Introduction
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 9, 2018
Program of this first lecture

Introduction to the course:

1. a study of some **examples** of **software errors**
 - what are the causes? what kind of properties do we want to verify?

2. a panel of the main **verification methods**
 with a fundamental limitation: **indecidability**
 - many techniques allow to **compute semantic properties**
 - each comes with **advantages** and **drawbacks**

3. an introduction to the **theory of ordered sets**
 (or, most likely, mostly a refresher...)
 - **order relations** are pervasive in **semantics** and **verification**
 - **fixpoints** of operators are also very common
Outline

1. **Introduction**
2. **Case studies**
 - Patriot missile (anti-missile system), Dahran (1991)
 - General remarks
3. **Approaches to verification**
4. **Orderings, lattices, fixpoints**
5. **Conclusion**
Ariane 5 – Flight 501

Ariane 5:
- a satellite launcher
- replacement of Ariane 4, a lot more powerful
- first flight, June, 4th, 1996: failure!

Flight story:
- nominal take-off, normal flight for 36 seconds
- $T + 36.7$ s: angle of attack change, trajectory lost
- $T + 39$ s: disintegration of the launcher

Consequences:
- loss of satellites: more than $370\,000\,000$
- launcher unusable for more than a year (delay!)

Full report available online:
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
Trajectory control system design overview

Sensors: gyroscopes, inertial reference systems...

Calculators (hardware + software):
- **“Inertial Reference System” (SRI)**:
 integrates data about the trajectory (read on sensors)
- **“On Board Computer” (OBC)**:
 computes the engine actuations that are required to follow the pre-determined theoretical trajectory

Actuators: engines of the launcher follow orders from the OBC

Redundant systems (failure tolerant system):
- **keep running** even in the presence of one or several system failures
- **traditional solution in embedded systems**: duplication of systems
 - aircraft flight system: 2 or 3 hydraulic circuits
 - launcher like Ariane 5: 2 SRI units (SRI 1 and SRI 2)
- there is also a control monitor
The root cause: an unhandled arithmetic error

Processor registers

Each register has a size of 16, 32, 64 bits:
- **64-bits floating point**: values in range \([-3.6 \cdot 10^{308}, 3.6 \cdot 10^{308}]\)
- **16-bits signed integers**: values in range \([-32768, 32767]\)
- upon **copy of data**: conversions are performed such as rounding
- when the values are **too large**:
 - **interruption**: run error handling code if any, otherwise crash
 - or **unexpected behavior**: modulo arithmetic or other

Ariane 5:
- the SRI hardware runs in **interruption mode**
- it has **no error handling code** for arithmetic interruptions
- an **unhandled arithmetic conversion overflow** crashes the SRI
From the root cause to the failure

A **not so trivial** sequence of events:

1. a conversion from 64-bits float to 16-bits signed int is performed and **causes an overflow**
2. an **interruption** is raised
3. due to the lack of error handling code, the SRI **crashes**
4. the crash causes an **error return** (negative integer value) value be **sent to the OBC** (On-Board Computer)
5. the OBC interprets this illegal value as **flight data**
6. this causes the computation of an **absurd trajectory**
7. hence the **loss of control** of the launcher

Let us discuss **a few specific points**
A crash due to an unaddressed software case

Several solutions would have prevented this mishappening:

1. **Deactivate interruptions on overflows:**
 - then, an overflow may happen, and produce wrong values in the SRI
 - but, these wrong values will not cause the computation to stop!
 and most likely, the flight will not be impacted too much

2. **Fix the SRI code**, so that **no overflow can happen**:
 - all conversions must be **guarded against overflows**:
     ```c
     double x = /* ... */;
     short i = /* ... */;
     if( -32768. <= x && x <= 32767. )
       i = (short) x;
     else
       i = /* default value */;
     ```
 - this may be costly (many tests), but redundant tests can be removed

3. **Handle** conversion errors (not trivial):
 - the handling code should **identify the problem** and **fix it** at run-time
 - the OBC should **identify illegal input values**
A crash due to a useless task

Piece of code that generated the error:
- part of a gyroscope re-calibration process
- very useful to quickly restart the launch process after a short delay
- can only be done \textit{before lift-off}...
- \textit{... but not after!}

Re-calibration task shut down:
- normally planned \textit{50 seconds} after lift-off...
- no chance of a need for such a re-calibration after $T_0 + 3$ seconds
- the crash occurred at \textit{36 seconds}
A crash due to legacy software

Software history:
- already used in Ariane 4 (previous launcher, before Ariane 5)
- the software was tested and ran in real conditions many times yet never failed...
- but Ariane 4 was a much less powerful launcher

Software optimization:
- many conversions were initially protected by a safety guard
- but these tests were considered expensive
 (a test and a branching take processor cycles, interact with the pipeline...)
- thus, conversions were ultimately removed for the sake of performance

Yet, Ariane 5 violates the assumptions that were valid with Ariane 4
- higher values of horizontal bias were generated
- those were never seen in Ariane 4, hence the failure
A crash not prevented by redundant systems

Principle of redundant systems: survive the failure of a component by the use of redundant systems

System redundancy in Ariane 5:
- one OBC unit
- two SRI units... yet running the same software

Obviously, physical redundancy does not address software issues

Other implementation of system redundancy (e.g., Airbus FBW):
- two independent set of controls
- three computing units per set of controls
- each computing unit comprises *two computers* with *distinct softwares* (design and implementation is also performed in *distinct teams*)
Ariane 501, a summary of the issues

A long series of design errors, all related to a lack of understanding of what the software does:

1. Non-guarded conversion raising an interruption due to overflow
2. Removal of pre-existing guards, too high confidence in the software
3. Non revised assumptions on the inputs when moving from Ariane 4 to Ariane 5
4. Redundant systems running the same software
5. Useless task not shutdown at the right time

Current status: such issues can be found by static analysis tools
Outline

1. Introduction

2. Case studies
 - Patriot missile (anti-missile system), Dahran (1991)
 - General remarks

3. Approaches to verification

4. Orderings, lattices, fixpoints

5. Conclusion
High-speed runway overshoot at landing

Landing at Warsaw airport, Lufthansa A320:
- **bad weather conditions**: rain, high side wind
- **wet runway**
- **landing** (300 km/h) followed by **aqua-planing**, and **delayed braking**
- **runway overrun** at 132 km/h
- **impact** against a hillside at about 100 km/h

Consequences:
- 2 **fatalities**, 56 **injured** (among 70 passengers + crew)
- **aircraft completely destroyed** (impact + fire)

Full report available online:
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-report.html
Causes of the accident

1 Root cause:
 - **bad weather conditions** not well assessed by the crew
 - side wind **exceeding** aircraft certification specification
 - wrong action from the crew:
 a “Go Around” (missed landing, acceleration + climb) should have been done

2 Contributing factor: **delayed action of the brake system**

<table>
<thead>
<tr>
<th>time (seconds)</th>
<th>distance (meters) from runway threshold</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>770 m</td>
<td>main landing gear landed</td>
</tr>
<tr>
<td>$T_0 + 3$ s</td>
<td>1030 m</td>
<td>nose landing gear landed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>brake command activated</td>
</tr>
<tr>
<td>$T_0 + 12$ s</td>
<td>1680 m</td>
<td>spoilers activated</td>
</tr>
<tr>
<td>$T_0 + 14$ s</td>
<td>1800 m</td>
<td>thrust reversers activated</td>
</tr>
<tr>
<td>$T_0 + 31$ s</td>
<td>2700 m</td>
<td>end of runway</td>
</tr>
</tbody>
</table>
Protection of aircraft brake systems

- **Braking systems inhibition**: Prevent in-flight activation!
 - **spoilers**: increase in aerodynamic load (drag)
 - **thrust reversers**: could destroy the plane if activated in-flight! (ex: crash of a B 767-300 ER Lauda Air, 1991, 223 fatalities; thrust reversers in-flight activation, electronic circuit issue)

- **Braking software specification**: DO NOT activate spoilers and thrust reverse unless the following condition is met:
 - thrust lever should be set to **minimum** by the flight crew
 - **AND** either of the following conditions:
 - weight on the main gear should be at least **12 T**
 - i.e., **6 T** for each side
 - OR wheels should be spinning, with a speed of at least **130 km/h**

 [Minimum Thrust] **AND** ([Weight] **OR** [Wheels spinning])
Understanding the braking delay

- **Landing configuration:**

![Diagram showing landing configuration and braking systems](image)

- **Braking systems:** inhibited
 - thrust command properly set to minimum
 - no weight on the left landing gear due to the wind
 - no speed on wheels due to aquaplaning

\[\text{[Minimum Thrust]} \ \text{AND } ([\text{Weight}] \ \text{OR} \ [\text{Wheels spinning}])\]
Flight 2904, a summary of the issues

Main factor is human (landing in weather conditions the airplane is not certified for), but the specification of the software is a contributing factor:

- **Old condition** that failed to be satisfied:
 \[(P_{\text{left}} > 6T) \text{ AND } (P_{\text{right}} > 6T)\]

- **Fixed condition** (used in the new version of the software):
 \[(P_{\text{left}} + P_{\text{right}}) > 12T\]

- The fix can be understood **only with knowledge of the environment**
 - conditions which the airplane will be used in
 - behavior of the sensors
Outline

1 Introduction

2 Case studies
 - Patriot missile (anti-missile system), Dahran (1991)
 - General remarks

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion
The anti-missile “Patriot” system

- **Purpose**: destroy foe missiles before they reach their target

- **Use in wars**:
 - **first Gulf war** (1991)
 protection of towns and military facilities in Israël and Saudi Arabia (against “Scud” missiles launched by Irak)
 - **success rate**:
 - around 50 % of the “Scud” missiles are successfully destroyed
 - almost all launched Patriot missiles destroy their target
 - failures are due to failure to launch a Patriot missile

- **Constraints on the system**:
 - **hit very quickly moving targets**: “Scud” missiles fly at around 1700 m/s; travel about 1000 km in 10 minutes
 - **not to destroy a friendly target** (it happened at least twice!)
 - very high cost: about $\$1\ 000\ 000$ per launch
System components

Detection / trajectory identification:
- detection using radar systems
- trajectory confirmation (to make sure a foe missile is tracked):
 1. trajectory identification using a sequence of points at various instants
 2. trajectory confirmation
 computation of a predictive window (from position and speed vector)
 + confirmation of the predicted trajectory
 3. identification of the target (friend / foe)

Guidance system:
- interception trajectory computation
- launch of a Missile, and control until it hits its target
 high precision required (both missiles travel at more than 1500 m/s)

Very short process: about ten minutes
Dahran failure (1991)

1. **Launch of a “Scud” missile**

2. **Detection** by the radars of the Patriot system but failure to confirm the trajectory:
 - imprecision in the computation of the clock of the detection system
 - computation of a wrong confirmation window
 - the “Scud” cannot be found in the predicted window
 - failure to confirm the trajectory
 - the detection computer concludes it is a false alert

3. **The “Scud” missile hits its target:**
 - 28 fatalities and around 100 people injured
Fixed precision arithmetic

- **Fixed precision numbers** are of the form $\epsilon N 2^{-p}$ where:
 - p is fixed
 - $\epsilon \in \{-1, 1\}$ is the sign
 - $N \in [-2^n, 2^n - 1]_\mathbb{Z}$ is an integer ($n > p$)

- **In 32 bits fixed precision**, with one sign bit, $n = 31$; thus we may let $p = 20$

- **A few examples:**

<table>
<thead>
<tr>
<th>decimal value</th>
<th>sign</th>
<th>truncated value</th>
<th>fractional portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>000000000010</td>
<td>000000000000000000000000</td>
</tr>
<tr>
<td>-5</td>
<td>1</td>
<td>000000000101</td>
<td>000000000000000000000000</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>000000000000</td>
<td>100000000000000000000000</td>
</tr>
<tr>
<td>-9.125</td>
<td>1</td>
<td>0000000001001</td>
<td>001000000000000000000000</td>
</tr>
</tbody>
</table>

- **Range of values that can be represented:**

$$\pm 2^{12}(1 - 2^{-32})$$
Rounding errors in fixed precision computations

- Not all real numbers in the right range can be represented.
 Rounding is unavoidable.
 May happen both for basic operations and for program constants...

- Example: fraction $\frac{1}{10}$
 - $\frac{1}{10}$ cannot be represented exactly in fixed precision arithmetic
 - Let us decompose $\frac{1}{10}$ as a sum of terms of the form $\frac{1}{2^i}$:

 $$
 \frac{1}{10} = \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{8} + \frac{1}{16} + \frac{1}{16} \cdot \frac{1}{5} = \frac{1}{8} + \frac{1}{16} + \frac{1}{16} \cdot \left(\frac{1}{8} + \frac{1}{16} + \frac{1}{16} \cdot \frac{1}{5} \right) = \ldots
 $$

 - Infinite binary representation: 0.00011001100110011001100...
 - If $p = 24$:
 representation: “0.000110011001100110011001”
 Rounding error is $9.5 \cdot 10^{-8}$

- Floating precision numbers (more commonly used today) have the same limitation.
The root cause: a clock drift

Trajectory confirmation algorithm (summary):
- hardware clock T_d ticks every tenth of a second
- time T_c is computed in seconds: $T_c = \frac{1}{10} \times T_d$
- in binary: $T_c = 0.000110011001100110011001b \times_b T_d$
- relative error is 10^{-6}
- after the computer has been running for 100 h:
 - the absolute error is 0.34 s
 - as a “Scud” travels at 1700 m/s: the predicted window is about 580 m from where it should be
 - this explains the trajectory confirmation failure!

Remarks:
- the issue was **discovered** by israeli users, who noticed the clock drift
- their solution: **frequently restart the control computer...** (daily)
- this was not done in Dahran... the system had been running for 4 days
Patriot missile failure, a summary of the issues

Precision issues in the fixed precision arithmetic:

- A scalar constant used in the code was invalid i.e., bound to be rounded to an approximate value, incurring a significant approximation the designers were unaware of.

- There was no adequate study of the precision achieved by the system, although precision is clearly critical here!

Current status: such issues can be found by static analysis tools.
Outline

1 Introduction

2 Case studies
 - Patriot missile (anti-missile system), Dahran (1991)
 - General remarks

3 Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion
Common issues causing software problems

The examples given so far are not isolated cases
See for instance:

www.cs.tau.ac.il/~nachumd/horror.html

(not up-to-date)

Typical reasons:

- **Improper specification** or understanding of the environment, conditions of execution...
- **Incorrect implementation of a specification**
 e.g., the code should be free of runtime errors
 e.g., the software should produce a result that meets some property
- **Incorrect understanding of the execution model**
 e.g., generation of too imprecise results
New challenges to ensure embedded systems do not fail

Complex software architecture: e.g. *parallel softwares*
- single processor *multi-threaded*, *distributed* (several computers)
- more and more common: multi-core architectures
- very hard to reason about
 - other kinds of issues: *dead-locks*, *races*...
 - very complex execution model: *interleavings*, *memory models*

Complex properties to ensure: e.g., *security*
- the system should resist even in the presence of an *attacker* (agent with malicious intentions)
- attackers may try to *access sensitive data*, to *corrupt* critical data...
- security properties are often even *hard to express*
Techniques to ensure software safety

Software development techniques:
- **software engineering**, with a focus on specification, and software quality (may be more or less formal...)
- **programming rules** for specific areas (e.g., DO 178c in avionics)
- usually do not guarantee any strong property, but make softwares “cleaner”

Formal methods:
- should have **sound mathematical foundations**
- should allow to **guarantee** softwares meet some complex properties
- should be **trustable** (is a paper proof ok ???)
- **increasingly used in real life applications**, but still a lot of open problems
What is to be verified?

What do the C programs below do?

What do these C programs do?

P0.c

```c
int x = 0
int f0( int y ){
    return x * y;
}
int f1( int y ){
    x = y;
    return 0;
}
void main( ){
    int z = f0( 10 ) + f1( 100 );
}
```

P1.c

```c
void main( ){
    int i;
    int t[100] = { 0, 1, 2, ..., 99 };
    while( i < 100 ){
        t[i]++;
        i++;
    }
}
```

P2.c

```c
void main( ){
    float f = 0.;
    for( int i = 0; i < 1000000; i++ )
        f = f + 0.1;
}
```
Semantic subtleties...

```c
int x = 0
int f0( int y ){
    return x * y;
}
int f1( int y ){
    x = y;
    return 0;
}
void main( ){
    int z = f0( 10 ) + f1( 100 );
}
```

Execution order:
- *not specified in C*
- *specified in Java*
- if left to right, \(z = 0 \)
- if right to left, \(z = 1000 \)
Semantic subtleties...

P1.c

```c
void main( ){
    int i;
    int t[100] = { 0, 1, 2, ...
                  ..., 99 };
    while ( i < 100 ){
        t[i]++;
        i++;
    }
}
```

Initialization:
- runtime error in Java
- read of a random value in C (the value that was stored before)

Floating point semantics:
- 0.1 is not representable exactly
 what is it rounded to by the compiler ?
- rounding errors
 what is the rounding mode

P2.c

```c
void main( ){
    float f = 0.;
    for( int i = 0;
         i < 1000000;
         i++ )
        f = f + 0.1;
}
```
The two main parts of this course

1 Semantics

- allow to **describe precisely the behavior of programs** should account for execution order, initialization, scope...
- allow to **express the properties to verify** several important families of properties: safety, liveness, security...
- also important to **transform and compile** programs

2 Verification

- aim at **proving** semantic properties of programs
- a very strong limitation: **indecidability**
- **several approaches**, that make various compromises around indecidability
Outline

1 Introduction

2 Case studies

3 Approaches to verification
 - Indecidability and fundamental limitations
 - Approaches to verification

4 Orderings, lattices, fixpoints

5 Conclusion
The termination problem

Termination

Program P terminates on input X if and only if any execution of P, with input X eventually reaches a final state.

- **Final state:** final point in the program (i.e., not error)
- **We may want to ensure termination:**
 - processing of a task, such as, e.g., printing a document
 - computation of a mathematical function
- **We may want to ensure non-termination:**
 - operating system
 - device drivers

The termination problem

Can we find a program Pt that takes as argument a program P and data X and that returns “TRUE” if P terminates on X and “FALSE” otherwise?
The termination problem is not computable

- **Proof by reductio ad absurdum**, using a *diagonal argument*

 We assume *there exists a program* P_a *such that:*

 ▶ P_a always terminates
 ▶ $P_a(P, X) = 1$ if P terminates on input X
 ▶ $P_a(P, X) = 0$ if P does not terminate on input X

- We consider the following program:

```c
void P0( P ){
    if( Pa( P, P ) == 1 ){
        while ( 1 ){
            // loop forever
        }
    } else {
        return; // do nothing
    }
}
```

- **What is the return value of** $P_a(P0, P0)$?

 i.e., does $P0$ terminate on input $P0$?
The termination problem is not computable

What is the return value of $Pa(P0, P0)$?

We know Pa always terminates and returns either 0 or 1 (assumption). Therefore, we need to consider only two cases:

- If $Pa(P0, P0)$ returns 1, then $P0(P0)$ loops forever, thus $Pa(P0, P0)$ should return 0, so we have reached a contradiction.
- If $Pa(P0, P0)$ returns 0, then $P0(P0)$ terminates, thus $Pa(P0, P0)$ should 1, so we have reached a contradiction.

In both cases, we reach a contradiction.

Therefore we conclude no such a Pa exists.

The termination problem is not decidable

There exists no program Pt that always terminates and always recognizes whether a program P terminates on input X.

Xavier Rival
Introduction
February 9, 2018
Absence of runtime errors

- Can we find a program P_c that takes a program P and input X as arguments, always terminates and returns
 - 1 if and only if P runs safely on input X, i.e., without a runtime error
 - 0 if P crashes on input X
- Answer: No, the same diagonal argument applies if $P_c(P, X)$ decides whether P will run safely on X, consider

```c
void P1( P ){
    if( P_c( P, P ) == 1 ){
        0 / 0; // deliberately crash
        (unsafe)
    } else {
        return; // do nothing
    }
}
```

Non-computability result

The absence of runtime errors is not computable
Rice theorem

- **Semantic specification**: set of *correct* program executions
- **“Trivial” semantic specifications**:
 - empty set
 - set of all possible executions
 ⇒ intuitively, the non interesting verification problems...

Rice theorem (1953)

Considering a Turing complete language,
any non trivial semantic specification is not computable

- **Intuition**: there is no algorithm to decide non trivial specifications, starting with only the program code
- **Therefore** all interesting properties are not computable:
 - termination,
 - absence of runtime errors,
 - absence of arithmetic errors, etc...
Outline

1. Introduction
2. Case studies
3. Approaches to verification
 - Indecidability and fundamental limitations
 - Approaches to verification
4. Orderings, lattices, fixpoints
5. Conclusion
Towards partial solutions

The initial verification problem is **not computable**

Solution: solve a weaker problem

Several compromises can be made:

- **simulation / testing:** observe only *finitely many finite executions*
 infinite system, but only finite exploration (no proof beyond that)

- **assisted theorem proving:** we give up on automation
 (no proof inference algorithm in general)

- **model checking:** we consider only *finite systems*
 (with finitely many states)

- **bug-finding:** search for “patterns” indicating “likely errors”
 (may miss real program errors, and report non existing issues)

- **static analysis with abstraction:** attempt at automatic
 correctness proofs
 (yet, may fail to verify some correct programs)
Safety verification method characteristics

Safety verification problem

- **Semantics** $[P]$ of program P: set of behaviors of P (e.g., states)
- **Property to verify** S: set of admissible behaviors (e.g., safe states)

Goal: establish $[P] \subseteq S$

- **Automation:** existence of an algorithm
- **Scalability:** should allow to handle large softwares
- **Soundness:** identify any wrong program
- **Completeness:** accept all correct programs
- **Apply to program source code**, i.e., not require a **modelling phase**
1. Testing by simulation

Principle

Run the program on **finitely many finite inputs**

- maximize **coverage**
- **inspect erroneous traces** to fix bugs

Very widely used:
- **unit testing**: each function is tested separately
- **integration testing**: with all surrounding systems, hardware
 e.g., **iron bird** in avionics

Automated

Complete: will never raise a false alarm

Unsound unless exhaustive: **may miss program defects**

Costly: needs to be re-done when software gets updated
2. Machine assisted proof

Principle

Have a **machine checked** proof, that is partly **human written**

- **tactics / solvers** may help in the inference
- the **hardest invariants** have to be user-supplied

Applications

- software industry (rare): Line 14 in Paris Subway
- hardware: ACL 2
- academia: CompCert compiler, SEL4 verified micro-kernel
- also for math: four colour theorem, Feith-Thomson theorem

Not fully automated

often turns out **costly** as complex proof arguments have to be found

Sound and quasi-**complete** (in practice fine...)

3. Model-Checking

Principle

Consider **finite systems** only, using algorithms for

- **exhaustive exploration**,
- **symmetry reduction**...

Applications:

- **hardware** verification
- **driver protocols** verification (Microsoft)

Applies on a model: a model extraction phase is needed

- for infinite systems, this is **necessarily approximate**
- not always automated

Automated, sound, complete with respect to the model
4. “Bug finding”

Principle

Identify "likely" issues, i.e., patterns known to often indicate an error
- use bounded symbolic execution, model exploration...
- rank "defect" reports using heuristics

- Intuition: model checking made unsound
- Example: Coverity
- Automated
- Not complete: may report false alarms
- Not sound: may accept false programs thus inadequate for safety-critical systems
5. Static analysis with abstraction (1/4)

Principle

Use some approximation, but *always in a conservative manner*

- **Under-approximation** of the property to verify: \(S_{\text{under}} \subseteq S \)
- **Over-approximation** of the semantics: \([P] \subseteq [P]_{\text{upper}} \)
- We let an automatic static analyzer attempt to prove that:

\[
[P]_{\text{upper}} \subseteq S_{\text{under}}
\]

If it succeeds, \([P] \subseteq S \)

- In practice, the static analyzer *computes* \([P]_{\text{upper}}, S_{\text{under}} \)
5. Static analysis with abstraction (2/4)

Soundness

The abstraction will catch **any incorrect program**

- If \([P] \not\subseteq S\), then \([P]_{\text{upper}} \not\subseteq S_{\text{under}}\)

since \[
\begin{align*}
S_{\text{under}} & \subseteq S \\
[P] & \subseteq [P]_{\text{upper}}
\end{align*}
\]
5. Static analysis with abstraction (3/4)

Incompleteness

The abstraction may fail to certify **some correct programs**

dangerous states not ruled out by the abstract semantics

Case of a false alarm:

- program P is **correct**
- but the static analysis **fails**
5. Static analysis with abstraction (4/4)

Incompleteness
The abstraction may fail to certify some correct programs

- In the following case, the analysis cannot conclude anything

- One goal of the static analyzer designer is to avoid such cases

Static analysis using abstraction

- **Automatic**: $[P]_{\text{upper}}, S_{\text{under}}$ computed automatically
- **Sound**: reports any incorrect program
- **Incomplete**: may reject correct programs
A summary of common verification techniques

<table>
<thead>
<tr>
<th>Approach</th>
<th>Automatic</th>
<th>Sound</th>
<th>Complete</th>
<th>Source level</th>
<th>Scalable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>sometimes</td>
</tr>
<tr>
<td>Assisted proving</td>
<td>No</td>
<td>Yes</td>
<td>Almost</td>
<td>Partially</td>
<td>sometimes</td>
</tr>
<tr>
<td>Model-checking</td>
<td>Yes</td>
<td>Yes</td>
<td>Partially</td>
<td>No</td>
<td>sometimes</td>
</tr>
<tr>
<td>Bug-finding</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>sometimes</td>
</tr>
<tr>
<td>Static analysis</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>sometimes</td>
</tr>
</tbody>
</table>

- Obviously, no approach checks all characteristics
- Scalability is a challenge for all

1 unless full testing is doable
2 full testing usually not possible except for small programs with finite state space
3 quickly requires huge manpower
4 only with respect to the finite models... but not with respect to infinite semantics
Order relations

Very useful in semantics and verification:

- **logical ordering**, expresses *implication* of logical facts
- **computational ordering**, useful to establish well-foundedness of fixpoint definitions, and for termination

Definition: partially ordered set (poset)

Let a set S and a binary relation $\sqsubseteq \subseteq S \times S$ over S. Then, \sqsubseteq is an order relation (and (S, \sqsubseteq) is called a poset) if and only if it is

- **reflexive**: $\forall x \in S, \ x \sqsubseteq x$
- **transitive**: $\forall x, y, z \in S, \ x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z$
- **antisymmetric**: $\forall x, y \in S, \ x \sqsubseteq y \land y \sqsubseteq x \implies x = y$

- notation: $x \sqsubset y \ ::= \ (x \sqsubseteq y \land x \neq y)$
Graphical representation

We often use **Hasse diagrams** to represent posets:

Extensive definition:
- \(S = \{ x_0, x_1, x_2, x_3, x_4 \} \)
- \(\sqsubseteq \) defined by:
 - \(x_0 \sqsubseteq x_1 \)
 - \(x_1 \sqsubseteq x_2 \)
 - \(x_1 \sqsubseteq x_3 \)
 - \(x_2 \sqsubseteq x_4 \)
 - \(x_3 \sqsubseteq x_4 \)

- By reflexivity, we have, e.g., \(x_1 \sqsubseteq x_1 \)
- By transitivity, we have, e.g., \(x_1 \sqsubseteq x_4 \)

Order relations are very useful in semantics...
Example: semantics of automata

In the following, we illustrate order relations and their usefulness in semantics using word automata.

We consider the classical notion of finite word automata and let

- \(L \) be a finite set of letters
- \(Q \) be a finite set of states
- \(q_i, q_f \in Q \) denote the initial state and final state
- \(\rightarrow \subseteq Q \times L \times Q \) be a transition relation

Semantics of an automaton

The set of words recognized by \(\mathcal{A} = (Q, q_i, q_f, \rightarrow) \) is defined by:

\[
\mathcal{L}[\mathcal{A}] = \{ a_0 a_1 \ldots a_n \mid \exists q_0 \ldots q_{n-1} \in Q, \; q_i \xrightarrow{a_0} q_0 \xrightarrow{a_1} q_1 \ldots q_{n-1} \xrightarrow{a_n} q_f \}
\]
Example: automata and semantic properties

A simple automaton:

\[L = \{a, b\} \quad \text{and} \quad Q = \{q_0, q_1, q_2\} \]

\[q_i = q_0 \quad \text{and} \quad q_f = q_2 \]

\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1 \]

A few semantic properties:

- \(P_0 \): no recognized word contains two consecutive \(b \)

\[\mathcal{L}[A] \subseteq L^* \setminus L^* bb L^* \]

- \(P_1 \): all recognized words contain at least one occurrence of \(a \)

\[\mathcal{L}[A] \subseteq L^* a L^* \]

- we could also consider under-approximation properties (of the form \(P_2 \subseteq \mathcal{L}[A] \)), but do not in this lecture
Total ordering

Definition: total order relation
Order relation \sqsubseteq over S is a **total** order if and only if

$$\forall x, y \in S, \ x \sqsubseteq y \lor y \sqsubseteq x$$

Examples:
- **real numbers:**
 (\mathbb{R}, \leq) is a total ordering
- **powerset:**
 if set S has at least two distinct elements x, y then its powerset $(\mathcal{P}(S), \subseteq)$ is **not** a total order
 indeed $\{x\}, \{y\}$ cannot be compared

Most of the order relations we will use are **not be total**
indeed: very often, powerset or similar
Minimum and maximum elements

Definition: extremal elements

Let \((S, \sqsubseteq)\) be a poset and \(S' \subseteq S\). Then \(x\) is

- **minimum element** of \(S'\) if and only if \(x \in S' \land \forall y \in S', x \sqsubseteq y\)
- **maximum element** of \(S'\) if and only if \(x \in S' \land \forall y \in S', y \sqsubseteq x\)

- maximum and minimum elements **may not exist**
 - example: \(\{\{x\}, \{y\}\}\) in the powerset, where \(x \neq y\)
- **infimum** \(\bot\) ("bottom"): minimum element of \(S\)
- **supremum** \(\top\) ("top"): maximum element of \(S\)

Exercise:

- what are the logical interpretations of infimum / supremum elements?
Upper bounds and least upper bound

Definition: bounds

Given poset \((S, \sqsubseteq)\) and \(S' \subseteq S\), then \(x \in S\) is

- an **upper bound** of \(S'\) if
 \[\forall y \in S', \ y \sqsubseteq x \]

- the **least upper bound** (lub) of \(S'\) (noted \(\sqcup S'\)) if
 \[\forall y \in S', \ y \sqsubseteq x \land \forall z \in S, (\forall y \in S', \ y \sqsubseteq z) \implies x \sqsubseteq z \]

- if it exists, the least upper bound is **unique**: if \(x, y\) are least upper bounds of \(S\), then \(x \sqsubseteq y\) and \(y \sqsubseteq x\), thus \(x = y\) by antisymmetry

- notation: \(x \sqcup y \deq \sqcup\{x, y\}\)

- upper bounds and least upper bounds **may not exist**

- **dual notions**: lower bound, greatest lower bound (glb, noted \(\sqcap S'\))

Exercise: logical interpretations?
Duality principle

So far all definitions admit a symmetric counterpart

- **dual relation**: given an order relation \sqsubseteq, \mathcal{R} defined by

$$x \mathcal{R} y \iff y \sqsubseteq x$$

is also an order relation

- thus all properties that can be proved about \sqsubseteq also have a symmetric property that also holds

This is the **duality principle**:

minimum element	maximum element
infimum	supremum
lower bound	upper bound
greatest lower bound	least upper bound

... more to follow
Complete lattice

Definition: complete lattice

A complete lattice is a tuple \((S, \sqsubseteq, \bot, \top, \sqcup, \sqcap)\) where:

- \((S, \sqsubseteq)\) is a poset
- \(\bot\) is the infimum of \(S\)
- \(\top\) is the supremum of \(S\)
- any subset \(S'\) of \(S\) has a lub \(\sqcup S'\) and a glb \(\sqcap S'\)

Properties:

- \(\bot = \sqcup \emptyset = \sqcap S\)
- \(\top = \sqcap \emptyset = \sqcup S\)

Example:

the powerset \((\mathcal{P}(S), \subseteq, \emptyset, S, \cup, \cap)\) of set \(S\) is a complete lattice
Lattice

The existence of lubs and glbs for all subsets is often a very strong property, that may not be met:

Definition: lattice

A **lattice** is a tuple \((S, \sqsubseteq, \bot, \top, \sqcup, \sqcap)\) where:

- \((S, \sqsubseteq)\) is a poset
- \(\bot\) is the infimum of \(S\)
- \(\top\) is the supremum of \(S\)
- any pair \(\{x, y\}\) of \(S\) has a lub \(x \sqcup y\) and a glb \(x \sqcap y\)

- let \(Q = \{q \in \mathbb{Q} \mid 0 \leq q \leq 1\}\); then \((Q, \leq)\) is a lattice but **not a complete lattice**
 - indeed, \(\{q \in Q \mid q \leq \frac{\sqrt{2}}{2}\}\) has no lub in \(Q\)
 - property: a **finite** lattice is also a complete lattice
Chains

Definition: increasing chain

Let \((S, \sqsubseteq)\) be a poset and \(C \subseteq S\).

It is an **increasing chain** if and only if

- it has an infimum
- poset \((C, \sqsubseteq)\) is total (i.e., any two elements can be compared)

Example, in the powerset \((\mathcal{P}(\mathbb{N}), \subseteq)\):

\[
C = \{c_i \mid i \in \mathbb{N}\} \quad \text{where} \quad c_i = \{2^0, 2^2, \ldots, 2^i\}
\]

Definition: increasing chain condition

The poset \((S, \sqsubseteq)\) **satisfies the increasing chain condition** if and only if any increasing chain \(C \subseteq S\) is finite.
Complete partial orders

Definition: complete partial order

A **complete partial order** (cpo) is a poset \((S, \sqsubseteq)\) such that any increasing chain \(C\) of \(S\) has a least upper bound. A **pointed cpo** is a cpo with an infimum \(\bot\).

- clearly, any complete lattice is a cpo
- the opposite is not true:
Outline

1. Introduction
2. Case studies
3. Approaches to verification
4. Orderings, lattices, fixpoints
 - Basic definitions on orderings
 - Operators over a poset and fixpoints
5. Conclusion
Towards a constructive definition of the automata semantics

We now look for a constructive version of the automaton semantics as hinted by the following observations

Observation 1: \(\mathcal{L}[A] = \llbracket A \rrbracket(q_f) \) where

\[
\llbracket A \rrbracket: \quad Q \longrightarrow \mathcal{P}(L^*) \\
q \longmapsto \{ w \in L^* \mid \exists n, w = a_0a_1 \ldots a_n \\
\exists q_0 \ldots q_{n-1} \in Q, q_i \xrightarrow{a_0} q_0 \xrightarrow{a_1} \ldots q_{n-1} \xrightarrow{a_n} q \}
\]

Observation 2: \(\llbracket A \rrbracket = \bigcup_{n \in \mathbb{N}} \llbracket A \rrbracket_n \) where

\[
\llbracket A \rrbracket_n: \quad Q \longrightarrow \mathcal{P}(L^*) \\
q \longmapsto \{ a_0a_1 \ldots a_{n-1} \mid \\
\exists q_0 \ldots q_{n-2} \in Q, q_i \xrightarrow{a_0} q_0 \xrightarrow{a_1} \ldots q_{n-1} \xrightarrow{a_{n-1}} q \}
\]

Observation 3: \(\llbracket A \rrbracket_{n+1} \) can be computed directly from \(\llbracket A \rrbracket_n \)

\[
\llbracket A \rrbracket_{n+1}(q) = \bigcup_{q' \in Q} \{ wa \mid w \in \llbracket A \rrbracket_n(q') \land q' \xrightarrow{a} q \}
\]
Towards a constructive definition of the automata semantics

Alternate approach:

1. Let $[A]_n$ denote recognized words of length at most n:

 $$[A](q) = \{ w \in [A](q) \mid \text{length}(w) \leq n \}$$

2. Compute $[A]_{n+1}$ from $[A]_n$

3. Define the semantics of the automaton as the union of the iterates of this sequence:

 $$[A] = \bigcup_{n \in \mathbb{N}} [A]_n$$

In the following, we study such a way of defining semantics, based on general mathematical tools, that we will use throughout the course.
Operators over a poset

Definition: operators and orderings

Let \((S, \sqsubseteq)\) be a poset and \(\phi : S \rightarrow S\) be an operator over \(S\). Then, \(\phi\) is:

- **monotone** if and only if \(\forall x, y \in S, \ x \sqsubseteq y \implies \phi(x) \sqsubseteq \phi(y)\)

- **continuous** if and only if, for any chain \(S' \subseteq S\) then:
 \[
 \begin{cases}
 \text{if } \bigcup S' \text{ exists, so does } \bigcup \{\phi(x) \mid x \in S'\} \\
 \text{and } \phi(\bigcup S') = \bigcup \{\phi(x) \mid x \in S'\}
 \end{cases}
 \]

- **⊔-preserving** if and only if:
 \[
 \forall S' \subseteq S, \begin{cases}
 \text{if } \bigcup S' \text{ exists, then } \bigcup \{\phi(x) \mid x \in S'\} \text{ exists} \\
 \text{and } \phi(\bigcup S') = \bigcup \{\phi(x) \mid x \in S'\}
 \end{cases}
 \]

Notes:

- “monotone” in English means “croissante” in French; “décroissante” translates into “anti-monotone” and “monotone” into “isotone”
- the dual of “monotone” is “monotone”
Operators over a poset

A few interesting properties:

Continuity implies monotonicity

If \(\phi \) is continuous, then it is also \textbf{monotone}

We assume \(\phi \) is continuous, and \(x, y \in S \) are such that \(x \sqsubseteq y \):
Then \(\{x, y\} \) is a chain with \(\text{lub } y \), thus \(\phi(x) \sqcup \phi(y) \) exists and is equal to \(\phi(\sqcup\{x, y\}) = \phi(y) \). Therefore \(\phi(x) \sqsubseteq \phi(y) \).

\(\sqcup \)-preserving implies monotonicity

If \(\phi \) preserves \(\sqcup \), then it is also \textbf{monotone}

Same argument.
Fixpoints

Definition: fixpoints

Let \((S, \sqsubseteq)\) be a poset and \(\phi : S \to S\) be an operator over \(S\).

- a **fixpoint** of \(\phi\) is an element \(x\) such that \(\phi(x) = x\)
- a **pre-fixpoint** of \(\phi\) is an element \(x\) such that \(x \sqsubseteq \phi(x)\)
- a **post-fixpoint** of \(\phi\) is an element \(x\) such that \(\phi(x) \sqsubseteq x\)
- the **least fixpoint** \(\text{lfp} \phi\) of \(\phi\) (if it exists, it is unique) is the smallest fixpoint of \(\phi\)
- the **greatest fixpoint** \(\text{gfp} \phi\) of \(\phi\) (if it exists, it is unique) is the greatest fixpoint of \(\phi\)

Note: the existence of a least fixpoint, a greatest fixpoint or even a fixpoint is *not guaranteed*; we will see several theorems that establish their existence under specific assumptions...
Tarski’s Theorem

Theorem
Let \((S, \sqsubseteq, \bot, \top, \sqcup, \sqcap)\) be a complete lattice and \(\phi : S \to S\) be a monotone operator over \(S\). Then:

1. \(\phi\) has a least fixpoint \(\text{lfp} \phi\) and \(\text{lfp} \phi = \sqcap \{x \in S \mid \phi(x) \sqsubseteq x\}\).
2. \(\phi\) has a greatest fixpoint \(\text{gfp} \phi\) and \(\text{gfp} \phi = \sqcup \{x \in S \mid x \sqsubseteq \phi(x)\}\).
3. the set of fixpoints of \(\phi\) is a complete lattice.

Proof of point 1:
We let \(X = \{x \in S \mid \phi(x) \sqsubseteq x\}\) and \(x_0 = \sqcap X\).
Let \(y \in X\):
- \(x_0 \sqsubseteq y\) by definition of the glb;
- thus, since \(\phi\) is monotone, \(\phi(x_0) \sqsubseteq \phi(y)\);
- thus, \(\phi(x_0) \sqsubseteq y\) since \(\phi(y) \sqsubseteq y\), by definition of \(X\).
Therefore \(\phi(x_0) \sqsubseteq x_0\), since \(x_0 = \sqcap X\) and \(\phi(x_0)\) is a lower bound.
Tarski’s Theorem

We proved that $\phi(x_0) \sqsubseteq x_0$. We derive from this that:

- $\phi(\phi(x_0)) \sqsubseteq \phi(x_0)$ since ϕ is monotone;
- $\phi(x_0)$ is a post-fixpoint of ϕ, thus $\phi(x_0) \in X$;
- $x_0 \sqsubseteq \phi(x_0)$ by definition of the greatest lower bound

We have established both inclusions so $\phi(x_0) = x_0$.

If x_1 is another fixpoint, then $x_1 \in X$, so $x_0 \sqsubseteq x_1$.

Proof of point 2: similar, by duality.

Proof of point 3:

- if X is a set of fixpoints of ϕ, we need to consider ϕ over
 $\{y \in S \mid y \sqsubseteq S \cap X\}$ to establish the existence of a glb of X in the poset of fixpoints
- the existence of least upper bounds in the poset of fixpoints follows by duality
A function over the powerset:
We consider a set E, and a subset $A \subseteq E$
We let:

$$f : \mathcal{P}(E) \to \mathcal{P}(E)$$

$$X \mapsto X \cup A$$

Exercise:
- apply Tarski’s theorem, characterize the least and greatest fixpoints
Tarski’s theorem: example (2)

Function:

\[f : \quad [1, 4\pi - 1] \quad \rightarrow \quad [1, 4\pi - 1] \]

\[x \quad \mapsto \quad x + \sin x \]

Exercise:

- apply Tarski’s theorem, and derive the fixpoints of the function
Automata example, fixpoint definition

Lattice:
- $S = Q \rightarrow \mathcal{P}(L^*)$
- the ordering is the pointwise extension \sqsubseteq of \subseteq

Operator:
- we let $\phi_0 : S \rightarrow S$ be defined by
 \[\phi_0(f) = \lambda(q \in Q) \cdot \bigcup_{q' \in Q} \{ wa \mid w \in f(q') \land q' \xrightarrow{a} q \} \]
- we let $\phi : S \rightarrow S$ by defined by
 \[\phi(f) = \lambda(q \in Q) \cdot \begin{cases} f(q) \cup \phi_0(f)(q_i) \cup \{ \epsilon \} & \text{if } q = q_i \\ f(q) \cup \phi_0(f)(q) & \text{otherwise} \end{cases} \]

Proof steps to complete:
- the existence of $\text{lfp } \phi$ follows from Tarski’s theorem
- the equality $\text{lfp } \phi = [A]$ can be established by induction and double inclusion... but there is a simpler way
Kleene’s Theorem

Tarski’s theorem guarantees existence of an lfp, but is not constructive.

Theorem

Let \((S, ⊑, ⊥)\) be a pointed cpo and \(φ : S → S\) be a continuous operator over \(S\). Then \(φ\) has a least fixpoint, and

\[
\text{lfp } φ = \bigsqcup_{n ∈ \mathbb{N}} φ^n(⊥)
\]

First, we prove the existence of the lub:

Since \(φ\) is continuous, it is also monotone. We can prove by induction over \(n\) that \(\{φ^n(⊥) \mid n ∈ \mathbb{N}\}\) is a chain:

- \(φ^0(⊥) = ⊥ ⊑ φ(⊥)\) by definition of the infimum;
- if \(φ^n(⊥) ⊑ φ^{n+1}(⊥)\), then
 \[φ^{n+1}(⊥) = φ(φ^n(⊥)) ⊑ φ(φ^{n+1}(⊥)) = φ^{n+2}(⊥)\]

By definition of the cpo structure, the lub exists. We let \(x_0\) denote it.
Kleene’s Theorem

Secondly, we prove that it is a fixpoint of ϕ:

Since ϕ is continuous, $\{\phi^{n+1}(\bot) \mid n \in \mathbb{N}\}$ has a lub, and

\[
\phi(x_0) = \phi(\bigsqcup\{\phi^n(\bot) \mid n \in \mathbb{N}\}) \\
= \bigsqcup\{\phi^{n+1}(\bot) \mid n \in \mathbb{N}\} \quad \text{by continuity of } \phi \\
= \bot \bigsqcup (\bigsqcup\{\phi^{n+1}(\bot) \mid n \in \mathbb{N}\}) \quad \text{by definition of } \bot \\
= x_0 \quad \text{by simple rewrite}
\]

Last, we show that it is the least fixpoint:

Let x_1 denote another fixpoint of ϕ. We show by induction over n that $\phi^n(\bot) \sqsubseteq x_1$:

- $\phi^0(\bot) = \bot \sqsubseteq x_1$ by definition of \bot;
- if $\phi^n(\bot) \sqsubseteq x_1$, then $\phi^{n+1}(\bot) \sqsubseteq \phi(x_1) = x_1$ by monotony, and since x_1 is a fixpoint.

By definition of the lub, $x_0 \sqsubseteq x_1$
Kleene’s theorem: example

Function:

\[f : [1, 4\pi - 1] \rightarrow [1, 4\pi - 1] \]
\[x \mapsto x + \sin x \]

Exercise:

- apply Kleene’s theorem and sketch the iterations
Automata: constructive semantics

We can now state a **constructive definition** of the automaton semantics. Operator ϕ is defined by

$$
\phi(f) = \lambda(q \in Q) \cdot \begin{cases}
 f(q) \cup \phi_0(f)(q_i) \cup \{\epsilon\} & \text{if } q = q_i \\
 f(q) \cup \phi_0(f)(q) & \text{otherwise}
\end{cases}
$$

Proof steps:

- ϕ is continuous
- thus, Kleene’s theorem applies so $\text{lfp } \phi$ exists and
 $$
 \text{lfp } \phi = \bigcup_{n \in \mathbb{N}} \phi^n(\bot)\ldots
 $$
 ... this actually saves the double inclusion proof to establish that
 $$
 \llbracket \mathcal{A} \rrbracket = \text{lfp } \phi
 $$

Furthermore, $\llbracket \mathcal{A} \rrbracket = \bigcup_{n \in \mathbb{N}} \phi^n(\bot)$.

This fixpoint definition will be very useful to infer or verify semantic properties.
Automata: constructive semantics iterates

A simple automaton:

\[L = \{a, b\} \quad Q = \{q_0, q_1, q_2\} \]

\[q_i = q_0 \quad q_f = q_2 \]

\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1 \]

Iterates of function \(\phi \) from \(\bot \):

<table>
<thead>
<tr>
<th>Iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(\emptyset)</td>
<td>({\epsilon})</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>({a})</td>
<td>({a})</td>
<td>({a, aba})</td>
<td>({a, aba})</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>({ab})</td>
<td>({ab})</td>
<td>({ab, abab})</td>
</tr>
</tbody>
</table>
Duality principle

We can extend the duality notion to fixpoints:

- monotone | monotone
- anti-monotone | anti-monotone
- post-fixpoint | pre-fixpoint
- least fixpoint | greatest fixpoint
- increasing chain | decreasing chain

Furthermore both Tarski’s theorem and Kleene’s theorem have a dual version (Tarski’s theorem is its own dual).
On the topic of inductive reasoning...

Formalizing inductive definitions:

Definition based on inference rules:

\[
\begin{align*}
 x_0 \in X \\
 x \in X \\
 f(x) \in X
\end{align*}
\]

Same property based on a least-fixpoint:

\[
\text{lfp}(Y \mapsto \{x_0\} \cup Y \cup \{f(x) \mid x \in Y\})
\]

Proving the inclusion of a fixpoint in a given set:

- Let \(\phi : S \rightarrow S \) be a continuous operator
- Let \(I \in S \) such that:

\[
\forall x \in S, \quad x \sqsubseteq I \implies \phi(x) \sqsubseteq I
\]

- We obviously have \(\bot \sqsubseteq I \)
- We can prove that \(\text{lfp} \phi \sqsubseteq I \)
Exercise: language of a grammar

<table>
<thead>
<tr>
<th>Language of a grammar as a least-fixpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions:</td>
</tr>
<tr>
<td>- Alphabet \mathcal{A}, finite set of nodes \mathcal{N}</td>
</tr>
<tr>
<td>- Finite set of rules $\mathcal{R} \subseteq \mathcal{N} \times (\mathcal{A} \cup \mathcal{N})^*$</td>
</tr>
<tr>
<td>- Starting node $S \in \mathcal{N}$</td>
</tr>
<tr>
<td>Questions:</td>
</tr>
<tr>
<td>- Define the set of words recognized by the grammar with inductive rules</td>
</tr>
<tr>
<td>- Do the same using a least-fixpoint</td>
</tr>
</tbody>
</table>

Hints:
- start with a function that maps each node into the set of words recognized by this node
- compute such a function by induction
Outline

1. Introduction
2. Case studies
3. Approaches to verification
4. Orderings, lattices, fixpoints
5. Conclusion
Main points to remember

Foundations:
- **program semantics:** express program behaviors
- **target semantic property:** express proof goal
- **conservative approximation** usually required due to undecidability

Order relations:
- **counterpart for logical implication** (among other)
- will be pervasive in this course

Fixpoints and induction:
- **encode general iteration**
- will also be pervasive in this course
In the next lectures...

- Families of **semantics**, for a general model of programs
- Families of **semantic properties of programs**
- **Verification techniques:**
 - abstract interpretation based static analysis
 - machine assisted theorem proving
 - model checking

Next week: transition systems and operational semantics
Practical information about the course

The course will be taught by:

- **Marc Chevalier** (DIENS, TDs)
- **Sylvain Conchon** (LRI, Paris-Orsay, Model-Checking / SMT)
- **Jérôme Feret** (DIENS, Semantics, Abstract interpretation)
- **Xavier Rival** (DIENS, Semantics, Abstract interpretation, Coq)

Practical organization:

- 1h30 Cours + 2h00 TD or TP depending on week

Evaluation:

\[n = \frac{p + e}{2} \]

- **project** \(p \): several projects will be proposed in a few weeks
- **exam** \(e \): 1st of June, 2018