Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. A **model** of programs: *transition systems*
 - definition, a **small step semantics**
 - a few common examples

2. **Trace semantics**: a kind of **big step** semantics
 - **finite** and **infinite** executions
 - **fixpoint**-based definitions
 - notion of **compositional semantics**
Outline

1 Transition systems and small step semantics
 • Definition and properties
 • Examples

2 Traces semantics

3 Summary
Definition

We will characterize a program by:

- **states**: photography of the program status at an instant of the execution
- **execution steps**: how do we move from one state to the next one

Definition: transition systems (TS)

A **transition system** is a tuple \((\mathcal{S}, \rightarrow)\) where:

- \(\mathcal{S}\) is the set of states of the system
- \(\rightarrow \subseteq \mathcal{S} \times \mathcal{S}\) is the transition relation of the system

Note:

- the set of states **may be infinite**
Transition systems: properties of the transition relation

A **deterministic** system is such that a state fully determines the next state

\[\forall s_0, s_1, s'_1 \in S, \ (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1 \]

Otherwise, a transition system is **non deterministic**, i.e.:

\[\exists s_0, s_1, s'_1 \in S, \ s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1 \]

Notes:

- the transition relation \(\rightarrow \) defines atomic execution steps;
 it is often called **small-step semantics** or **structured operational semantics**
- steps are **discrete** (not continuous)
 to describe both discrete and continuous behaviors, we would need to look at **hybrid systems** (beyond the scope of this lecture)
Transition systems and small step semantics

Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** \(S_I \subseteq S \) denotes states where the execution should start

- a set of **final states** \(S_F \subseteq S \) denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems \((S, \rightarrow, S_I, S_F)\).

Blocking state (not the same as final state):

- a state \(s_0 \in S \) is **blocking** when it is the origin of no transition:
 \[\forall s_1 \in S, \neg (s_0 \rightarrow s_1) \]

- example: we often introduce an **error state** (usually noted \(\Omega \) to denote the erroneous, blocking configuration)
Outline

1. Transition systems and small step semantics
 - Definition and properties
 - Examples

2. Traces semantics

3. Summary
Finite automata as transition systems

We can formalize the **word recognition** by a finite automaton using a transition system:

- We consider automaton $A = (Q, q_i, q_f, \rightarrow)$
- A “state” is defined by:
 - the **remaining of the word to recognize**
 - the **automaton state** that has been reached so far

thus, $S = Q \times L^*$

- The **transition relation** \rightarrow of the transition system is defined by:

\[
(q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1
\]

- The **initial** and **final states** are defined by:

\[
S_I = \{(q_i, w) | w \in L^*\} \quad S_F = \{(q_f, \epsilon)\}
\]
Pure λ-calculus

A bare bones model of functional programming:

λ-terms

The set of λ-terms is defined by:

\[
 t, u, \ldots ::= \quad x \quad \text{variable} \\
 \quad | \quad \lambda x \cdot t \quad \text{abstraction} \\
 \quad | \quad t \ u \quad \text{application}
\]

β-reduction

- $(\lambda x \cdot t) \ u \to^\beta t[x \leftarrow u]$
- if $u \to^\beta v$ then $\lambda x \cdot u \to^\beta \lambda x \cdot v$
- if $u \to^\beta v$ then $u \ t \to^\beta v \ t$
- if $u \to^\beta v$ then $t \ u \to^\beta t \ v$

The λ-calculus defines a transition system:

- S is the set of λ-terms and \to^β the transition relation
- \to^β is non-deterministic; example?
 though, ML fixes an execution order
- given a lambda term t_0, we may consider (S, \to^β, S_I) where $S_I = \{t_0\}$
- blocking states are terms with no redex $(\lambda x \cdot u) \ v$
A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: \mathbb{I}_{MIPS}) and stored into the same space as data (i.e., $\mathbb{I}_{\text{MIPS}} \subseteq \mathbb{B}^{32}$)
- we assume a fixed set of addresses \mathbb{A}

Memory configurations

- **Program counter** pc
 - current instruction
- **General purpose registers**
 - $r_0 \ldots r_{31}$
- **Main memory** (RAM)
 - $\text{mem} : \mathbb{A} \rightarrow \mathbb{B}^{32}$
 - where $\mathbb{A} \subseteq \mathbb{B}^{32}$

Instructions

$$i ::= (\in \mathbb{I}_{\text{MIPS}}) \mid \text{add } r_d, r_s, r_{s'} \quad \text{addition}$$
$$\quad \text{addi } r_d, r_s, v \quad \text{add. } v \in \mathbb{B}^{32}$$
$$\quad \text{sub } r_d, r_s, r_{s'} \quad \text{subtraction}$$
$$\quad b \ t \quad \text{branch}$$
$$\quad \text{blt } r_s, r_{s'}, t \quad \text{cond. branch}$$
$$\quad \text{ld } r_d, o, r_x \quad \text{relative load}$$
$$\quad \text{st } r_d, o, r_x \quad \text{relative store}$$
$$\quad v, t, o \in \mathbb{B}^{32}, \ d, s, s', x \in [0, 31]$$
A MIPS like assembly language: states

Definition: state

A state is a tuple \((\pi, \rho, \mu)\) which comprises:

- A **program counter** value \(\pi \in \mathbb{B}^{32}\)
- A function mapping each **general purpose register** to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- A function mapping each **memory cell** to its value \(\mu : A \rightarrow \mathbb{B}^{32}\)

What would a **dangerous state** be?

- writing **over an instruction**
- reading or writing **outside the program’s memory**
- we cannot fully formalize these yet...
 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state \(s = (\pi, \rho, \mu) \) and that \(\mu(\pi) = i \); then:

- **if** \(i = \text{add } r_d, r_s, r_s' \), then:
 \[
 s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)
 \]

- **if** \(i = \text{addi } r_d, r_s, v \), then:
 \[
 s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)
 \]

- **if** \(i = \text{sub } r_d, r_s, r_s' \), then:
 \[
 s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)
 \]

- **if** \(i = \text{bt} \), then:
 \[
 s \rightarrow (t, \rho, \mu)
 \]
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{blt } r_s, r_{s'}, t$, **then**:

 $$s \rightarrow \begin{cases} (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\ (\pi + 4, \rho, \mu) & \text{otherwise} \end{cases}$$

- **if** $i = \text{ld } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases} (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases}$$

- **if** $i = \text{st } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases} (\pi + 4, \rho, \mu[x \leftarrow \rho(d)]) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases}$$
A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- **variables** \mathbf{X}: finite, predefined set of variables
- **labels** \mathbf{L}: before and after each statement
- **values** \mathbf{V}: $\mathbb{V}_{\text{int}} \cup \mathbb{V}_{\text{float}} \cup \ldots$

Syntax

- **expressions** $e ::=$ $v \ (v \in \mathbb{V}) \mid x \ (x \in \mathbf{X}) \mid e + e \mid e \ast e \mid \ldots$
- **conditions** $c ::=$ $\text{TRUE} \mid \text{FALSE} \mid e < e \mid e = e$
- **assignment** $i ::=$ $x := e$
 - $|$ if(c) b else b
 - $|$ while(c) b
- **block, program** $b ::=$ ${i; \ldots; i;}$
A simple imperative language: states

A non-error state should fully describe the configuration at one instant of the program execution, including memory and control.

The **memory state** defines the current contents of the memory:

\[m \in M = X \rightarrow V \]

The **control state** defines *where* the program currently is:

- analogous to the **program counter**
- can be defined by adding **labels** \(\mathbb{L} = \{ l_0, l_1, \ldots \} \) between each pair of consecutive statements; then:

\[S = \mathbb{L} \times M \uplus \{ \Omega \} \]

- or by the **program remaining to be executed**; then:

\[S = P \times M \uplus \{ \Omega \} \]
A simple imperative language: semantics of expressions

- The **semantics** $\left[e \right]$ of expression e should evaluate each expression into a value, given a memory state.
- **Evaluation errors** may occur: division by zero...

 error value is also noted Ω

Thus: $\left[e \right] : M \rightarrow V \cup \{\Omega\}$

Definition, by induction over the syntax:

$$\begin{align*}
\left[v \right](m) &= v \\
\left[x \right](m) &= m(x) \\
\left[e_0 + e_1 \right](m) &= \left[e_0 \right](m) \oplus \left[e_1 \right](m) \\
\left[e_0 / e_1 \right](m) &= \begin{cases}
\Omega & \text{if } \left[e_1 \right](m) = 0 \\
\left[e_0 \right](m) \oplus \left[e_1 \right](m) & \text{otherwise}
\end{cases}
\end{align*}$$

where \oplus is the machine implementation of operator \oplus, and is Ω-strict, i.e.,

$$\forall v \in V, \; v \oplus \Omega = \Omega \oplus v = \Omega.$$
The semantics $\llbracket c \rrbracket$ of condition c should return a *boolean value*. It follows a similar definition to that of the semantics of expressions: $\llbracket c \rrbracket : M \rightarrow \mathbb{V}_{\text{bool}} \cup \{\Omega\}$

Definition, by induction over the syntax:

$$
\begin{align*}
\llbracket \text{TRUE} \rrbracket (m) & = \text{TRUE} \\
\llbracket \text{FALSE} \rrbracket (m) & = \text{FALSE} \\
\llbracket e_0 < e_1 \rrbracket (m) & = \begin{cases}
\text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) < \llbracket e_1 \rrbracket (m) \\
\text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \geq \llbracket e_1 \rrbracket (m) \\
\Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases} \\
\llbracket e_0 = e_1 \rrbracket (m) & = \begin{cases}
\text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) = \llbracket e_1 \rrbracket (m) \\
\text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \neq \llbracket e_1 \rrbracket (m) \\
\Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases}
\end{align*}
$$
A simple imperative language: transitions

Transitions describe **local program execution steps**, thus are defined by case analysis on the program statements.

Case of assignment \(l_0 : x = e; l_1 \)
- if \(\llbracket e \rrbracket(m) \neq \Omega \), then \((l_0, m) \rightarrow (l_1, m[x \leftarrow \llbracket e \rrbracket(m)]) \)
- if \(\llbracket e \rrbracket(m) = \Omega \), then \((l_0, m) \rightarrow \Omega \)

Case of condition \(l_0 : \text{if}(c)\{l_1 : b_t \; l_2\} \text{else}\{l_3 : b_f \; l_4\} \; l_5 \)
- if \(\llbracket c \rrbracket(m) = \text{TRUE} \), then \((l_0, m) \rightarrow (l_1, m) \)
- if \(\llbracket c \rrbracket(m) = \text{FALSE} \), then \((l_0, m) \rightarrow (l_3, m) \)
- if \(\llbracket c \rrbracket(m) = \Omega \), then \((l_0, m) \rightarrow \Omega \)
- \((l_2, m) \rightarrow (l_5, m) \)
- \((l_4, m) \rightarrow (l_5, m) \)
A simple imperative language: transitions

Case of loop $l_0 : \textbf{while}(c)\{ l_1 : b_t \; l_2 \} \; l_3$

- if $\llbracket c \rrbracket(m) = \text{TRUE}$, then
 - $(l_0, m) \rightarrow (l_1, m)$
 - $(l_2, m) \rightarrow (l_1, m)$

- if $\llbracket c \rrbracket(m) = \text{FALSE}$, then
 - $(l_0, m) \rightarrow (l_3, m)$
 - $(l_2, m) \rightarrow (l_3, m)$

- if $\llbracket c \rrbracket(m) = \Omega$, then
 - $(l_0, m) \rightarrow \Omega$
 - $(l_2, m) \rightarrow \Omega$

Case of $\{ l_0 : i_0; \; l_1 : \ldots ; \; l_{n-1} i_{n-1}; \; l_n \}$

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit **limited**:
- it is **deterministic**: at most one transition possible from any state
- it does not support the **input of values**

Changes if we model non deterministic inputs...

... with an input instruction:

- $i ::= \ldots | \ x := \text{input()}$
- $l_0 : x := \text{input}(); \ l_1$ generates transitions
 \[\forall v \in V, (l_0, m) \to (l_1, m[x \leftarrow v]) \]
- one instruction induces non determinism

... with a random function:

- $e ::= \ldots | \ \text{rand}()$
- **expressions** have a **non-deterministic** semantics:
 \[[e] : M \to \mathcal{P}(V \cup \{\Omega\}) \]
 \[[\text{rand}()] (m) = V \]
 \[[v] (m) = \{v\} \]
 \[[c] : M \to \mathcal{P}(V_{\text{bool}} \cup \{\Omega\}) \]
- all instructions induce non determinism
Semantics of real world programming languages

C language:
- several norms: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- formalizations in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- … but still with some unspecified parts, e.g., execution order
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
So far, we considered only states and atomic transitions.
We now consider program executions as a whole.

Definition: traces

- A **finite trace** is a finite sequence of states s_0, \ldots, s_n, noted $\langle s_0, \ldots, s_n \rangle$.
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$.

Besides, we write:

- S^* for the **set of finite traces**
- S^ω for the **set of infinite traces**
- $S^\propto = S^* \cup S^\omega$ for the **set of finite or infinite traces**
Operations on traces: concatenation

Definition: concatenation

The **concatenation operator** \cdot is defined by:

$$
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_{n'} \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots, s'_{n'} \rangle \\
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots \rangle \\
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' = \langle s_0, \ldots, s_n, \ldots \rangle
$$

We also define:

- the **empty trace** ϵ, neutral element for \cdot.
- the **length operator** $|.|$:

$$
\begin{cases}
|\epsilon| &= 0 \\
|\langle s_0, \ldots, s_n \rangle| &= n + 1 \\
|\langle s_0, \ldots \rangle| &= \omega
\end{cases}
$$
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

$$\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_{n'} \rangle \iff \begin{cases} n \leq n' \\
\forall i \in [0, n], s_i = s'_i \end{cases}$$

$$\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, s_i = s'_i$$

$$\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], s_i = s'_i$$

Proof: straightforward application of the definition of order relations
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Semantics of finite traces

We consider a transition system \(S = (\mathcal{S}, \rightarrow) \)

Definition

The **finite traces semantics** \(\mathcal{J}_S \) is defined by:

\[
\mathcal{J}_S = \{ \langle s_0, \ldots, s_n \rangle \in \mathcal{S}^* \mid \forall i, s_i \rightarrow s_{i+1} \}
\]

Example:

- contrived transition system \(S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \)
- finite traces semantics:

\[
\mathcal{J}_S = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \\
\langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \\
\langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \\
\langle c \rangle, \langle d \rangle \}
\]
Interesting subsets of the finite trace semantics

We consider a transition system $S = (S, \rightarrow, S_I, S_F)$

- the **initial traces**, i.e., starting from an initial state:
 \[
 \{\langle s_0, \ldots, s_n \rangle \in \mathcal{[S]}^* | s_0 \in S_I\}
 \]

- the **traces reaching a blocking state**:
 \[
 \{\sigma \in \mathcal{[S]}^* | \forall \sigma' \in \mathcal{[S]}^*, \sigma \prec \sigma' \Rightarrow \sigma = \sigma'\}
 \]

- the **traces ending in a final state**:
 \[
 \{\langle s_0, \ldots, s_n \rangle \in \mathcal{[S]}^* | s_n \in S_F\}
 \]

- the **maximal traces** are both initial and final

Example (same transition system, with $S_I = \{a\}$ and $S_F = \{c\}$):
- traces from an initial state ending in a final state are all of the form:
 $\langle a, b, \ldots, a, b, a, b, c \rangle$
Example: finite automaton

We consider the example of the previous lecture:

\[L = \{a, b\} \quad Q = \{q_0, q_1, q_2\} \]

\[q_i = q_0 \quad q_f = q_2 \]

\[
\begin{align*}
 q_0 & \overset{a}{\rightarrow} q_1 \\
 q_1 & \overset{b}{\rightarrow} q_2 \\
 q_2 & \overset{a}{\rightarrow} q_1
\end{align*}
\]

Then, we have the following traces:

\[
\begin{align*}
 \tau_0 &= \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle \\
 \tau_1 &= \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle \\
 \tau_2 &= \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle \\
 \tau_3 &= \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle
\end{align*}
\]

Then:

- \(\tau_0, \tau_1 \) are initial traces, reaching a final state
- \(\tau_2 \) is an initial trace, and is not maximal
- \(\tau_3 \) reaches a blocking state, but not a final state
Example: λ-term

We consider λ-term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x)(\lambda x \cdot x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

\[
\begin{align*}
\tau_0 &= \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x)(\lambda x \cdot x))), \\
&\quad \lambda y \cdot y \rangle \\
\tau_1 &= \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x)(\lambda x \cdot x))), \\
&\quad \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x)(\lambda x \cdot x))), \\
&\quad \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x)(\lambda x \cdot x))) \rangle
\end{align*}
\]

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[\begin{align*}
\ell_0 & : \ x := 1; \\
\ell_1 & : \ y := 0; \\
\ell_2 & : \ \text{while}(x < 4) \{ \\
\ell_3 & : \quad y := y + x; \\
\ell_4 & : \quad x := x + 1; \\
\ell_5 & : \ \} \\
\ell_6 & : \ (\text{final program point})
\end{align*}\]

\[\tau = \langle (\ell_0, (x = 6, y = 8)), (\ell_1, (x = 1, y = 8)), (\ell_2, (x = 1, y = 0)), (\ell_3, (x = 1, y = 0)), (\ell_4, (x = 1, y = 1)), (\ell_5, (x = 2, y = 1)), (\ell_3, (x = 2, y = 1)), (\ell_4, (x = 2, y = 3)), (\ell_5, (x = 3, y = 3)), (\ell_3, (x = 3, y = 3)), (\ell_4, (x = 3, y = 6)), (\ell_5, (x = 4, y = 6)), (\ell_6, (x = 4, y = 6)) \rangle\]

- very precise description of what the program does...
- ... but quite cumbersome
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(a, b, c, d)</td>
</tr>
<tr>
<td>2</td>
<td>(a, b, a, b, c)</td>
</tr>
<tr>
<td>3</td>
<td>(a, b, a, b, a, b, c)</td>
</tr>
<tr>
<td>4</td>
<td>(a, b, a, b, a, b, a, b, c)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint
definition: traces of length \(i + 1\) can be derived from the traces of length \(i\), by adding a transition
Trace semantics fixpoint form

We define a **semantic function**, that computes the traces of length \(i + 1 \) from the traces of length \(i \) (where \(i \geq 1 \)), and adds the traces of length 1:

Finite traces semantics as a fixpoint

Let \(\mathcal{I} = \{ \epsilon \} \cup \{ \langle s \rangle \mid s \in S \} \). Let \(F_* \) be the function defined by:

\[
F_* : \mathcal{P}(S^*) \rightarrow \mathcal{P}(S^*)
\]

\[
X \mapsto I \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \wedge s_n \rightarrow s_{n+1} \}
\]

Then, \(F_* \) is **continuous** and thus has a least-fixpoint and:

\[
\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is continuous.

Let $\mathcal{X} \subseteq \mathcal{P}(S^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

$$\begin{align*}
F_*(\bigcup_{X \in \mathcal{X}} X) &= I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U) \land s_n \rightarrow s_{n+1}\} \\
&= I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{X}, \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1}\} \\
&= I \cup \left(\bigcup_{U \in \mathcal{X}} \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1}\}\right) \\
&= \bigcup_{U \in \mathcal{X}} (I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \rightarrow s_{n+1}\}) \\
&= \bigcup_{U \in \mathcal{X}} F_*(U)
\end{align*}$$

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(S^*), \subseteq)$ is a CPO, the continuity of F_* entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

$$\text{Ifp } F_* = \bigcup_{n \in \mathbb{N}} F_0^n(\emptyset)$$
Fixpoint definition: proof (2), fixpoint equality

We now show that $[S]^*$ is equal to $\text{lfp } F_*$, by showing the property below, by induction over n:

$$\forall k < n, \langle s_0, \ldots, s_k \rangle \in F^*_n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in [S]^*$$

- at rank 0, both sides evaluate to \emptyset
- at rank 1, only trace ϵ and the traces of length 1 need to be considered, and its case is trivial
- at rank $n + 1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n + 1$ for some integer $n \geq 1$:

$$\langle s_0, \ldots, s_k, s_{k+1} \rangle \in [S]^*$$

$$\iff \langle s_0, \ldots, s_k \rangle \in [S]^* \land s_k \rightarrow s_{k+1}$$

$$\iff \langle s_0, \ldots, s_k \rangle \in F^*_n(\emptyset) \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)$$

$$\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F^*_{n+1}(\emptyset)$$
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (\mathcal{S}, \rightarrow)$:
- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

\[
\begin{align*}
F^0_\ast(\emptyset) &= \emptyset \\
F^1_\ast(\emptyset) &= \{\epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\} \\
F^2_\ast(\emptyset) &= F^1_\ast(\emptyset) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\} \\
F^3_\ast(\emptyset) &= F^2_\ast(\emptyset) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\} \\
F^4_\ast(\emptyset) &= F^3_\ast(\emptyset) \cup \{\langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\} \\
F^5_\ast(\emptyset) &= F^4_\ast(\emptyset) \cup \{\langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle\} \\
F^6_\ast(\emptyset) &= \ldots
\end{align*}
\]

The traces of $[\mathcal{S}]^\ast$ of length $n + 1$ appear in $F^n_\ast(\emptyset)$
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Notion of compositional semantics

The traces semantics definition we have seen is **global**:
- the **whole system** defines a **transition relation**
- we **iterate** this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure

- **λ-terms** are defined by induction over the syntax
- **imperative programs** are defined by induction over the syntax
- **there are exceptions**: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics $\semantics{\cdot} \cdot \cdot$ is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,

When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that

$\semantics{\pi} = F_C(\semantics{\pi_0}, \ldots, \semantics{\pi_k})$, where F_C depends only on syntactic construction F_C.
Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$[b]^* = [i_0]^* \cup [i_1]^* \cup \{ \langle s_0, \ldots, s_m \rangle \mid \exists n \in [0, m], \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}$$

This amounts to concatenating traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language
Case of λ-calculus

Case of a λ-term $t = (\lambda x \cdot u) \nu$:
- executions may start with a reduction in u
- executions may start with a reduction in ν
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in u and ν in an arbitrary order

No nice compositional trace semantics of λ-calculus...
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\} \]

System behaviors:

- this system clearly has non-terminating behaviors: it can loop from \(a\) to \(b\) and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order \(\prec\):
 \[\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [S]^* \]
- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The *infinite traces semantics* $[S]^{\omega}$ is defined by:

$$[S]^{\omega} = \{ \langle s_0, \ldots \rangle \in S^{\omega} \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Infinite traces starting from an initial state (considering $S = (S, \rightarrow, S_I, S_F)$):

$$\{ \langle s_0, \ldots \rangle \in [S]^{\omega} \mid s_0 \in S_I \}$$

Example:

- contrived transition system defined by

 $$S = \{ a, b, c, d \}$$ \hspace{1cm} \(\rightarrow\) = \{(a, b), (b, a), (b, c)\}

- the infinite traces semantics contains *exactly two* traces

 $$[S]^{\omega} = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}$$
Fixpoint form

Can we also provide a fixpoint form for $[S]^\omega$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^\omega$ if and only if $\forall n, s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, s_k \rightarrow s_{k+1}$$

Let F_ω be defined by:

$$F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)$$

$$X \quad \mapsto \quad \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^\omega \iff \forall n \in \mathbb{N}, \sigma \in F^n_\omega(S^\omega)$$

$$\iff \sigma \in \bigcap_{n \in \mathbb{N}} F^n_\omega(S^\omega)$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

$$F_\omega : \mathcal{P}(S^\omega) \longrightarrow \mathcal{P}(S^\omega)$$

$$X \longmapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, F_ω is \cap-continuous and thus has a greatest-fixpoint; moreover:

$$\text{gfp } F_\omega = [S]^\omega = \bigcap_{n \in \mathbb{N}} F^n_\omega(S^\omega)$$

Proof sketch:

- the \cap-continuity proof is similar as for the \cup-continuity of F_*
- by the dual version of Kleene’s theorem, $\text{gfp } F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F^n_\omega(S^\omega)$, i.e. to $[S]^\omega$ (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- $S = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

$$
\begin{align*}
F^0_\omega(S^\omega) &= S^\omega \\
F^1_\omega(S^\omega) &= \langle a, b \rangle \cdot S^\omega \cup \langle b, a \rangle \cdot S^\omega \cup \langle b, c \rangle \cdot S^\omega \\
F^2_\omega(S^\omega) &= \langle b, a, b \rangle \cdot S^\omega \cup \langle a, b, a \rangle \cdot S^\omega \cup \langle a, b, c \rangle \cdot S^\omega \\
F^3_\omega(S^\omega) &= \langle a, b, a, b \rangle \cdot S^\omega \cup \langle b, a, b, a \rangle \cdot S^\omega \cup \langle b, a, b, c \rangle \cdot S^\omega \\
F^4_\omega(S^\omega) &= \ldots
\end{align*}
$$

Intuition

- at iterate n, prefixes of length $n + 1$ match the traces in the infinite semantics
- only $\langle a, b, \ldots, a, b, a, b, \ldots \rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots \rangle$ belong to all iterates
Outline

1. Transition systems and small step semantics
2. Traces semantics
3. Summary
We have discussed today:

- **small-step / structural operational semantics:**
 individual program steps

- **big-step / natural semantics:**
 program executions as sequences of transitions

- their **fixpoint definitions** and properties
 will play a great role to design verification techniques

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program** and **proof methods**