes most of the time
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. **Define the objects** properties need be proved about Data-structures, base types, programs written in the Coq (or vernacular) language

2. Write and prove **intermediate lemmas**
 - a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of **tactics applications** tactics are described as part of a separate language.
 - at the end of the proof, a **proof term** is constructed and verified.

3. Write and prove the **main theorems**

4. If needed, **extract** programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- The **core of Coq** is defined by a language of **terms**
- **Commands** are used in order to manipulate terms

Examples of terms:

- **base values**: 0, 1, true...
- **types**: nat, bool, but also Prop...
- **functions**: fun (n: nat) => n + 1
- **function applications**: (fun (n: nat) => n + 1) 8
- **logical formulas**:
 - exists p: nat, 8 = 2 * p,
 - forall a b: Prop, a/\b -> a
- **complex functions** (more on this one later):
 - fun (a b : Prop) (H : a /\ b) =>
 and_ind (fun (H0 : a) (_ : b) => H0) H
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by term: type

0: nat

nat: Set

Set: Type

Type: Type (**caveat: not quite the same instance**)
(fun (n: nat) => n + 1): nat -> nat

more complex types get interesting:

$\text{fun}\ (a\ b:\ \text{Prop})\ (H:\ a\ \land\ b)\ =>$

$\text{and}_\text{ind}\ (\text{fun}\ (H0:\ a)\ (_:\ b)\ =>\ H0)\ H$

: forall a b: Prop, a \land b -> a
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a term of type P
- A proof of $P \Rightarrow Q$ can be viewed a function transforming a proof of P into a proof of Q, hence, a function of type $P \rightarrow Q$...

Similarity between typing rules and proof rules:

\[
\begin{align*}
\Gamma, \chi : P &\vdash u : Q \\
\Gamma &\vdash \lambda \chi \cdot u : P \rightarrow Q \\
\hline
\Gamma &\vdash u : P \rightarrow Q &\text{fun} \\
\Gamma &\vdash v : P \\
\hline
\Gamma &\vdash u \; v : Q &\text{app} \\
\end{align*}
\]

\[
\begin{align*}
\Gamma, P &\vdash Q \\
\hline
\Gamma &\vdash P \Rightarrow Q &\text{implic} \\
\Gamma &\vdash P \\
\hline
\Gamma &\vdash Q &\text{mp} \\
\end{align*}
\]

Correspondance:

<table>
<thead>
<tr>
<th>program</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Searching a proof of P \equiv searching u of type P
Defining a term

Two ways:

1. **Define it fully**, with **its type and its definition**

 Definition zero: nat := 0.

2. **Provide only its type** and **search for a proof of it**

 Lemma lzero: nat.

 exact 0.

 Save.

 Definition lincr: forall n: nat, nat.

 intro. exact (n + 1).

 Save.

- **Definition**: Definition name u: t := def.
- **Proof**: Definition name u: t. or Lemma name u: t.
Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition
 ... examples: integers, booleans, equality, conjunction...

- Syntax:

 Inductive tree : Set :=
 | leaf : tree
 | node : tree -> tree -> tree.

- Induction principles automatically provided by Coq, and to use in induction proofs:

 tree_ind : forall P : tree -> Prop,
 P leaf
 -> (forall t : tree, P t -> forall t0 : tree, P t0
 -> P (node t t0))
 ->forall t : tree, P t
Recursive functions

- Very natural to work with inductive definitions
- **Caveat:** must provably terminate
 this is usually checked with a *strict sub-term condition*

Syntax:

```coq
Fixpoint size (t: tree) : nat :=
  match t with
    | leaf => 0
    | node t0 t1 => 1 + (size t0) + (size t1)
  end.
```

Ill formed definition, rejected by the system (termination issue):

```coq
Fixpoint f (t: tree): nat :=
  match t with
    | leaf | node leaf leaf => 0
    | node _ _ => f (node leaf leaf)
  end.
```
Proving a term

View in proof mode:

- above the bar: current assumptions
- below the bar: current subgoal
 (there may be several goals)
- at the end: displays
 No more subgoals.
- command Save. stores the term.

Progression towards a finished proof:
- based on commands called tactics
- in the background, Coq constructs the proof term
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independantly checked (very reliable !)

- **Introduction of an assumption** (proof tree and term):

\[
\begin{align*}
\Gamma, P &\vdash Q \\
\Gamma &\vdash P
\Rightarrow Q
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : P &\vdash u : Q \\
\Gamma &\vdash \lambda x \cdot u : P \rightarrow Q
\end{align*}
\]

- **Application of an implication**:

\[
\begin{align*}
\Gamma &\vdash P \Rightarrow Q \\
\Gamma &\vdash P \\
\Gamma &\vdash Q
\end{align*}
\]

\[
\begin{align*}
\Gamma &\vdash u : P \rightarrow Q \\
\Gamma &\vdash v : P \\
\Gamma &\vdash u \; v : Q
\end{align*}
\]

- **Immediate conclusion of a subgoal**:

\[
\begin{align*}
\Gamma, P &\vdash P \\
\Gamma, x : P &\vdash x : P
\end{align*}
\]
Automation in Coq

So far, we have considered fairly manual tactics...

There are also **automated tactics**, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Examples:

- **Tauto**: decides propositional logic
- **Omega**: solves a class of numeric (in)-equalities (see manual)

Language of tactics:
more advanced users can combine tactics to build their own

Proof by reflection: prove decision procedures, and invoke them...
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H.</td>
<td>Applies assumption H (should be of the form $A \rightarrow B$)</td>
</tr>
<tr>
<td>elim H.</td>
<td>Decomposes assumption H</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs.</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term t</td>
</tr>
<tr>
<td>rewrite H.</td>
<td>Rewrite assumption H (should be of the form $t_0 = t_1$)</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check t.</td>
<td>Prints the type of term t</td>
</tr>
<tr>
<td>Print t.</td>
<td>Prints the type and definition of term t</td>
</tr>
<tr>
<td>Definition $u: t := [\text{term}]$.</td>
<td>Full definition of term u</td>
</tr>
<tr>
<td>Lemma t.</td>
<td>Start a proof of term t</td>
</tr>
<tr>
<td>Theorem t.</td>
<td></td>
</tr>
<tr>
<td>Definition t.</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>