Operational Semantics
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 16, 2018
Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. A model of programs: transition systems
 - definition, a small step semantics
 - a few common examples

2. Trace semantics: a kind of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics
Outline

1 Transition systems and small step semantics
 - Definition and properties
 - Examples

2 Traces semantics

3 Summary
Definition

We will characterize a program by:

- **states:**
 photography of the program status at an instant of the execution

- **execution steps:** how do we move from one state to the next one

Definition: transition systems (TS)

A **transition system** is a tuple \((S, \rightarrow)\) where:

- \(S\) is the **set of states** of the system
- \(\rightarrow \subseteq S \times S\) is the **transition relation** of the system

Note:

- the set of states **may be infinite**
Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

$$\forall s_0, s_1, s'_1 \in S, (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1$$

Otherwise, a transition system is non deterministic, i.e.:

$$\exists s_0, s_1, s'_1 \in S, s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1$$

Notes:

- the transition relation \rightarrow defines atomic execution steps; it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous)
 to describe both discrete and continuous behaviors, we would need to look at hybrid systems (beyond the scope of this lecture)
Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** $S_I \subseteq S$ denotes states where the execution should start

- a set of **final states** $S_F \subseteq S$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $(S, \rightarrow, S_I, S_F)$.

Blocking state (not the same as final state):

- a state $s_0 \in S$ is **blocking** when it is the origin of no transition: $\forall s_1 \in S, \neg (s_0 \rightarrow s_1)$

- example: we often introduce an **error state** (usually noted Ω to denote the erroneous, blocking configuration)
Outline

1. Transition systems and small step semantics
 - Definition and properties
 - Examples

2. Traces semantics

3. Summary
Finite automata as transition systems

We can formalize the **word recognition** by a finite automaton using a transition system:

- We consider **automaton** $\mathcal{A} = (Q, q_i, q_f, \rightarrow)$
- A **"state"** is defined by:
 - the **remaining of the word to recognize**
 - the **automaton state** that has been reached so far
 thus, $S = Q \times L^*$
- The **transition relation** \rightarrow of the transition system is defined by:
 $$(q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1$$
- The **initial and final states** are defined by:
 $$S_I = \{(q_i, w) \mid w \in L^*\} \quad S_F = \{(q_f, \epsilon)\}$$
Pure λ-calculus

A bare bones model of functional programing:

λ-terms

The set of λ-terms is defined by:

\[t, u, \ldots \quad ::= \quad x \quad \text{variable} \quad \big| \quad \lambda x \cdot t \quad \text{abstraction} \quad \big| \quad t \ u \quad \text{application} \]

β-reduction

- \((\lambda x \cdot t) \ u \to_\beta t[x \leftarrow u]\)
- if \(u \to_\beta v\) then \(\lambda x \cdot u \to_\beta \lambda x \cdot v\)
- if \(u \to_\beta v\) then \(u \ t \to_\beta v \ t\)
- if \(u \to_\beta v\) then \(t \ u \to_\beta t \ v\)

The λ-calculus defines a transition system:

- \(S\) is the set of λ-terms and \(\to_\beta\) the transition relation
- \(\to_\beta\) is non-deterministic; example?
 though, ML fixes an execution order
- given a lambda term \(t_0\), we may consider \((S, \to_\beta, \mathcal{I})\) where \(\mathcal{I} = \{ t_0 \}\)
- blocking states are terms with no redex \((\lambda x \cdot u) \ v\)
A MIPS like assembly language: syntax

We now consider a (very simplified) **assembly language**

- machine integers: sequences of 32-bits (set: \mathbb{B}_{32})
- instructions are encoded over 32-bits (set: \mathbb{I}_{MIPS}) and stored into the same space as data (i.e., $\mathbb{I}_{\text{MIPS}} \subseteq \mathbb{B}_{32}$)
- we assume a fixed set of addresses A

Memory configurations

- **Program counter** pc

 current instruction

- **General purpose registers**

 $r_0 \ldots r_{31}$

- **Main memory** (RAM)

 $\text{mem} : A \rightarrow \mathbb{B}_{32}$

 where $A \subseteq \mathbb{B}_{32}$

Instructions

$$i ::= (\in \mathbb{I}_{\text{MIPS}})$$

- `add r_d, r_s, r_{s'}` addition
- `addi r_d, r_s, v` add. $v \in \mathbb{B}_{32}$
- `sub r_d, r_s, r_{s'}` subtraction
- `b t` branch
- `blt r_s, r_{s'}, t` cond. branch
- `ld r_d, o, r_x` relative load
- `st r_d, o, r_x` relative store

$v, t, o \in \mathbb{B}_{32}, \ d, s, s', x \in [0, 31]$
A MIPS like assembly language: states

Definition: state

A state is a tuple \((\pi, \rho, \mu)\) which comprises:

- A program counter value \(\pi \in \mathbb{B}^{32}\)
- A function mapping each general purpose register to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- A function mapping each memory cell to its value \(\mu : A \rightarrow \mathbb{B}^{32}\)

What would a dangerous state be?

- writing over an instruction
- reading or writing outside the program’s memory
- we cannot fully formalize these yet...
 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{add } r_d, r_s, r_s'$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)$$

- **if** $i = \text{addi } r_d, r_s, v$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)$$

- **if** $i = \text{sub } r_d, r_s, r_s'$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)$$

- **if** $i = \text{bt } t$, **then**:
 $$s \rightarrow (t, \rho, \mu)$$
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{blt } r_s, r_{s'}, t$, **then**:

 $$s \rightarrow \begin{cases} (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\ (\pi + 4, \rho, \mu) & \text{otherwise} \end{cases}$$

- **if** $i = \text{ld } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases} (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases}$$

- **if** $i = \text{st } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases} (\pi + 4, \rho, \mu[x \leftarrow \rho(d)]) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases}$$
A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- **variables** X: finite, predefined set of variables
- **labels** L: before and after each statement
- **values** V: $V_{\text{int}} \cup V_{\text{float}} \cup \ldots$

Syntax

- **expressions**

 $$
 e ::= v \; (v \in V) \mid x \; (x \in X) \mid e + e \mid e * e \mid \ldots
 $$

- **conditions**

 $$
 c ::= \text{TRUE} \mid \text{FALSE} \mid e < e \mid e = e
 $$

- **assignment**

 $$
 i ::= x := e; \mid \text{if}(c) \; b \; \text{else} \; b
 $$

- **condition**

 $$
 i ::= \text{while}(c) \; b
 $$

- **loop**

 $$
 b ::= \{ i; \ldots; i; \}
 $$

- **block, program**

 $$
 P
 $$
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution, including memory and control.

The **memory state** defines the current contents of the memory

\[m \in M = X \rightarrow V \]

The **control state** defines *where* the program currently is

- analogous to the **program counter**
- can be defined by adding **labels** \(L = \{ \ell_0, \ell_1, \ldots \} \) between each pair of consecutive statements; then:

\[S = L \times M \cup \{ \Omega \} \]

- or by the **program remaining to be executed**; then:

\[S = P \times M \cup \{ \Omega \} \]
A simple imperative language: semantics of expressions

- The **semantics** $\llbracket e \rrbracket$ of expression e should evaluate each expression into a value, given a memory state.

- **Evaluation errors** may occur: division by zero...

 error value is also noted Ω

Thus: $\llbracket e \rrbracket : M \rightarrow \mathbb{V} \sqcup \{\Omega\}$

Definition, by induction over the syntax:

$$
\llbracket v \rrbracket(m) = v
$$
$$
\llbracket x \rrbracket(m) = m(x)
$$
$$
\llbracket e_0 + e_1 \rrbracket(m) = \llbracket e_0 \rrbracket(m) \oplus \llbracket e_1 \rrbracket(m)
$$
$$
\llbracket e_0 / e_1 \rrbracket(m) = \begin{cases}
\Omega & \text{if } \llbracket e_1 \rrbracket(m) = 0 \\
\llbracket e_0 \rrbracket(m) \odot \llbracket e_1 \rrbracket(m) & \text{otherwise}
\end{cases}
$$

where \oplus is the machine implementation of operator \oplus, and is Ω-strict, i.e.,

$$
\forall v \in \mathbb{V}, \ v \oplus \Omega = \Omega \oplus v = \Omega.
$$
A simple imperative language: semantics of conditions

- The semantics $[c]$ of condition c should return a boolean value.
- It follows a similar definition to that of the semantics of expressions:

 $[c] : M \rightarrow \mathbb{V}_{\text{bool}} \cup \{\Omega\}$

Definition, by induction over the syntax:

\[
\begin{align*}
\llbracket \text{TRUE} \rrbracket (m) &= \text{TRUE} \\
\llbracket \text{FALSE} \rrbracket (m) &= \text{FALSE} \\
\llbracket e_0 < e_1 \rrbracket (m) &= \begin{cases}
\text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) < \llbracket e_1 \rrbracket (m) \\
\text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \geq \llbracket e_1 \rrbracket (m) \\
\Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases} \\
\llbracket e_0 = e_1 \rrbracket (m) &= \begin{cases}
\text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) = \llbracket e_1 \rrbracket (m) \\
\text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \neq \llbracket e_1 \rrbracket (m) \\
\Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases}
\end{align*}
\]
Transitions describe **local program execution steps**, thus are defined by case analysis on the program statements.

Case of **assignment** $\ell_0 : x = e; \ell_1$

- if $\llbracket e \rrbracket(m) \neq \Omega$, then $(\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow \llbracket e \rrbracket(m)])$
- if $\llbracket e \rrbracket(m) = \Omega$, then $(\ell_0, m) \rightarrow \Omega$

Case of **condition** $\ell_0 : \text{if}(c)\{\ell_1 : b_t \ell_2\} \text{else}\{\ell_3 : b_f \ell_4\} \ell_5$

- if $\llbracket c \rrbracket (m) = \text{TRUE}$, then $(\ell_0, m) \rightarrow (\ell_1, m)$
- if $\llbracket c \rrbracket (m) = \text{FALSE}$, then $(\ell_0, m) \rightarrow (\ell_3, m)$
- if $\llbracket c \rrbracket (m) = \Omega$, then $(\ell_0, m) \rightarrow \Omega$
- $(\ell_2, m) \rightarrow (\ell_5, m)$
- $(\ell_4, m) \rightarrow (\ell_5, m)$
A simple imperative language: transitions

Case of **loop** \(l_0 : \text{while}(c) \{ l_1 : b \} \{ l_2 \} \) \(l_3 \)

- if \(\llbracket c \rrbracket(m) = \text{TRUE} \), then \((l_0, m) \rightarrow (l_1, m) \) \((l_2, m) \rightarrow (l_1, m) \)
- if \(\llbracket c \rrbracket(m) = \text{FALSE} \), then \((l_0, m) \rightarrow (l_3, m) \) \((l_2, m) \rightarrow (l_3, m) \)
- if \(\llbracket c \rrbracket(m) = \Omega \), then \((l_0, m) \rightarrow \Omega \) \((l_2, m) \rightarrow \Omega \)

Case of \(\{ l_0 : i_0; l_1 : \ldots ; l_{n-1} i_{n-1}; l_n \} \)

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit limited:
- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non deterministic inputs...

... with an input instruction:
- \(i ::= \ldots | x := \text{input()} \)
- \(\ell_0 : x := \text{input}(); \ell_1 \) generates transitions
 \[\forall v \in \mathbb{V}, (\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow v]) \]
- one instruction induces non determinism

... with a random function:
- \(e ::= \ldots | \text{rand()} \)
- expressions have a non-deterministic semantics:
 \[[e] : \mathbb{M} \rightarrow \mathcal{P}(\mathbb{V} \cup \{\Omega\}) \]
 \[[\text{rand()}](m) = \mathbb{V} \]
 \[[v](m) = \{v\} \]
 \[[c] : \mathbb{M} \rightarrow \mathcal{P}(\mathbb{V}_{\text{bool}} \cup \{\Omega\}) \]
- all instructions induce non determinism
Semantics of real world programming languages

C language:
- several norms: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- formalizations in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A **finite trace** is a finite sequence of states \(s_0, \ldots, s_n \), noted \(\langle s_0, \ldots, s_n \rangle \)
- An **infinite trace** is an infinite sequence of states \(\langle s_0, \ldots \rangle \)

Besides, we write:

- \(S^* \) for the set of finite traces
- \(S^\omega \) for the set of infinite traces
- \(S^\alpha = S^* \cup S^\omega \) for the set of finite or infinite traces
Operations on traces: concatenation

Definition: concatenation

The *concatenation operator* \(\cdot \) is defined by:

\[
\begin{align*}
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_{n'} \rangle &= \langle s_0, \ldots, s_n, s'_0, \ldots, s'_{n'} \rangle \\
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle &= \langle s_0, \ldots, s_n, s'_0, \ldots \rangle \\
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' &= \langle s_0, \ldots, s_n, \ldots \rangle
\end{align*}
\]

We also define:

- the **empty trace** \(\epsilon \), neutral element for \(\cdot \).
- the **length** operator \(|.| \):

\[
\left\{
\begin{array}{ll}
|\epsilon| &= 0 \\
|\langle s_0, \ldots, s_n \rangle| &= n + 1 \\
|\langle s_0, \ldots \rangle| &= \omega
\end{array}
\right.
\]
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_n' \rangle \iff \left\{ \begin{array}{l}
n \leq n' \\
\forall i \in [0, n], \ s_i = s'_i
\end{array} \right.
\]

\[
\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, \ s_i = s'_i
\]

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], \ s_i = s'_i
\]

Proof: straightforward application of the definition of order relations
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Semantics of finite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The **finite traces semantics** $[[S]]^*$ is defined by:

$$[[S]]^* = \{ ⟨s_0, \ldots, s_n⟩ \in S^* | \forall i, s_i \rightarrow s_{i+1} \}$$

Example:

- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

 $$[[S]]^* = \{ \epsilon, \langle a, b, \ldots, a, b, a⟩, \langle b, a, \ldots, a, b, a⟩, \langle a, b, \ldots, a, b, a, b⟩, \langle b, a, \ldots, a, b, a, b⟩, \langle a, b, \ldots, a, b, a, b, c⟩, \langle b, a, \ldots, a, b, a, b, c⟩, \langle c⟩, \langle d⟩ \}$$
Interesting subsets of the finite trace semantics

We consider a transition system \(S = (S, \rightarrow, S_I, S_F) \)

- the **initial traces**, i.e., starting from an initial state:
 \[
 \{ \langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_0 \in S_I \}
 \]

- the **traces reaching a blocking state**:
 \[
 \{ \sigma \in [S]^* \mid \forall \sigma' \in [S]^*, \sigma < \sigma' \implies \sigma = \sigma' \}
 \]

- the **traces ending in a final state**:
 \[
 \{ \langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_n \in S_F \}
 \]

- the **maximal traces** are both initial and final

Example (same transition system, with \(S_I = \{ a \} \) and \(S_F = \{ c \} \)):
- traces from an initial state ending in a final state are all of the form:
 \(\langle a, b, \ldots, a, b, a, b, c \rangle \)
Example: finite automaton

We consider the example of the previous lecture:

$L = \{a, b\} \quad Q = \{q_0, q_1, q_2\}$

$q_i = q_0 \quad q_f = q_2$

$q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1$

Then, we have the following traces:

$\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle$

$\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle$

$\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle$

$\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle$

Then:

- τ_0, τ_1 are initial traces, reaching a final state
- τ_2 is an initial trace, and is not maximal
- τ_3 reaches a blocking state, but not a final state
Traces semantics

Finite traces semantics

Example: λ-term

We consider λ-term \(\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \), and show two traces generated from it (at each step the reduced lambda is shown in red):

\[
\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
\lambda y \cdot y \rangle
\]

\[
\tau_1 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \rangle
\]

Then:

- \(\tau_0 \) is a maximal trace; it reaches a blocking state (no more reduction can be done)

- \(\tau_1 \) can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[l_0 : \ x := 1; \]
\[l_1 : \ y := 0; \]
\[l_2 : \ \text{while}(x < 4)\{ \]
\[l_3 : \quad \ y := y + x; \]
\[l_4 : \quad \ x := x + 1; \]
\[l_5 : \ \} \]
\[l_6 : \ (\text{final program point}) \]

\[\tau = \langle (l_0, (x = 6, y = 8)), (l_1, (x = 1, y = 8)), (l_2, (x = 1, y = 0)), (l_3, (x = 1, y = 0)), (l_4, (x = 1, y = 1)), (l_5, (x = 2, y = 1)), (l_3, (x = 2, y = 1)), (l_4, (x = 2, y = 3)), (l_5, (x = 3, y = 3)), (l_3, (x = 3, y = 3)), (l_4, (x = 3, y = 6)), (l_5, (x = 4, y = 6)), (l_6, (x = 4, y = 6)) \rangle \]

- very **precise** description of what the program does...
- ... but **quite cumbersome**
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a\rangle, \langle b\rangle, \langle c\rangle, \langle d\rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b\rangle, \langle b, a\rangle, \langle b, c\rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a\rangle, \langle b, a, b\rangle, \langle a, b, c\rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b\rangle, \langle b, a, b, a\rangle, \langle b, a, b, c\rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1\) can be derived from the traces of length \(i\), by adding a transition
Trace semantics fixpoint form

We define a **semantic function**, that computes the traces of length \(i + 1 \) from the traces of length \(i \) (where \(i \geq 1 \)), and adds the traces of length 1:

Finite traces semantics as a fixpoint

Let \(\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in \mathcal{S}\} \). Let \(F_* \) be the function defined by:

\[
F_* : \mathcal{P}(\mathcal{S}^*) \rightarrow \mathcal{P}(\mathcal{S}^*) \\
X \quad \rightarrow \quad \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\}
\]

Then, \(F_* \) is **continuous** and thus has a least-fixpoint and:

\[
\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F^n_*(\emptyset)
\]
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is **continuous**.

Let $\mathcal{K} \subseteq \mathcal{P}(\mathbb{S}^*)$ such that $\mathcal{K} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{K}} U$. Then:

$$
F_*(\bigcup_{X \in \mathcal{K}} X)
= \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{K}} U) \land s_n \rightarrow s_{n+1}\}
= \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{K}, \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1}\}
= \mathcal{I} \cup \left(\bigcup_{U \in \mathcal{K}} \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1}\}\right)
= \bigcup_{U \in \mathcal{K}} (\mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1}\})
= \bigcup_{U \in \mathcal{K}} F_*(U)
$$

In particular, this is true for any increasing chain \mathcal{K} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(\mathbb{S}^*), \subseteq)$ is a CPO, the continuity of F_* entails the **existence of a least-fixpoint** (Kleene theorem); moreover, it implies that:

$$
\text{Lfp } F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
$$
Fixpoint definition: proof (2), fixpoint equality

We now show that $[S]^*$ is equal to $\text{lfp } F_*$, by showing the property below, by induction over n:

$$\forall k < n, \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in [S]^*$$

- at rank 0, both sides evaluate to \emptyset
- at rank 1, only trace ϵ and the traces of length 1 need to be considered, and its case is trivial
- at rank $n + 1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n + 1$ for some integer $n \geq 1$:

$$\langle s_0, \ldots, s_k, s_{k+1} \rangle \in [S]^*$$

$$\iff \langle s_0, \ldots, s_k \rangle \in [S]^* \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)$$

$$\iff \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)$$

$$\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F_*^{n+1}(\emptyset)$$
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (\mathcal{S}, \rightarrow)$:

- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

\[
\begin{align*}
F^0_\star(\emptyset) &= \emptyset \\
F^1_\star(\emptyset) &= \{\epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\} \\
F^2_\star(\emptyset) &= F^1_\star(\emptyset) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\} \\
F^3_\star(\emptyset) &= F^2_\star(\emptyset) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\} \\
F^4_\star(\emptyset) &= F^3_\star(\emptyset) \cup \{\langle a, b, a, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\} \\
F^5_\star(\emptyset) &= F^4_\star(\emptyset) \cup \{\langle a, b, a, a, a \rangle, \langle a, b, a, a, b \rangle, \langle a, b, a, b, b \rangle, \langle a, b, a, b, c \rangle\} \\
F^6_\star(\emptyset) &= \ldots
\end{align*}
\]

The traces of $[\mathcal{S}]^\star$ of length $n + 1$ appear in $F^n_\star(\emptyset)$
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Notion of compositional semantics

The traces semantics definition we have seen is **global**:
- the **whole system** defines a **transition relation**
- we **iterate** this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure

- \(\lambda\)-terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics \([.]\) is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,

When program \(\pi\) writes down as \(C[\pi_0, \ldots, \pi_k]\) where \(\pi_0, \ldots, \pi_k\) are its components, there exists a function \(F_C\) such that

\[\lbrack\pi\rbrack = F_C(\lbrack\pi_0\rbrack, \ldots, \lbrack\pi_k\rbrack),\]

where \(F_C\) depends only on syntactic construction \(F_C\).
Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$[b]^* = [i_0]^* \cup [i_1]^* \cup \{ \langle s_0, \ldots, s_m \rangle \mid \exists n \in [0, m], \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}$$

This amounts to concatenating traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language.
Case of \(\lambda\)-calculus

Case of a \(\lambda\)-term \(t = (\lambda x \cdot u)v\):

- executions may start with a reduction in \(u\)
- executions may start with a reduction in \(v\)
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in \(u\) and \(v\) in an arbitrary order

No nice compositional trace semantics of \(\lambda\)-calculus...
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\} \]

System behaviors:

- this system clearly has non-terminating behaviors:
 it can loop from \(a \) to \(b \) and back forever
- the finite traces semantics does show the existence of this cycle as
 there exists an infinite chain of finite traces for the prefix order \(\prec \):
 \[\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in \mathbb{[S]}^* \]
- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system $\mathcal{S} = (\mathcal{S}, \rightarrow)$

Definition

The **infinite traces semantics** $[\mathcal{S}]^\omega$ is defined by:

$$[\mathcal{S}]^\omega = \{ \langle s_0, \ldots \rangle \in \mathcal{S}^\omega \mid \forall i, \ s_i \rightarrow s_{i+1} \}$$

Infinite traces starting from an initial state (considering $\mathcal{S} = (\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F)$):

$$\{ \langle s_0, \ldots \rangle \in [\mathcal{S}]^\omega \mid s_0 \in \mathcal{S}_I \}$$

Example:

- contrived transition system defined by
 $$\mathcal{S} = \{a, b, c, d\} \quad \rightarrow = \{(a, b), (b, a), (b, c)\}$$

- the infinite traces semantics contains **exactly two** traces
 $$[\mathcal{S}]^\omega = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}$$
Can we also provide a fixpoint form for $[S]^\omega$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^\omega$ if and only if $\forall n$, $s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, s_k \rightarrow s_{k+1}$$

Let F_ω be defined by:

$$F_\omega: \mathcal{P}(S^\omega) \longrightarrow \mathcal{P}(S^\omega)$$

$$X \quad \mapsto \quad \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^\omega \iff \forall n \in \mathbb{N}, \sigma \in F_\omega^n(S^\omega)$$

$$\iff \sigma \in \cap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

\[
F_\omega : \mathcal{P}(\mathbb{S}^\omega) \rightarrow \mathcal{P}(\mathbb{S}^\omega)
\]

\[
X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}
\]

Then, F_ω is \cap-continuous and thus has a greatest-fixpoint; moreover:

\[
gfp F_\omega = [S]^\omega = \bigcap_{n \in \mathbb{N}} F_\omega^n(\mathbb{S}^\omega)
\]

Proof sketch:

- the \cap-continuity proof is similar as for the \cup-continuity of F_*
- by the dual version of Kleene’s theorem, $gfp F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F_\omega^n(\mathbb{S}^\omega)$, i.e. to $[S]^\omega$ (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- \(S = \{ a, b, c, d \} \)
- \(\rightarrow \) is defined by \(a \rightarrow b \), \(b \rightarrow a \) and \(b \rightarrow c \)

Then, the first iterates are:

\[
\begin{align*}
F_0^0(S^\omega) &= S^\omega \\
F_1^1(S^\omega) &= \langle a, b \rangle \cdot S^\omega \cup \langle b, a \rangle \cdot S^\omega \cup \langle b, c \rangle \cdot S^\omega \\
F_2^2(S^\omega) &= \langle b, a, b \rangle \cdot S^\omega \cup \langle a, b, a \rangle \cdot S^\omega \cup \langle a, b, c \rangle \cdot S^\omega \\
F_3^3(S^\omega) &= \langle a, b, a, b \rangle \cdot S^\omega \cup \langle b, a, b, a \rangle \cdot S^\omega \cup \langle b, a, b, c \rangle \cdot S^\omega \\
F_4^4(S^\omega) &= \ldots
\end{align*}
\]

Intuition

- at iterate \(n \), prefixes of length \(n + 1 \) match the traces in the infinite semantics
- only \(\langle a, b, \ldots, a, b, a, b, \ldots \rangle \) and \(\langle b, a, \ldots, b, a, b, a, \ldots \rangle \) belong to all iterates
Outline

1 Transition systems and small step semantics
2 Traces semantics
3 Summary
Summary

We have discussed today:

- **small-step / structural operational semantics:** individual program steps
- **big-step / natural semantics:** program executions as sequences of transitions
- Their fixpoint definitions and properties will play a great role to design verification techniques

Next lectures:

- another family of semantics, more compact and compositional
- semantic program and proof methods