Abstract Interpretation III
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015–2016

Course 12
20 May 2016
Overview

- **Last week:** non-relational abstract domains (intervals)
 - abstract each variable independently from the others
 - can express important properties (e.g., absence of overflow)
 - unable to represent relations between variables

- **This week:** relational abstract domains
 - more precise, but more costly
 - the need for relational domains
 - linear equality domain \((\sum_i \alpha_i V_i = \beta_i)\)
 - polyhedra domain \((\sum_i \alpha_i V_i \geq \beta_i)\)
 - extensions: weakly relational domains, integers, non-linear expressions
 - the Apron library
 - practical exercises: relational analysis with the Apron library

- **Next week:** selected advanced topics on abstract domains
Motivation
Motivation

Relational assignments and tests

Example

\[
\begin{align*}
X & \leftarrow \text{rand}(0, 10); \\
Y & \leftarrow \text{rand}(0, 10); \\
\text{if } X & \geq Y \text{ then } X \leftarrow Y \text{ else skip}; \\
D & \leftarrow Y - X; \\
\text{assert } D & \geq 0
\end{align*}
\]

Interval analysis:

- \(S^\# [X \geq Y?] \) is abstracted as the identity

 given \(R^\# \overset{\text{def}}{=} [X \mapsto [0, 10], Y \mapsto [0, 10]] \)

 \(S^\# [\text{if } X \geq Y \text{ then } \cdots] R^\# = R^\# \)

- \(D \leftarrow Y - X \) gives \(D \in [0, 10] -^\# [0, 10] = [-10, 10] \)

- the assertion \(D \geq 0 \) fails
Relational assignments and tests

Example

\[
\begin{align*}
X & \leftarrow \text{rand}(0, 10); \\
Y & \leftarrow \text{rand}(0, 10); \\
\text{if } X \geq Y \text{ then } X & \leftarrow Y \text{ else skip; } \\
D & \leftarrow Y - X; \\
\text{assert } & D \geq 0
\end{align*}
\]

Solution: relational domain

- represent explicitly the information \(X \leq Y \)
- infer that \(X \leq Y \) holds after the \textit{if} \cdots \textit{then} \cdots \textit{else} \cdots
- \(X \leq Y \) both after \(X \leftarrow Y \) when \(X \geq Y \), and after \textit{skip} when \(X < Y \)
- use \(X \leq Y \) to deduce that \(Y - X \in [0, 10] \)

Note:
the \textit{invariant} we seek, \(D \geq 0 \), can be exactly represented in the \textit{interval} domain, but \textit{inferring} \(D \geq 0 \) requires a more expressive domain locally
Relational loop invariants

Example

\[
I \leftarrow 1; \ X \leftarrow 0;
\]
\[
\text{while } I \leq 1000 \text{ do}
\]
\[
I \leftarrow I + 1; \ X \leftarrow X + 1;
\]
\[
\text{assert } X \leq 1000
\]

Interval analysis:

- after iterations with \textit{widening}, we get in 2 iterations:
 as loop invariant: \(I \in [1, +\infty) \) and \(X \in [0, +\infty) \)
 after the loop: \(I \in [1001, +\infty) \) and \(X \in [0, +\infty) \) \(\implies\) \textit{assert} fails

- using a \textit{decreasing} iteration after widening, we get:
 as loop invariant: \(I \in [1, 1001] \) and \(X \in [0, +\infty] \)
 after the loop: \(I = 1001 \) and \(X \in [0, +\infty] \) \(\implies\) \textit{assert} fails
 (the test \(I \leq 1000 \) only refines \(I \), but gives no information on \(X \))

- without widening, we get \(I = 1001 \) and \(X = 1000 \) \(\implies\) \textit{assert} passes
 but we need \textbf{1000 iterations!} \(\simeq\) \textit{concrete fixpoint computation}
Relational loop invariants

Example

\[
\begin{align*}
I & \leftarrow 1; X \leftarrow 0; \\
\textbf{while} \ I \leq 1000 \ \textbf{do} \\
& I \leftarrow I + 1; X \leftarrow X + 1; \\
\textbf{assert} \ X \leq 1000
\end{align*}
\]

Solution: relational domain

- infer a relational loop invariant: \(I = X + 1 \land 1 \leq I \leq 1001 \)
 - \(I = X + 1 \) holds before entering the loop as \(1 = 0 + 1 \)
 - \(I = X + 1 \) is invariant by the loop body \(I \leftarrow I + 1; X \leftarrow X + 1 \)
 - (can be inferred in 2 iterations with widening in the polyhedra domain)

- propagate the loop exit condition \(I > 1000 \) to get:
 - \(I = 1001 \)
 - \(X = I - 1 = 1000 \implies \textbf{assert} \) passes

Note:

the invariant we seek after the loop exit has an interval form: \(X \leq 1000 \) but we need to infer a more expressive loop invariant to deduce it
Example: \(Z = \max(X, Y, 0) \)

\[
Z \leftarrow X; \\
\text{if } Y > Z \text{ then } Z \leftarrow Y; \\
\text{if } Z < 0 \text{ then } Z \leftarrow 0
\]
Motivation

Relational procedure analysis

Example: \(Z = \text{max}(X, Y, 0) \)

\[
X' \leftarrow X; \ Y' \leftarrow Y; \ Z' \leftarrow Z;
Z' \leftarrow X';
\text{if } Y' > Z' \text{ then } Z' \leftarrow Y';
\text{if } Z' < 0 \text{ then } Z' \leftarrow 0
\]

- add and rename variables: keep a copy of input values
Relational procedure analysis

Example: \[Z = \max(X, Y, 0) \]

\[
\begin{align*}
X' & \leftarrow X; Y' \leftarrow Y; Z' \leftarrow Z; \\
Z' & \leftarrow X'; \\
\text{if } Y' > Z' \text{ then } Z' & \leftarrow Y'; \\
\text{if } Z' < 0 \text{ then } Z' & \leftarrow 0 \\
// & \ Z' \geq X \wedge Z' \geq Y \wedge Z' \geq 0 \wedge X' = X \wedge Y' = Y
\end{align*}
\]

- add and rename variables: keep a copy of input values
- infer a relation between input values \((X, Y, Z)\) and current values \((X', Y', Z')\)

Applications: procedure summaries, modular analysis.
Affine Equalities
The affine equality domain

We look for invariants of the form:

$$\wedge_j (\sum_{i=1}^n \alpha_{ij} V_i = \beta_j), \alpha_{ij}, \beta_j \in \mathbb{Q}$$

where all the α_{ij} and β_j are inferred automatically.

We use a domain of affine spaces proposed by Karr in 1976

$$\mathcal{E}^\# \simeq \{ \text{affine subspaces of } \mathbb{V} \to \mathbb{R} \}$$

Notes: we reason in \mathbb{R} to use results from linear algebra
we use coefficients in \mathbb{Q} to be machine representable
Affine equality representation

Machine representation:

\[\mathcal{E}^\# \overset{\text{def}}{=} \bigcup_m \{ \langle M, C \rangle \mid M \in \mathbb{Q}^{m \times n}, C \in \mathbb{Q}^m \} \cup \{ \bot \} \]

- either the constant \(\bot \)
- or a pair \(\langle M, C \rangle \) where
 - \(M \in \mathbb{Q}^{m \times n} \) is a \(m \times n \) matrix, \(n = |\mathbb{V}| \) and \(m \leq n \),
 - \(C \in \mathbb{Q}^m \) is a row-vector with \(m \) rows

\(\langle M, C \rangle \) represents an equation system, with solutions:

\[\gamma(\langle M, C \rangle) \overset{\text{def}}{=} \{ \forall \in \mathbb{R}^n \mid M \times \forall = C \} \]

\(M \) should be in row echelon form:

- \(\forall i \leq m : \exists k_i : M_{ik_i} = 1 \) and
 \(\forall c < k_i : M_{ic} = 0, \forall l \neq i : M_{lk_i} = 0 \),
- if \(i < i' \) then \(k_i < k_{i'} \) (leading index)

Example:

\[
\begin{bmatrix}
1 & 0 & 0 & 5 & 0 \\
0 & 1 & 0 & 6 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Remarks:

- the representation is unique
- as \(m \leq n = |\mathbb{V}| \), the memory cost is in \(O(n^2) \) at worst
- \(\bot \) is represented as the empty equation system: \(m = 0 \)
Galois connection

between arbitrary subsets and affine subsets

\[
(P(\mathbb{R}^{|V|}), \subseteq) \leftrightarrow (\text{Aff}(\mathbb{R}^{|V|}), \subseteq)
\]

\- \(\gamma(X) \overset{\text{def}}{=} X\) (identity)

\- \(\alpha(X) \overset{\text{def}}{=} \text{smallest affine subset containing } X\)

\text{Aff}(\mathbb{R}^{|V|}) \text{ is closed under arbitrary intersections, so we have:}

\[\alpha(X) = \cap \{ Y \in \text{Aff}(\mathbb{R}^{|V|}) \mid X \subseteq Y \}\]

\text{Aff}(\mathbb{R}^{|V|}) \text{ contains every point in } \mathbb{R}^{|V|}

we can also construct \(\alpha(X)\) by (abstract) union:

\[\alpha(X) = \bigcup \# \{ \{x\} \mid x \in X \}\]

Notes:

\- we have assimilated \(V \to \mathbb{R}\) to \(\mathbb{R}^{|V|}\)

\- we have used \(\text{Aff}(\mathbb{R}^{|V|})\) instead of the matrix representation \(E^\#\) for simplicity;
 a Galois connection also exists between \(P(\mathbb{R}^{|V|})\) and \(E^\#\)
Normalisation and emptiness testing

Let \(M \times \forall = \mathcal{C} \) be a system, not necessarily in normal form.

The Gaussian reduction \(\text{Gauss}(\langle M, \mathcal{C} \rangle) \) with \(\mathcal{O}(n^3) \) time:

- tells whether the system is satisfiable
- gives an equivalent system in normal form
 - i.e., it returns an element in \(\mathcal{E}^\# \)
- by combining rows linearly to remove variable occurrences

Example:

\[
\begin{align*}
2X + Y + Z &= 19 \\
2X + Y - Z &= 9 \\
3Z &= 15
\end{align*}
\]

\[
\begin{align*}
\downarrow
\end{align*}
\]

\[
\begin{align*}
X + 0.5Y &= 7 \\
Z &= 5
\end{align*}
\]
Affine equality operators

Abstract operators:

If $X^\# \neq \perp$, we define:

$$X^\# \cap^\# Y^\# \overset{\text{def}}{=} \text{Gauss} \left(\left\langle \begin{bmatrix} M_{X^\#} \\ M_{Y^\#} \end{bmatrix}, \begin{bmatrix} \mathcal{C}_{X^\#} \\ \mathcal{C}_{Y^\#} \end{bmatrix} \right\rangle \right)$$ (join equations)

$$X^\# = Y^\# \iff M_{X^\#} = M_{Y^\#} \quad \text{and} \quad \mathcal{C}_{X^\#} = \mathcal{C}_{Y^\#}$$ (uniqueness)

$$X^\# \subseteq Y^\# \overset{\text{def}}{=} X^\# \cap^\# Y^\# = \# X^\#$$

$$S^\# \left[\sum_j \alpha_j V_j = \beta ? \right] X^\# \overset{\text{def}}{=} \text{Gauss} \left(\left\langle \begin{bmatrix} M_{X^\#} \\ \alpha_1 \cdots \alpha_n \end{bmatrix}, \begin{bmatrix} \mathcal{C}_{X^\#} \\ \beta \end{bmatrix} \right\rangle \right)$$ (add equation)

$$S^\# \left[e ./ e' ? \right] X^\# \overset{\text{def}}{=} X^\# \quad \text{for other tests}$$

Remark:

$\subseteq^\#, =^\#, \cap^\#$, $\cap^\#$ and $S^\# \left[\sum_j \alpha_j V_j - \beta = 0 ? \right]$ are exact:

$$(X^\# \subseteq Y^\# \iff \gamma(X^\#) \subseteq \gamma(Y^\#), \quad \gamma(X^\# \cap^\# Y^\#) = \gamma(X^\#) \cap \gamma(Y^\#), \ldots)$$
Affine equality assignment

Non-deterministic assignment: \(S^\# \{ V_j \leftarrow [-\infty, +\infty] \} \)

Principle: remove all the occurrences of \(V_j \)
but reduce the number of equations by only one
(add a single degree of freedom)

Algorithm: assuming \(V_j \) occurs in \(M \)

- Pick the row \(\langle \mathbf{M}_i, C_i \rangle \) such that \(M_{ij} \neq 0 \) and \(i \) maximal
- Use it to eliminate all the occurrences of \(V_j \) in lines before \(i \)
 \((i \) maximal \(\implies \) \(M \) stays in row echelon form\)
- Remove the row \(\langle \mathbf{M}_i, C_i \rangle \)

Example: forgetting \(Z \)

\[
\begin{align*}
X + Z &= 10 \\
Y + Z &= 7
\end{align*}
\quad \implies \quad \begin{align*}
X - Y &= 3
\end{align*}
\]

The operator is exact
Affine equality assignment

Affine assignments: \(S^\# [V_j \leftarrow \sum_i \alpha_i V_i + \beta] \)

\[
S^\# [V_j \leftarrow \sum_i \alpha_i V_i + \beta] \ X^\# \defeq
\]

if \(\alpha_j = 0 \), \((S^\# [V_j = \sum_i \alpha_i V_i + \beta] \circ S^\# [V_j \leftarrow [-\infty, +\infty]]) \ X^\# \)

if \(\alpha_j \neq 0 \), \(\langle M, C \rangle \) where \(V_j \) is replaced with \(\frac{1}{\alpha_j} (V_j - \sum_{i \neq j} \alpha_i V_i - \beta) \)

(variable substitution)

Proof sketch: based on properties in the concrete

non-invertible assignment: \(\alpha_j = 0 \)

\[
S[V_j \leftarrow e] = S[V_j \leftarrow e] \circ S[V_j \leftarrow [-\infty, +\infty]] \text{ as the value of } V \text{ is not used in } e
\]

so \(S[V_j \leftarrow e] = S[V_j = e?] \circ S[V_j \leftarrow [-\infty, +\infty]] \)

invertible assignment: \(\alpha_j \neq 0 \)

\[
S[V_j \leftarrow e] \subsetneq S[V_j \leftarrow e] \circ S[V_j \leftarrow [-\infty, +\infty]] \text{ as } e \text{ depends on } V
\]

\[
\rho \in S[V_j \leftarrow e] R \iff \exists \rho' \in R: \rho = \rho' [V_j \mapsto \sum_i \alpha_i \rho'(V_i) + \beta]
\]

\[
\iff \exists \rho' \in R: \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho'(V_i) - \beta)/\alpha_j] = \rho'
\]

\[
\iff \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho(V_i) - \beta)/\alpha_j] \in R
\]

Non-affine assignments: revert to non-deterministic case

\[
S^\# [V_j \leftarrow e] \ X^\# \defeq S^\# [V_j \leftarrow [-\infty, +\infty]] \ X^\#
\]

(imprecise but sound)
Affine equality join

Join: \(\langle \mathbf{M}, \mathbf{C} \rangle \cup^{\neq} \langle \mathbf{N}, \mathbf{D} \rangle \)

Idea: unify columns 1 to \(n \) of \(\langle \mathbf{M}, \mathbf{C} \rangle \) and \(\langle \mathbf{N}, \mathbf{D} \rangle \) using row operations

Example:
Assume that we have unified columns 1 to \(k \) to get \(\begin{pmatrix} \mathbf{R} \\ \mathbf{0} \end{pmatrix} \), arguments are in row echelon form, and we have to unify at column \(k + 1 \): \(t(\mathbf{0} 1 \mathbf{0}) \) with \(t(\mathbf{\beta} 0 \mathbf{0}) \)

\[
\begin{pmatrix} \mathbf{R} & 0 & \mathbf{M}_1 \\ 0 & 1 & \mathbf{M}_2 \\ 0 & 0 & \mathbf{M}_3 \end{pmatrix}, \quad \begin{pmatrix} \mathbf{R} & \mathbf{\beta} & \mathbf{N}_1 \\ 0 & 0 & \mathbf{N}_2 \\ 0 & 0 & \mathbf{N}_3 \end{pmatrix} \implies \begin{pmatrix} \mathbf{R} & \mathbf{\beta} & \mathbf{M}'_1 \\ 0 & 0 & \mathbf{0} \\ 0 & 0 & \mathbf{M}_3 \end{pmatrix}, \quad \begin{pmatrix} \mathbf{R} & \mathbf{\beta} & \mathbf{N}_1 \\ 0 & 0 & \mathbf{N}_2 \\ 0 & 0 & \mathbf{N}_3 \end{pmatrix}
\]

Use the row \((\mathbf{0} 1 \mathbf{M}_2)\) to create \(\mathbf{\beta}\) in the left argument
Then remove the row \((\mathbf{0} 1 \mathbf{M}_2)\)
The right argument is unchanged
\(\implies\) we have now unified columns 1 to \(k + 1 \)

Unifying \(t(\mathbf{\alpha} 0 \mathbf{0})\) and \(t(\mathbf{0} 1 \mathbf{0})\) is similar
Unifying \(t(\mathbf{\alpha} 0 \mathbf{0})\) and \(t(\mathbf{\beta} 0 \mathbf{0})\) is a bit more complicated...
No other case possible as we are in row echelon form
Analysis example

No infinite increasing chain: we can iterate without widening!

Example

\[
X \leftarrow 10; \quad Y \leftarrow 100;
\]

\[
\textbf{while } X \neq 0 \textbf{ do}
\]

\[
X \leftarrow X - 1; \\
Y \leftarrow Y + 10
\]

Abstract loop iterations:

\[
\lim \lambda X^\#.I^\# \cup^\# S^\#[\text{body}] (S^\#[X \neq 0?] X^\#)
\]

- loop entry: \(I^\# = (X = 10 \land Y = 100) \)
- after one loop body iteration: \(F^\#(I^\#) = (X = 9 \land Y = 110) \)

\[
\implies X^\# \overset{\text{def}}{=} I^\# \cup^\# F^\#(I^\#) = (10X + Y = 200)
\]

\(X^\# \) is stable

at loop exit, we get \(S^\#[X = 0?] (10X + Y = 200) = (X = 0 \land Y = 200) \)
Polyhedra
We look for invariants of the form: \(\bigwedge_j \left(\sum_{i=1}^n \alpha_{ij} V_i \geq \beta_j \right) \)

We use the polyhedra domain by Cousot and Halbwachs (1978)

\[\mathcal{E}^\# \simeq \{ \text{closed convex polyhedra of } \mathbb{V} \to \mathbb{R} \} \]

Notes:
- polyhedra need not be bounded \((\neq \text{polytopes})\)
- we keep reasoning in \(\mathbb{R}\), to use affine theory
Polyhedra have dual representations (Weyl–Minkowski Theorem)

Constraint representation

\[\langle M, C \rangle \] with \(M \in \mathbb{Q}^{m \times n} \) and \(C \in \mathbb{Q}^m \)
represents: \[\gamma(\langle M, C \rangle) \overset{\text{def}}{=} \{ \forall | M \times \forall \geq C \} \]

We will also often use a constraint set notation: \(\{ \sum_i \alpha_{ij} V_i \geq \beta_j \} \)

Generator representation

\([P, R]\) where

- \(P \in \mathbb{Q}^{n \times p} \) is a set of \(p \) points: \(P_1, \ldots, P_p \)
- \(R \in \mathbb{Q}^{n \times r} \) is a set of \(r \) rays: \(R_1, \ldots, R_r \)

\[\gamma([P, R]) \overset{\text{def}}{=} \{ (\sum_{j=1}^p \alpha_j P_j) + (\sum_{j=1}^r \beta_j R_j) | \forall j, \alpha_j, \beta_j \geq 0: \sum_{j=1}^p \alpha_j = 1 \} \]
Generator representation examples:

\[
\gamma([P,R]) \overset{\text{def}}{=} \{ (\sum_{j=1}^{p} \alpha_j P_j) + (\sum_{j=1}^{r} \beta_j R_j) \mid \forall j, \alpha_j, \beta_j \geq 0: \sum_{j=1}^{p} \alpha_j = 1 \}
\]

- the points define a bounded convex hull
- the rays allow unbounded polyhedra
Duality in polyhedra

Duality: \(P^* \) is the dual of \(P \), so that:
- the generators of \(P^* \) are the constraints of \(P \)
- the constraints of \(P^* \) are the generators of \(P \)
- \(P^{**} = P \)

\[
0x + 0y + 1z \leq 1 \iff (0,0,1)
\]
Pros:

Abstract operations are generally easy on one of the representations which representation is best depends on the operation e.g., constraints for $\cap^\#$, generators for $\cup^#$

\Rightarrow polyhedra operations are reduced to a **single** complex algorithm: changing one representation into the other

Cons:

Changing the representation can be costly and cause a **combinatorial explosion** in the size of the representation!

Example: a hypercube in \mathbb{R}^n with axis-aligned faces

- $2n$ constraints
- but 2^n generators (vertices of the hypercube)
- yet, hypercubes occur **frequently** in program analysis!

We are not free to choose the most compact representation but have to use the representation required by our operation...
Uniqueness, minimality

Minimal representations

- A constraint / generator system is minimal if no constraint / generator can be omitted without changing the concretization.
- Minimal representations are not unique.

Example: three different constraint representations for a point

(a) $y + x \geq 0, y - x \geq 0, y \leq 0, y \geq -5$
(b) $y + x \geq 0, y - x \geq 0, y \leq 0$
(c) $x \leq 0, x \geq 0, y \leq 0, y \geq 0$

- (non minimal)
- (minimal)
- (minimal)
Bound on polyhedra

- There is no bound on the size of the representation of polyhedra even for minimal representations.

- There is no abstraction operator α.
 - No optimal abstraction as polyhedra for some sets of points.
 - \Rightarrow No Galois connection, no best abstraction for arbitrary operators.

Example:
a disc has infinitely many polyhedral over-approximations.
no approximation is the best one.
Representations change: Chernikova’s algorithm

Chernikova’s algorithm (1968), improved by LeVerge (1992):

- changes a constraint system into an equivalent generator system
- by duality, also changes a generator system into an equivalent constraint system
- also minimizes the representation

Intuition: incremental algorithm

- start from a generator representation of \mathbb{R}^n
- add constraints one by one
- filter generators to keep only those that satisfy the new constraint
- move generators to force them to satisfy the new constraint
 i.e., they must saturate the constraint
Chernikova’s algorithm

Algorithm: incrementally add constraints one by one

Start with:

\[P_0 = \{ (0, \ldots, 0) \} \quad \text{(origin)} \]
\[R_0 = \{ \vec{x}_i, -\vec{x}_i \mid 1 \leq i \leq n \} \quad \text{(axes)} \]

For each constraint \(\vec{M}_k \cdot \vec{V} \geq C_k \in \langle \vec{M}, \vec{C} \rangle \), update \([P_{k-1}, R_{k-1}]\) to \([P_k, R_k]\).

Start with \(P_0 = R_0 = \emptyset \),

- for any \(\vec{P} \in P_{k-1} \) s.t. \(\vec{M}_k \cdot \vec{P} \geq C_k \), add \(\vec{P} \) to \(P_k \)
- for any \(\vec{R} \in R_{k-1} \) s.t. \(\vec{M}_k \cdot \vec{R} \geq 0 \), add \(\vec{R} \) to \(R_k \)
- for any \(\vec{P}, \vec{Q} \in P_{k-1} \) s.t. \(\vec{M}_k \cdot \vec{P} > C_k \) and \(\vec{M}_k \cdot \vec{Q} < C_k \), add to \(P_k \):
 \[
 \vec{O} \overset{\text{def}}{=} \frac{C_k - \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{P} - \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{Q}
 \]
Chernikova’s algorithm (cont.)

- for any \(\vec{R}, \vec{S} \in \mathbb{R}_{k-1} \) s.t. \(\vec{M}_k \cdot \vec{R} > 0 \) and \(\vec{M}_k \cdot \vec{S} < 0 \), add to \(\mathbf{R}_k \):
 \[\vec{O} \overset{\text{def}}{=} (\vec{M}_k \cdot \vec{S}) \vec{R} - (\vec{M}_k \cdot \vec{R}) \vec{S} \]

- for any \(\vec{P} \in \mathbb{P}_{k-1}, \vec{R} \in \mathbb{R}_{k-1} \) s.t.
 either \(\vec{M}_k \cdot \vec{P} > C_k \) and \(\vec{M}_k \cdot \vec{R} < 0 \), or \(\vec{M}_k \cdot \vec{P} < C_k \) and \(\vec{M}_k \cdot \vec{R} > 0 \)
 add to \(\mathbf{P}_k \):
 \[\vec{O} \overset{\text{def}}{=} \vec{P} + \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{R}} \vec{R} \]
Chernikova’s algorithm example

Example:

\[P_0 = \{(0, 0)\} \quad R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]
Example:

\[Y \geq 1 \]

\(P_0 = \{(0, 0)\} \)

\(R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \)

\(P_1 = \{(0, 1)\} \)

\(R_1 = \{(1, 0), (-1, 0), (0, 1)\} \)
Example:

Polyhedra

Chernikova’s algorithm example

\[P_0 = \{(0, 0)\} \]
\[R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]
\[P_1 = \{(0, 1)\} \]
\[R_1 = \{(1, 0), (-1, 0), (0, 1)\} \]
\[P_2 = \{(2, 1)\} \]
\[R_2 = \{(1, 0), (-1, 1), (0, 1)\} \]
Example:

\[Y \geq 1 \]
\[X + Y \geq 3 \]
\[X - Y \leq 1 \]

\[P_0 = \{(0, 0)\} \]
\[P_1 = \{(0, 1)\} \]
\[P_2 = \{(2, 1)\} \]
\[P_3 = \{(2, 1), (1, 2)\} \]

\[R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]
\[R_1 = \{(1, 0), (-1, 0), (0, 1)\} \]
\[R_2 = \{(1, 0), (-1, 1), (0, 1)\} \]
\[R_3 = \{(0, 1), (1, 1)\} \]

We omit redundant generators; they are removed by the full version of the algorithm.
Set-theoretic operations:

Assuming $X^\#$, $Y^\# \neq \bot$, we define:

\[
X^\# \subseteq Y^\# \overset{\text{def}}{\iff} \begin{cases}
\forall \mathcal{P} \in \mathcal{P}_{X^\#}: M_{Y^\#} \times \mathcal{P} \geq \mathcal{C}_{Y^\#} \\
\forall \mathcal{R} \in \mathcal{R}_{X^\#}: M_{Y^\#} \times \mathcal{R} \geq \mathcal{0}
\end{cases}
\]

every generator in $X^\#$ must satisfy every constraint in $Y^\#$

\[
X^\# \sqsubseteq Y^\# \overset{\text{def}}{\iff} X^\# \subseteq Y^\# \text{ et } Y^\# \subseteq X^\#
\]

both inclusion

\[
X^\# \cap Y^\# \overset{\text{def}}{=} \langle \begin{bmatrix} M_{X^\#} \\ M_{Y^\#} \end{bmatrix}, \begin{bmatrix} \mathcal{C}_{X^\#} \\ \mathcal{C}_{Y^\#} \end{bmatrix} \rangle
\]

union of constraint sets

$\subseteq^\#$, $=^\#$ and $\cap^\#$ are **exact** in $\mathcal{P}(\forall \rightarrow \mathbb{R})$
Union: \(X^\# \cup^\# Y^\# \overset{\text{def}}{=} \left[[P_X^\#, P_Y^\#], [R_X^\#, R_Y^\#] \right] \) union of generator sets

Examples:

- two bounded polyhedra
- a point and line

\(\cup^\# \) is **optimal** in \(P(\mathbb{V} \rightarrow \mathbb{R}) \)

\(\alpha \) is not always defined, but \(\alpha(\gamma(X^\#) \cup \gamma(Y^\#)) \) always exists

\(\implies \) **topological closure of the convex hull of** \(\gamma(X^\#) \cup \gamma(Y^\#) \)
Affine test:

\[S^\#\left[\sum_i \alpha_i V_i \geq \beta \right] X^\# \stackrel{\text{def}}{=} \left\langle \left[\begin{array}{c} M_{X^\#} \\ \alpha_1 \cdots \alpha_n \end{array} \right], \left[\begin{array}{c} c_{X^\#} \\ \beta \end{array} \right] \right\rangle \]

\[S^\#\left[\sum_i \alpha_i V_i = \beta \right] X^\# \stackrel{\text{def}}{=} S^\#\left[\sum_i \alpha_i V_i \geq -\beta \right] \left(S^\#\left[\sum_i (-\alpha_i) V_i \geq \beta \right] X^\# \right) \]

- simply adds a constraint to the constraint set
- the operators are *exact*
- the other tests can be abstracted as \(S^\#\left[c \right] X^\# \stackrel{\text{def}}{=} X^\# \)
 sound but very imprecise
Non-deterministic assignment:

\[S^\#[V_j \leftarrow \text{rand}(-\infty, +\infty)] X^\# \overset{\text{def}}{=} [P_{X^\#}, [R_{X^\#} \preceq_j (-\preceq_j)]] \]

in the concrete:

\[S[V_j \leftarrow \text{rand}(-\infty, +\infty)] R = \{ \rho[V_j \mapsto v] | \rho \in R, v \in \mathbb{R} \} \]

in the abstract:

* add two rays parallel to the “forgotten” variable
* **exact operator** in \(\mathcal{P}(\mathbb{V} \rightarrow \mathbb{R}) \)
Affine assignment:

\[S^\#[V_j \leftarrow \sum_i \alpha_i V_i + \beta] X^\# \overset{\text{def}}{=} \]

if \(\alpha_j \neq 0 \), \(\langle M, C \rangle \) where \(V_j \) is replaced with \(\frac{1}{\alpha_j} (V_j - \sum_{i \neq j} \alpha_i V_i - \beta) \)

if \(\alpha_j = 0 \), \((S^\#[\sum_i \alpha_i V_i = V_j - \beta] \odot S^\#[V_j \leftarrow [-\infty, +\infty]]) X^\# \)

Examples:

\[X \leftarrow X + Y \]

\[X \leftarrow Y \]

- similar to the assignment in the equality domain
- the assignment is exact (in \(P(\forall \rightarrow \mathbb{R}) \))
- assignments can also be defined on the generator system
- for non-affine assignments: \(S^\#[V \leftarrow e] \overset{\text{def}}{=} S^\#[V \leftarrow [-\infty, +\infty]] \)
 (sound but not optimal)
Naive widening on polyhedra

$\mathcal{E}^\#$ has strictly increasing infinite chains \implies we need a widening

Definition: $X^\# \triangledown Y^\# \overset{\text{def}}{=} \{ c \in X^\# \mid Y^\# \subseteq^\# \{c\} \}$

- keep the constraints from $X^\#$ satisfied by $Y^#$
- unlike $\cup^\#$, no new constraint is created
- \triangledown reduces the set of constraints \implies ensures termination

Example:

\[
\{X \geq 1, Y \geq 1, Y \leq 1\} \triangledown \{X \geq 1, Y \geq 1, Y \leq 2, X \geq Y\} = \{X \geq 1, Y \geq 1\}
\]
Better widenings on polyhedra

Taking into account constraints from $Y^\#$

$$X^\# \triangledown Y^\# \overset{\text{def}}{=} \{ c \in X^\# \mid Y^\# \subseteq^\# \{c\}\} \cup \{ c \in Y^\# \mid \exists c' \in X^\#: X^\# =^\# (X^\# \setminus c') \cup \{c\}\}$$

also keeps the constraints from $Y^\#$ that are equivalent to a constraint from $X^\#$

\[
\{X \geq 1, Y \geq 1, Y \leq 1\} \triangledown \{X \geq 1, Y \geq 1, Y \leq 2, X \geq Y\} = \{X \geq 1, X \geq Y\}
\]

Widening with thresholds

parameterized by a finite set of constraints T

$$X^\# \triangledown Y^\# \overset{\text{def}}{=} \{ c \in X^\# \mid Y^\# \subseteq^\# \{c\}\} \cup \{ c \in T \mid X^\# \subseteq^\# \{c\} \land Y^\# \subseteq^\# \{c\}\}$$

adds constraints from T when stable, similar to the widening on intervals...
Example analysis with polyhedra

Example

\[X \leftarrow 2; I \leftarrow 0; \]
\[\textbf{while } I < 10 \textbf{ do} \]
\[\quad \textbf{if } \text{rand}(0, 1) = 0 \textbf{ then } X \leftarrow X + 2 \textbf{ else } X \leftarrow X - 3; \]
\[I \leftarrow I + 1 \]
\[\textbf{done} \]

Loop invariant:

increasing iteration with widening

\[X_1^\# = \{X = 2, I = 0\} \]
\[X_2^\# = \{X = 2, I = 0\} \triangledown (\{X = 2, I = 0\} \cup^\# \{X \in [-1, 4], I = 1\}) \]
\[= \{X = 2, I = 0\} \triangledown \{I \in [0, 1], 2 - 3I \leq X \leq 2I + 2\} \]
\[= \{I \geq 0, 2 - 3I \leq X \leq 2I + 2\} \]

decreasing iteration: to get \(I \leq 10 \)

\[X_3^\# = \{X = 2, I = 0\} \cup^\# \{I \in [1, 10], 2 - 3I \leq X \leq 2I + 2\} \]
\[= \{I \in [0, 10], 2 - 3I \leq X \leq 2I + 2\} \]

at the end of the loop, we get: \(I = 10 \land X \in [-28, 22] \)
Example analysis with polyhedra (illustration)

Example

\[X ← 2; I ← 0; \]
\[\text{while } I < 10 \text{ do} \]
\[\quad \text{if } \text{rand}(0, 1) = 0 \text{ then } X ← X + 2 \text{ else } X ← X - 3; \]
\[\quad I ← I + 1 \]
\[\text{done} \]

\[X^\#_1 = \{ X = 2, I = 0 \} \]
\[X^\#_2 = \{ X = 2, I = 0 \} \triangle \{ X ∈ [-1, 4], I = 1 \} \]
\[= \{ I ≥ 0, 2 - 3I ≤ X ≤ 2I + 2 \} \]
\[X^\#_3 = \{ X = 2, I = 0 \} \cup \{ I ∈ [1, 10], 2 - 3I ≤ X ≤ 2I + 2 \} \]
\[= \{ I ∈ [0, 10], 2 - 3I ≤ X ≤ 2I + 2 \} \]
Polyhedra

Summary of numeric abstract domains

Cost vs. precision:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Invariants</th>
<th>Memory cost</th>
<th>Time cost (per op.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>intervals</td>
<td>$V \in [\ell, h]$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>affine equalities</td>
<td>$\sum_i \alpha_i V_i = \beta_i$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>polyhedra</td>
<td>$\sum_i \alpha_i V_i \geq \beta_i$</td>
<td>unbounded, exponential in practice</td>
<td></td>
</tr>
</tbody>
</table>

- Domains provide a tradeoff between precision and cost
- Relational invariants are sometimes necessary even to prove non-relational properties
- An abstract domain is defined by
 - A choice of abstract properties and operators (semantic aspect)
 - Data-structures and algorithms (algorithmic aspect)
- An abstract domain mixes two kinds of approximations:
 - Static approximations (choice of abstract properties)
 - Dynamic approximations (widening)
Extensions
Weakly relational domains

Principle: restrict the expressiveness of polyhedra to be more efficient at the cost of precision

Example domains:

- **Based on constraint propagation:** (closure algorithms)
 - Octagons: $\pm X \pm Y \leq c$
 - shortest path closure: $x + y \leq c \land -y + z \leq d \implies x + z \leq c + d$
 - Two-variables per inequality: $\alpha x + \beta y \leq c$
 - slightly more complex closure algorithm, by Nelson
 - Octahedra: $\sum \alpha_i V_i \leq c, \alpha_i \in \{-1, 0, 1\}$
 - incomplete propagation, to avoid exponential cost
 - Pentagons: $X - Y \leq 0$
 - restriction of octagons
 - incomplete propagation, aims at linear cost

- **Based on linear programming:**
 - Template polyhedra: $M \times V \geq C$ for a fixed M
Extensions

Integers

Issue:

in relational domains we used implicitly **real-valued** environments \(\forall \rightarrow \mathbb{R} \)
our concrete semantics is based on **integer-valued** environments \(\forall \rightarrow \mathbb{Z} \)

In fact, an abstract element \(X^\# \) does not represent \(\gamma(X^\#) \subseteq \mathbb{R}^{\|\forall\|} \), but:

\[
\gamma_\mathbb{Z}(X^\#) \overset{\text{def}}{=} \gamma(X^\#) \cap \mathbb{Z}^{\|\forall\|}
\]

(keep only integer points)

Soundness and exactness for \(\gamma_\mathbb{Z} \)

- \(\subseteq^\# \) and \(=^\# \) are is no longer exact
 e.g., \(\gamma(2X = 1) \neq \gamma(\bot) \), but \(\gamma_\mathbb{Z}(2X = 1) = \gamma(\bot) = \emptyset \)

- \(\cap^\# \) and affine tests are still exact

- affine and non-deterministic assignments are no longer exact
 e.g., \(R^\# = (Y = 2X) \), \(S^\#[X \leftarrow [-\infty, +\infty]] R^\# = \top \),
 but \(S[X \leftarrow [-\infty, +\infty]] \gamma_\mathbb{Z}(R^\#) = \mathbb{Z} \times (2\mathbb{Z}) \)

- all the operators are **still sound**

\(\mathbb{Z}^{\|\forall\|} \subseteq \mathbb{R}^{\|\forall\|} \), so \(\forall X^\#: \gamma_\mathbb{Z}(X^\#) \subseteq \gamma(X^\#) \)

(in general, soundness, exactness, optimality depend on the definition of \(\gamma \))
Integers (cont.)

Possible solutions:

- **enrich** the domain (add exact representations for operation results)
 - congruence equalities: \(\forall i \sum_j \alpha_{ij} V_j \equiv \beta_i [Y_i] \) (Granger 1991)
- Pressburger arithmetic (first order logic with 0, 1, +)
 - decidable, but with **very costly** algorithms

- **design optimal** (non-exact) operators
 - also based on **costly algorithms**, e.g.:
 - normalization: integer hull
 - smallest polyhedra containing \(\gamma_Z(X^\#) \)
 - emptiness testing: integer programming
 - NP-hard, while linear programming is P

- **pragmatic solution** (efficient, non-optimal)
 - use regular operators for \(\mathbb{R}^{|V|} \), then tighten each constraint to remove as many non-integer points as possible
 - e.g.: \(2X + 6Y \geq 3 \rightarrow X + 3Y \geq 2 \)

Note: we abstract integers as reals!
Non-linear expressions

Issue:
Our relational domains can only deal with linear expressions. How can we abstract non-linear assignments such as $X \leftarrow Y \times Z$?

Idea: replace $Y \times Z$ with a sound linear approximation

Framework:
We define an approximation preorder \leq on expressions:

$$R \models e_1 \leq e_2 \iff \forall \rho \in R, \ E[e_1] \rho \subseteq E[e_2] \rho$$

Soundness property:
if $\gamma(X^\#) \models e \leq e'$ then:

- $S[V \leftarrow e] \gamma(X^\#) \subseteq \gamma(S[V \leftarrow e'] X^\#)$
- $S[e ./ 0?] \gamma(X^\#) \subseteq \gamma(S[e' ./ 0?] X^\#)$

(we can now use e' in the abstract instead of e!)
In practice, we put expressions into affine interval form:

\[expr_\ell : [a_0, b_0] + \sum_k [a_k, b_k] V_k \]

Benefits:

- **affine** expressions are easy to manipulate
- **interval coefficients** allow non-determinism in expressions, hence, the opportunity for abstraction
- we can easily construct generalized abstract operators to handle affine interval expressions in our domains
 possibly by first abstracting further expressions into \([a_0, b_0] + \sum_k c_k V_k\)
 using the bounds on each \(V_k\)
Operations on affine interval forms

- adding \oplus and subtracting \ominus two forms
- multiplying \otimes and dividing \oslash a form by an interval

Noting i_k the interval $[a_k, b_k]$ and using interval operations $+\#$, $-\#$, $\times\#$, $/\#$ (e.g., $[a, b] +\# [c, d] = [a + c, b + d]$):

- $(i_0 + \sum_k i_k \times V_k) \oplus (i'_0 + \sum_k i'_k \times V_k) \overset{\text{def}}{=} (i_0 +\# i'_0) + \sum_k (i_k +\# i'_k) \times V_k$
- $i \otimes (i_0 + \sum_k i_k \times V_k) \overset{\text{def}}{=} (i \times \# i_0) + \sum_k (i \times \# i_k) \times V_k$
- ...

Projection $\pi_k : \mathcal{E}^\# \to \text{expr}_\ell$

We suppose we are given an abstract interval projection operator π_k such that:

$\pi_k(X^\#) = [a, b]$ where $[a, b] \supseteq \{ \rho(V_k) \mid \rho \in \gamma(X^\#) \}$
Intervalization \(\ell : (\text{expr}_\ell \times \mathcal{E}^\#) \rightarrow \text{expr}_\ell \)

Flattens the expression into a single interval:
\[
\ell(i_0 + \sum_k (i_k \times V_k), X^\#) \overset{\text{def}}{=} i_0 + \# \sum_{b, k} (i_k \times \pi_k(X^\#)).
\]

Linearization \(\ ` : (\text{expr} \times \mathcal{E}^\#) \rightarrow \text{expr}_\ell \)

Defined by induction on the syntax of expressions:

\[
\begin{align*}
\text{`(V, X^\#) & \overset{\text{def}}{=} [1, 1] \times V} \\
\text{`(rand(a, b), X^\#) & \overset{\text{def}}{=} [a, b]} \\
\text{`(e_1 + e_2, X^\#) & \overset{\text{def}}{=} `(e_1, X^\#) \oplus `(e_2, X^\#)} \\
\text{`(e_1 - e_2, X^\#) & \overset{\text{def}}{=} `(e_1, X^\#) \ominus `(e_2, X^\#)} \\
\text{`(e_1 / e_2, X^\#) & \overset{\text{def}}{=} `(e_1, X^\#) \oslash \ell(`(e_2, X^\#), X^\#)} \\
\text{`(e_1 \times e_2, X^\#) & \overset{\text{def}}{=} \text{can be } \{ \text{either } \ell(`(e_1, X^\#), X^\#) \boxtimes `(e_2, X^\#) \text{ or } \ell(`(e_2, X^\#), X^\#) \boxtimes `(e_1, X^\#) \}}
\end{align*}
\]
Property soundness of the linearization:

For any abstract domain $\mathcal{E}^\#$, any $X^\# \in \mathcal{E}^\#$ and $e \in \text{expr}$, we have:

$$\gamma(X^\#) \models e \preceq \ell(e, X^\#)$$

Remarks:

- ℓ results in a loss of precision
- ℓ is not monotonic for \preceq

 (e.g., $\ell(V/V, V \mapsto [1, +\infty]) = [0, 1] \times V \not\preceq 1$)

Example: analysis with polyhedra

```plaintext
Y ← rand(0, 1000);
T ← rand(-1, 1);
X ← T × Y
```

- $T \times Y$ is linearized as $[-1, 1] \times Y$
- we can prove that $X \leq Y$
Using the Apron Library
Using the Apron Library

Apron library

Underlying libraries & abstract domains
- box
- intervals
- octagons
- NewPolka
- convex polyhedra
- linear equalities
- PPL + Wrapper
- convex polyhedra
- linear congruences

Abstraction toolbox
- scalar & interval arithmetic
- linearization of expressions
- fall-back implementations

Data-types
- Coefficients
- Expressions
- Constraints
- Generators
- Abs. values

Semantics: $A \xrightarrow{\gamma} \wp(\mathbb{Z}^n \times \mathbb{R}^m)$
- dimensions and space dimensionality
- Variables and Environments
- Semantics: $A \xrightarrow{\gamma} \wp(V \rightarrow \mathbb{Z} \cup \mathbb{R})$

Developer interface

User interface
- C API
- OCaml binding
- C++ binding

http://apron.cri.ensmp.fr/library

opam install apron
The Apron module contains sub-modules:

- **Abstract1**
 - abstract elements

- **Manager**
 - abstract domains (arguments to all Abstract1 operations)

- **Polka**
 - creates a manager for polyhedra abstract elements

- **Var**
 - integer or real program variables (denoted as a string)

- **Environment**
 - sets of integer and real program variables

- **Texpr1**
 - arithmetic expression trees

- **Tcons1**
 - arithmetic constraints (based on Texpr1)

- **Coeff**
 - numeric coefficients (appear in Texpr1, Tcons1)
Variables: type Var.t

Variables are denoted by their name, as a string:
(assumes implicitly that no two program variables have the same name)

- **Var.of_string**: string -> Var.t

Environments: type Environment.t

An abstract element abstracts a set of mappings in $\mathbb{V} \rightarrow \mathbb{R}$
\mathbb{V} is the environment; it contains integer-valued and real-valued variables

- **Environment.make**: Var.t array -> Var.t array -> t

 make ivars rvars creates an environment with ivars integer variables and rvars real variables;

 make [] [] is the empty environment

- **Environment.add**: Environment.t -> Var.t array -> Var.t array -> t

 add env ivars rvars adds some integer or real variables to env

- **Environment.remove**: t -> Var.t array -> t

 Internally, an abstract element abstracts a set of points in \mathbb{R}^n;

 the environment maintains the mapping from variable names to dimensions in $[1, n]$
Concrete expression trees: type Texpr1.expr

type expr =
 | Cst of Coeff.t (constants)
 | Var of Var.t (variables)
 | Unop of unop * expr * typ * round (unary op.)
 | Binop of binop * expr * expr * typ * round (binary op.)

- unary operators
 type Texpr1.unop = Neg | …

- binary operators
 type Texpr1.binop = Add | Sub | Mul | Div | …

- numeric type:
 (we only use integers, but reals and floats are also possible)
 type Texpr1.typ = Int | …

- rounding direction:
 (only useful for the division on integers; we use rounding to zero, i.e., truncation)
 type Texpr1.round = Zero | …
Expressions (cont.)

Internal expression form: type `Texpr1.t`

crcrete expression trees must be converted to an internal form to be used in abstract operations

- `Texpr1.of_expr: Environment.t -> Texpr1.expr -> Texpr1.t`
 (the environment is used to convert variable names to dimensions in \mathbb{R}^n)

Coefficients: type `Coeff.t`

can be either a scalar $\{c\}$ or an interval $[a, b]$

we can use the `Mpqf` module to convert from strings to arbitrary precision integers, before converting them into `Coeff.t`:

- for scalars $\{c\}$:
 \[
 \text{Coeff.s_of_mpqf (Mpqf.of_string c)}
 \]

- for intervals $[a, b]$:
 \[
 \text{Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)}
 \]
Constraints: type `Tcons1.t`

constructor `expr ./ 0`:

- `Tcons1.make: Texpr1.t -> TCons1.typ -> Tcons1.t`

where:

- `type Tcons1.typ = SUPEQ | SUP | EQ | DISEQ | ...`
- `≥ | > | = | ≠`

Note: avoid using `DISEQ` directly, which is not very precise;
but use a disjunction of two `SUP` constraints instead

Constraint arrays: type `Tcons1.earray`

abstract operators do not use constraints, but constraint arrays instead

Example: constructing an array `ar` containing a single constraint:

```plaintext```
let c = Tcons1.make texpr1 typ in
let ar = Tcons1.array_make env 1 in
Tcons1.array_set ar 0 c
```
Using the Apron Library

Abstract operators

Abstract elements:

- **Abstract1.top:** `Manager.t -> Environment.t -> t`
 create an abstract element where variables have any value

- **Abstract1.env:** `t -> Environment.t`
 recover the environment on which the abstract element is defined

- **Abstract1.change_environment:** `Manager.t -> t -> Environment.t -> bool -> t`
 set the new environment, adding or removing variables if necessary
 the bool argument should be set to false: variables are not initialized

- **Abstract1.assign_texpr:** `Manager.t -> t -> Var.t -> Texpr1.t -> t option -> t`
 abstract assignment; the option argument should be set to None

- **Abstract1.forget_array:** `Manager.t -> t -> Var.t array -> bool -> t`
 non-deterministic assignment: forget the value of variables (when bool is false)

- **Abstract1.meet_tcons_array:** `Manager.t -> t -> Tcons1.earray -> t`
 abstract test: add one or several constraint(s)
Abstract operators (cont.)

- **Abstract1.join**: `Manager.t -> t -> t -> t`
 abstract union \(\cup \)

- **Abstract1.meet**: `Manager.t -> t -> t -> t`
 abstract intersection \(\cap \)

- **Abstract1.widen**: `Manager.t -> t -> t -> t`
 widening \(\nabla \)

- **Abstract1.is_leq**: `Manager.t -> t -> t -> bool`
 \(\subseteq \): return true if the first argument is included in the second

- **Abstract1.is_bottom**: `Manager.t -> t -> t bool`
 whether the abstract element represents \(\emptyset \)

- **Abstract1.print**: `Format.formatter -> t -> unit`
 print the abstract element

Contract:

- operators return a new, immutable abstract element (functional style)
- operators return over-approximations
 (not always optimal; e.g.: for non-linear expressions)
- predicates return true (definitely true) or false (don't know)
Managers: type Manager.t

The manager denotes a choice of abstract domain
To use the polyhedra domain, construct the manager with:

- let manager = Polka.manager_alloc_loose ()

the same manager variable is passed to all Abstract1 function
to choose another domain, you only need to change the line defining manager

Other libraries:

- Polka.manager_alloc_equalities (affine equalities)
- Polka.manager_alloc_strict (≥ and > affine inequalities over \(\mathbb{R} \))
- Box.manager_alloc (intervals)
- Oct.manager_alloc (octagons)
- Ppl.manager_alloc_grid (affine congruences)
- PolkaGrid.manager_alloc (affine inequalities and congruences)
Argument compatibility: ensure that:

- the same manager is used when creating and using an abstract element
 - the type system checks for the compatibility between 'a Manager.t and 'a Abstract1.t
- expressions and abstract elements have the same environment
- assigned variables exist in the environment of the abstract element
- both abstract elements of binary operators (\cup, \cap, \triangledown, \subseteq) are defined on the same environment

Failure to ensure this results in a Manager.Error exception
open Apron

module RelationalDomain = (struct
 (* manager *)
 type man = Polka.loose Polka.t
 let manager = Polka.manager_alloc_loose ()

 (* abstract elements *)
 type t = man Abstract1.t

 (* utilities *)
 val expr_to_texpr: expr -> Texpr1.expr

 (* implementation *)
 ...
end: ENVIRONMENT_DOMAIN)

To compile: add to the Makefile:

OCAMLINC = ... -I +zarith -I +apron -I +gmp
CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma
let rec expr_to_texpr = function
| AST_binary (op, e1, e2) ->
 match op with
 | AST_PLUS -> Texpr1.Binop ...
 | ...
 | _ -> raise Top

let assign env var expr =
 try
 let e = expr_to_texpr expr in
 Abstract1.assign_texpr ...
 with Top -> Abstract1.forget_array ...

let compare abs e1 e2 =
 try
 ...
 Abstract1.meet_tcons_array ...
 with Top -> abs

Idea:
raise Top to abort a computation
catch it to fall-back to sound coarse assignments and tests