Abstract Interpretation
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

May 5th, 2017
Program of this lecture

Studied so far:

- **semantics:** behaviors of programs
- **properties:** safety, liveness, security...
- **approaches to verification:** typing, use of proof assistants, model checking

Today’s lecture: introduction to abstract interpretation

a general framework for comparing semantics introduced by Patrick Cousot and Radhia Cousot (1977)

- **abstraction:** use of a lattice of predicates
- **computing abstract over-approximations,** while preserving soundness
- **computing abstract over-approximations for loops**
Outline

1 Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion
Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:
- objects under study: sets of mathematical integers
- abstract elements: signs

Lattice of signs

- \(\bot \) denotes only \(\emptyset \)
- \(\pm \) denotes any set of positive integers
- \(0 \) denotes any subset of \(\{0\} \)
- \(- \) denotes any set of negative integers
- \(\top \) denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...
Abstraction example 1: signs

Definition: abstraction relation

- **concrete elements**: elements of the original lattice \((c \in \mathcal{P}(\mathbb{Z}))\)
- **abstract elements**: predicate \((a: \cdot \in \{\pm, 0, \ldots\})\)
- **abstraction relation**: \(c \vdash_S a\) when \(a\) describes \(c\)

Examples:

- \(\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_S \pm\)
- \(\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_S \top\)

We use abstract elements to reason about operations:

- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S \pm\), then \(\{x_0 + x_1 \mid x_i \in c_i\} \vdash_S \pm\)
- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S \pm\), then \(\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S \pm\)
- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S 0\), then \(\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S 0\)
- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S \bot\), then \(\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S \bot\)
Abstraction example 1: signs

We can also consider the **union operation**:
- if \(c_0 \vdash S \pm \) and \(c_1 \vdash S \pm \), then \(c_0 \cup c_1 \vdash S \pm \)
- if \(c_0 \vdash S \pm \) and \(c_1 \vdash S \bot \), then \(c_0 \cup c_1 \vdash S \pm \)

But, what can we say about \(c_0 \cup c_1 \), when \(c_0 \vdash S \pm \) and \(c_1 \vdash S 0 \)?
- clearly, \(c_0 \cup c_1 \vdash S \top \)...
- but no other relation holds
- in the abstract, we do not rule out negative values

We can extend the initial lattice:
- \(\geq 0 \) denotes any set of positive or null integers
- \(\leq 0 \) denotes any set of negative or null integers
- \(\neq 0 \) denotes any set of non null integers
- if \(c_0 \vdash S \pm \) and \(c_1 \vdash S 0 \), then \(c_0 \cup c_1 \vdash S \geq 0 \)
Abstraction example 2: constants

Definition: abstraction based on constants

- **concrete elements:** $\mathcal{P}(\mathbb{Z})$
- **abstract elements:** \bot, \top, n where $n \in \mathbb{Z}$
 \[D_C^\# = \{ \bot, \top \} \cup \{ n \mid n \in \mathbb{Z} \} \]
- **abstraction relation:** $c \vdash c n \iff c \subseteq \{ n \}$

We obtain a flat lattice:

![Flat lattice diagram]

Abstract reasoning:
- if $c_0 \vdash c n_0$ and $c_1 \vdash c n_1$, then $\{ k_0 + k_1 \mid k_i \in c_i \} \vdash c n_0 + n_1$
Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- **Concrete elements:** $P(\mathcal{A}^*)$ (sets of words over alphabet \mathcal{A})
- **Abstract elements:** $\{\bot, \top\} \cup (\mathcal{A} \rightarrow \mathbb{N})$
- **Abstraction relation:** $c \vdash \phi : \mathcal{A} \rightarrow \mathbb{N}$ if and only if:

 $\forall w \in c, \forall a \in \mathcal{A}, \ a \text{ appears } \phi(a) \text{ times in } w$

Abstract reasoning:

- **Concatenation:**

 If $\phi_0, \phi_1 : \mathcal{A} \rightarrow \mathbb{N}$ and c_0, c_1 are such that $c_i \vdash \phi_i$,

 $\{w_0 \cdot w_1 \mid w_i \in c_i\} \vdash \phi_0 + \phi_1$

Information preserved, information deleted:

- **Very precise** information about the number of occurrences
- The order of letters is totally abstracted away (lost)
Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- **concrete elements**: $\mathcal{P}(\mathbb{Z})$
- **abstract elements**: $\bot, \top, (a, b)$ where $a \in \{-\infty\} \cup \mathbb{Z}, \ b \in \mathbb{Z} \cup \{+\infty\}$ and $a \leq b$
- **abstraction relation**:

$$\emptyset \vdash_{I} \bot$$
$$S \vdash_{I} \top$$
$$S \vdash_{I} (a, b) \iff \forall x \in S, \ a \leq x \leq b$$

Operations: TD
Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- **concrete elements**: \(P(X \rightarrow Y) \), inclusion ordering
- **abstract elements**: \(X \rightarrow P(Y) \), pointwise inclusion ordering
- **abstraction relation**: \(c \models_{NR} a \iff \forall \phi \in c, \forall x \in X, \phi(x) \in a(x) \)

Information preserved, information deleted:

- **very precise** information about the **image** of the functions in \(c \)
- **relations** such as (for given \(x_0, x_1 \in X, y_0, y_1 \in Y \)) the following are lost:

\[
\forall \phi \in c, \phi(x_0) = \phi(x_1)
\]
\[
\forall \phi \in c, \forall x, x^0 \in X, \phi(x) \neq y_0 \lor \phi(x^0) \neq y_1
\]
Notion of abstraction relation

Concrete order: so far, always inclusion
- the tighter the concrete set, the fewer behaviors
- smaller concrete sets correspond to more precise properties

Abstraction relation: \(c \vdash a \) when \(c \) satisfies \(a \)
- if \(c_0 \subseteq c_1 \) and \(c_1 \) satisfies \(a \), in all our examples, \(c_0 \) also satisfies \(a \)

Abstract order: in all our examples,
- it matches the abstraction relation as well:
 - if \(a_0 \sqsubseteq a_1 \) and \(c \) satisfies \(a_0 \), then \(c \) also satisfies \(a_1 \)
- great advantage: we can reason about implication in the abstract, without looking back at the concrete properties

We will now formalize this in detail...
Outline

1 Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion
Towards adjoint functions

We consider a **concrete lattice** \((C, \subseteq)\) and an **abstract lattice** \((A, \sqsubseteq)\).

So far, we used **abstraction relations**, that are consistent with orderings:

Abstraction relation compatibility

- \(\forall c_0, c_1 \in C, \forall a \in A, \ c_0 \subseteq c_1 \land c_1 \vdash a \implies c_0 \vdash a\)
- \(\forall c \in C, \forall a_0, a_1 \in A, \ c \vdash a_0 \land a_0 \sqsubseteq a_1 \implies c \vdash a_1\)

When we have a \(c\) (resp., \(a\)) and try to map it into a compatible \(a\) (resp. \(a \sqsubseteq c\)), the abstraction relation is not a convenient tool.

Hence, we shall use **adjoint functions** between \(C\) and \(A\).

- from concrete to abstract: **abstraction**
- from abstract to concrete: **concretization**
Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function $\gamma : A \rightarrow C$ (if it exists) maps abstract a into the weakest (i.e., most general) concrete c that satisfies a (i.e., $c \vdash a$).

Note: in common cases, there exists a γ.

- $c \vdash a$ if and only if $c \subseteq \gamma(a)$
Concretization function: a few examples

Signs abstraction:

\[
\begin{align*}
\gamma_S : &
\begin{array}{c}
\top \\
\pm \\
0 \\
\neg \\
\bot \\
\end{array} & \mapsto
\begin{array}{c}
\mathbb{Z} \\
\mathbb{Z}^+ \\
\{0\} \\
\mathbb{Z}^* \\
\emptyset \\
\end{array} \\
\end{align*}
\]

Constants abstraction:

\[
\begin{align*}
\gamma_C : &
\begin{array}{c}
\top \\
n \\
\bot \\
\end{array} & \mapsto
\begin{array}{c}
\mathbb{Z} \\
\{n\} \\
\emptyset \\
\end{array} \\
\end{align*}
\]

Non relational abstraction:

\[
\begin{align*}
\gamma_{NR} : (X \to \mathcal{P}(Y)) & \mapsto \mathcal{P}(X \to Y) \\
\Phi & \mapsto \{\phi : X \to Y \mid \forall x \in X, \phi(x) \in \Phi(x)\}
\end{align*}
\]

Parikh vector abstraction: exercise!
Abstraction function

Our second adjoint function:

Definition: abstraction function

Abstraction function $\alpha : C \rightarrow A$ (if it exists) maps concrete c into the most precise abstract a that soundly describes c (i.e., $c \vdash a$).

Note: in quite a few cases (including some in this course), there is no α.

Summary on adjoint functions:

- α returns the **most precise abstract predicate** that holds true for its argument
 this is called the **best abstraction**
- γ returns the **most general concrete meaning** of its argument
 hence, is called the **concretization**
Abstraction: a few examples

Constants abstraction:

$$\alpha_C : (c \subseteq \mathbb{Z}) \rightarrow \begin{cases} \bot & \text{if } c = \emptyset \\ n & \text{if } c = \{n\} \\ \top & \text{otherwise} \end{cases}$$

Non relational abstraction:

$$\alpha_{NR} : \mathcal{P}(X \rightarrow Y) \rightarrow X \rightarrow \mathcal{P}(Y)$$

$$c \mapsto (x \in X) \mapsto \{\phi(x) | \phi \in c\}$$

Signs abstraction and Parikh vector abstraction: exercises
Outline

1 Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion
So far, we have:

- abstraction \(\alpha : C \to A \)
- concretization \(\gamma : A \to C \)

How to tie them together?

They should agree on a same abstraction relation \(\vdash \) !

Definition: Galois connection

A **Galois connection** is defined by a concrete lattice \((C, \subseteq)\), an abstract lattice \((A, \sqsubseteq)\), an abstraction function \(\alpha : C \to A \) and a concretization function \(\gamma : A \to C \) such that:

\[
\forall c \in C, \forall a \in A, \ \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \quad (\iff c \vdash a)
\]

Notation:

\[
(C, \subseteq) \xleftarrow{\gamma} \xrightarrow{\alpha} (A, \sqsubseteq)
\]

Note: in practice, we shall rarely use \(\vdash \); we use \(\alpha, \gamma \) instead.
Example: constants abstraction and Galois connection

Constants lattice $D_C^\# = \{\bot, \top\} \uplus \{n \mid n \in \mathbb{Z}\}$

$$
\begin{align*}
\alpha_C(c) &= \bot \quad \text{if } c = \emptyset \\
\alpha_C(c) &= n \quad \text{if } c = \{n\} \\
\alpha_C(c) &= \top \quad \text{otherwise}
\end{align*}
$$

Thus:

- if $c = \emptyset$, $\forall a$, $c \subseteq \gamma_C(a)$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \subseteq a$
- if $c = \{n\}$,
 $$
 \alpha_C(\{n\}) = n \subseteq c \iff c = n \lor c = \top \iff c = \{n\} \subseteq \gamma_C(a)
 $$
- if c has at least two distinct elements n_0, n_1, $\alpha_C(c) = \top$ and $c \subseteq \gamma_C(a) \Rightarrow a = \top$, i.e., $c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \subseteq a$

Constant abstraction: Galois connection

$c \subseteq \gamma_C(a) \iff \alpha_C(c) \subseteq a$, therefore, $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\alpha_C} (D_C^\#, \subseteq)$
Example: non relational abstraction Galois connection

We have defined:

\[\alpha_{NR} : (c \subseteq (X \to Y)) \mapsto (x \in X) \mapsto \{ f(x) \mid f \in c \} \]

\[\gamma_{NR} : (\Phi \in (X \to \mathcal{P}(Y))) \mapsto \{ f : X \to Y \mid \forall x \in X, f(x) \in \Phi(x) \} \]

Let \(c \in \mathcal{P}(X \to Y) \) and \(\Phi \in (X \to \mathcal{P}(Y)) \); then:

\[\alpha_{NR}(c) \subseteq \Phi \iff \forall x \in X, \alpha_{NR}(c)(x) \subseteq \Phi(x) \]

\[\iff \forall x \in X, \{ f(x) \mid f \in c \} \subseteq \Phi(x) \]

\[\iff \forall f \in c, \forall x \in X, f(x) \in \Phi(x) \]

\[\iff \forall f \in c, f \in \gamma_{NR}(\Phi) \]

\[\iff c \subseteq \gamma_{NR}(\Phi) \]

Non relational abstraction: Galois connection

\[c \subseteq \gamma_{NR}(a) \iff \alpha_{NR}(c) \subseteq a, \text{ therefore,} \]

\[(\mathcal{P}(X \to Y), \subseteq) \xrightarrow{\alpha_{NR}} (X \to \mathcal{P}(Y), \subseteq) \xleftarrow{\gamma_{NR}} \]
Galois connection properties

Galois connections have many useful properties.

In the next few slides, we consider a Galois connection \((C, \subseteq) \xleftrightarrow{\alpha, \gamma} (A, \subseteq)\) and establish a few interesting properties.

Extensivity, contractivity

- \(\alpha \circ \gamma\) is **contractive**: \(\forall a \in A, \alpha \circ \gamma(a) \subseteq a\)
- \(\gamma \circ \alpha\) is **extensive**: \(\forall c \in C, c \subseteq \gamma \circ \alpha(c)\)

Proof:

- let \(a \in A\); then, \(\gamma(a) \subseteq \gamma(a)\), thus \(\alpha(\gamma(a)) \subseteq a\)
- let \(c \in C\); then, \(\alpha(c) \subseteq \alpha(c)\), thus \(c \subseteq \gamma(\alpha(a))\)
Galois connection properties

Monotonicity of adjoints

- \(\alpha \) is monotone
- \(\gamma \) is monotone

Proof:

- **monotonicity of \(\alpha \):** let \(c_0, c_1 \in C \) such that \(c_0 \subseteq c_1 \);
 by extensivity of \(\gamma \circ \alpha \), \(c_1 \subseteq \gamma(\alpha(c_1)) \), so by transitivity, \(c_0 \subseteq \gamma(\alpha(c_1)) \)
 by definition of the Galois connection, \(\alpha(c_0) \subseteq \alpha(c_1) \)

- **monotonicity of \(\gamma \):** same principle

Note: many proofs can be derived by duality

Duality principle applied for Galois connections

If \((C, \subseteq) \xleftarrow{\alpha} (A, \sqsubseteq)\), then \((A, \sqsupseteq) \xleftarrow{\gamma} (C, \supseteq)\)
Galois connection properties

Iteration of adjoints

- $\alpha \circ \gamma \circ \alpha = \alpha$
- $\gamma \circ \alpha \circ \gamma = \gamma$
- $\alpha \circ \gamma$ (resp., $\gamma \circ \alpha$) is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha = \alpha$: let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$ hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \subseteq \alpha(c)$ moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \subseteq \alpha \circ \gamma \circ \alpha(c)$ thus, $\alpha \circ \gamma \circ \alpha(c) = \alpha(c)$
- the second point can be proved similarly (duality); the others follow
Galois connection properties

Properties on iterations of adjoint functions:
Galois connection properties

\(\alpha \) preserves least upper bounds

\[\forall c_0, c_1 \in C, \ \alpha(c_0 \cup c_1) = \alpha(c_0) \sqcup \alpha(c_1) \]

By duality:

\[\forall a_0, a_1 \in A, \ \gamma(c_0 \cap c_1) = \gamma(c_0) \sqcap \gamma(c_1) \]

Proof:

First, we observe that \(\alpha(c_0) \sqcup \alpha(c_1) \subseteq \alpha(c_0 \cup c_1) \), i.e. \(\alpha(c_0 \cup c_1) \) is an upper bound of \(\{ \alpha(c_0), \alpha(c_1) \} \).

We now prove it is the least upper bound. For all \(a \in A \):

\[
\begin{align*}
\alpha(c_0 \cup c_1) \subseteq a & \iff c_0 \cup c_1 \subseteq \gamma(a) \\
& \iff c_0 \subseteq \gamma(a) \land c_1 \subseteq \gamma(a) \\
& \iff \alpha(c_0) \subseteq a \land \alpha(c_1) \subseteq a \\
& \iff \alpha(c_0) \sqcup \alpha(c_1) \subseteq a
\end{align*}
\]

Note: when \(C, A \) are complete lattices, this extends to families of elements
Galois connection properties

Uniqueness of adjoints

- given $\gamma : C \to A$, there exists **at most one** $\alpha : A \to C$ such that $(C, \subseteq) \xleftarrow{\gamma} (A, \subseteq)$, and, if it exists, $\alpha(c) = \cap \{a \in A \mid c \subseteq \gamma(a)\}$
- similarly, given $\alpha : A \to C$, there exists at most one $\gamma : C \to A$ such that $(C, \subseteq) \xrightarrow{\gamma} (A, \subseteq)$, and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an α so that we have a Galois connection and prove that, $\alpha(c) = \cap \{a \in A \mid c \subseteq \gamma(a)\}$ for a given $c \in C$.

- if $a \in A$ is such that $c \subseteq \gamma(a)$, then $\alpha(a) \subseteq c$ thus, $\alpha(a)$ is a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
- let $a_0 \in A$ be a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$. since $\gamma \circ \alpha$ is extensive, $c \subseteq \gamma(\alpha(c))$ and $\alpha(c) \in \{a \in A \mid c \subseteq \gamma(a)\}$. hence, $a_0 \subseteq \alpha(c)$

Thus, $\alpha(c)$ is the least upper bound of $\{a \in A \mid c \subseteq \gamma(a)\}$
Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let \((C, \subseteq)\) and \((A, \sqsubseteq)\) be two lattices, such that any subset of \(A\) as a greatest lower bound and let \(\gamma : (A, \sqsubseteq) \rightarrow (C, \subseteq)\) be a monotone function.

Then, the function below defines a Galois connection:

\[
\alpha(c) = \sqcap\{a \in A \mid c \subseteq \gamma(a)\}
\]

Example of abstraction with no \(\alpha\): when \(\sqcap\) is not defined on all families, e.g., lattice of convex polyedra, abstracting sets of points in \(\mathbb{R}^2\).

Exercise: state the dual property and apply the same principle to the concretization
Galois connection characterization

A characterization of Galois connections

Let \((C, \subseteq)\) and \((A, \sqsubseteq)\) be two lattices, and \(\alpha : C \to A\) and \(\gamma : A \to C\) be two monotone functions, such that:

- \(\alpha \circ \gamma\) is contractive
- \(\gamma \circ \alpha\) is extensive

Then, we have a Galois connection

\[
(C, \subseteq) \leftrightarrow (A, \sqsubseteq)
\]

Proof:

- let \(c \in C\) and \(a \in A\) such that \(\alpha(c) \sqsubseteq a\).

 then: \(\gamma(\alpha(c)) \subseteq \gamma(a)\) (as \(\gamma\) is monotone)

 \(c \subseteq \gamma(\alpha(c))\) (as \(\gamma \circ \alpha\) is extensive)

 thus, \(c \subseteq \gamma(a)\), by transitivity

- the other implication can be proved by duality
Outline

1 Abstraction

2 Abstract interpretation
 - Abstract computation
 - Fixpoint transfer

3 Application of abstract interpretation

4 Conclusion
Constructing a static analysis

We have set up a notion of **abstraction**:
- it describes **sound** approximations of **concrete properties** with **abstract predicates**
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to **compute sound abstract predicates**

In the following, we assume
- a **Galois connection**
 \[(C, \subseteq) \xleftrightarrow{\gamma} (A, \sqsubseteq)\]
- a **concrete semantics** \([.]\), with a **constructive definition**
 i.e., \([P]\) is defined by constructive equations \((\lfp f)\), least fixpoint formula \((\lfp f)\)
Abstract transformer

A fixed concrete element \(c_0 \) can be abstracted by \(\alpha(c_0) \).

We now consider a monotone concrete function \(f : C \to C \):

- given \(c \in C \), \(\alpha \circ f(c) \) abstracts the image of \(c \) by \(f \)
- if \(c \in C \) is abstracted by \(a \in A \), then \(f(c) \) is abstracted by \(\alpha \circ f \circ \gamma(a) \):

\[
\begin{align*}
c \subseteq \gamma(a) & \quad \text{by assumption} \\
f(c) \subseteq f(\gamma(a)) & \quad \text{by monotonicity of } f \\
\alpha(f(c)) \subseteq \alpha(f(\gamma(a))) & \quad \text{by monotonicity of } \alpha
\end{align*}
\]

Definition: best and sound abstract transformers

- the best abstract transformer approximating \(f \) is \(f^\# = \alpha \circ f \circ \gamma \)
- a sound abstract transformer approximating \(f \) is any operator \(f^\# : A \to A \), such that \(\alpha \circ f \circ \gamma \subseteq f^\# \) (or equivalently, \(f \circ \gamma \subseteq \gamma \circ f^\# \))
Example: lattice of signs

- $f : D_C^\# \rightarrow D_C^\#, c \mapsto \{-n \mid n \in c\}$
- $f^\# = \alpha \circ f \circ \gamma$

Lattice of signs:

Abstract negation operator:

<table>
<thead>
<tr>
<th></th>
<th>$\ominus^#(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\perp</td>
<td>\perp</td>
</tr>
<tr>
<td>$-$</td>
<td>\pm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\pm</td>
<td>$-$</td>
</tr>
<tr>
<td>\top</td>
<td>\top</td>
</tr>
</tbody>
</table>

- here, the best abstract transformer is very easy to compute
- no need to use an approximate one
Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators and arithmetic operators.

Definition: sound and exact abstract operators

Let $g : C^n \to C$ be an n-ary operator, monotone in each component. Then:

- the **best abstract operator** approximating g is defined by:

 \[
 g^\#: A^n \mapsto A \\
 (a_0, \ldots, a_{n-1}) \mapsto \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1}))
 \]

- a **sound abstract transformer** approximating g is any operator $g^\#: A^n \to A$, such that

 \[
 \forall (a_0, \ldots, a_{n-1}) \in A^n, \quad \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \sqsubseteq g^\#(a_0, \ldots, a_{n-1})
 \]

 (i.e., equivalently, $g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \subseteq \gamma \circ g^\#(a_0, \ldots, a_{n-1})$)
Example: lattice of signs arithmetic operators

Application:
- $\oplus: C^2 \to C, (c_0, c_1) \mapsto \{n_0 + n_1 | n_i \in c_i\}$
- $\otimes: C^2 \to C, (c_0, c_1) \mapsto \{n_0 \cdot n_1 | n_i \in c_i\}$

Best abstract operators:

<table>
<thead>
<tr>
<th>\oplus</th>
<th>\perp</th>
<th>$-$</th>
<th>0</th>
<th>\pm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
</tr>
<tr>
<td>$-$</td>
<td>\perp</td>
<td>$-$</td>
<td>$-$</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>\perp</td>
<td>$-$</td>
<td>0</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>\pm</td>
<td>\perp</td>
<td>T</td>
<td>\pm</td>
<td>\pm</td>
<td>\pm</td>
</tr>
<tr>
<td>T</td>
<td>\perp</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\otimes</th>
<th>\perp</th>
<th>$-$</th>
<th>0</th>
<th>\pm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
</tr>
<tr>
<td>$-$</td>
<td>\perp</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>\perp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\pm</td>
<td>\perp</td>
<td>$-$</td>
<td>0</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>\perp</td>
<td>T</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Example of loss in precision:
- $\{8\} \in \gamma_S(\pm)$ and $\{-2\} \in \gamma_S(-)
- \oplus^\#(\pm, -) = T$ is a lot worse than $\alpha_S(\oplus(\{8\}, \{-2\})) = \pm$
Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap:

<table>
<thead>
<tr>
<th>\cup</th>
<th>\perp</th>
<th>\neg</th>
<th>0</th>
<th>\pm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>\perp</td>
<td>\perp</td>
<td>\neg</td>
<td>0</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>T</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\pm</td>
<td>\pm</td>
<td>T</td>
<td>T</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cap</th>
<th>\perp</th>
<th>\neg</th>
<th>0</th>
<th>\pm</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>\perp</td>
<td>\perp</td>
<td>\neg</td>
<td>0</td>
<td>\pm</td>
<td>T</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
</tr>
<tr>
<td>0</td>
<td>\perp</td>
<td>\perp</td>
<td>0</td>
<td>\perp</td>
<td>0</td>
</tr>
<tr>
<td>\pm</td>
<td>\perp</td>
<td>\perp</td>
<td>\perp</td>
<td>\pm</td>
<td>\pm</td>
</tr>
<tr>
<td>T</td>
<td>\perp</td>
<td>\perp</td>
<td>0</td>
<td>\pm</td>
<td>T</td>
</tr>
</tbody>
</table>

Example of loss in precision:

- $\gamma(\neg) \cup \gamma(\pm) = \{n \in \mathbb{Z} | n \neq 0\} \subset \gamma(T)$
Outline

1. Abstraction

2. Abstract interpretation
 - Abstract computation
 - Fixpoint transfer

3. Application of abstract interpretation

4. Conclusion
Fixpoint transfer

What about loops? Semantic functions defined by fixpoints?

Theorem: exact fixpoint transfer

We assume \((C, \subseteq)\) and \((A, \subseteq)\) are complete lattices. We consider a Galois connection \((C, \subseteq) \leftrightarrow (A, \subseteq)\), two functions \(f : C \rightarrow C\) and \(f^\# : A \rightarrow A\) and two elements \(c_0 \in C, a_0 \in A\) such that:

- \(f\) is continuous
- \(f^\#\) is monotone
- \(\alpha \circ f = f^\# \circ \alpha\)
- \(\alpha(c_0) = a_0\)

Then:

- **both** \(f\) and \(f^\#\) **have a least-fixpoint** (by Tarski’s fixpoint theorem)
- \(\alpha(\operatorname{lfp}_{c_0} f) = \operatorname{lfp}_{a_0} f^\#\)
Fixpoint transfer: proof

- $\alpha(lfp_{c_0} f)$ is a fixpoint of $f^\#$ since:

 $$f^\#(\alpha(lfp_{c_0} f)) = \alpha(f(lfp_{c_0} f))$$
 $$= \alpha(lfp_{c_0} f)$$

 since $\alpha \circ f = f^\# \circ \alpha$

 by definition of the fixpoints

- To show that $\alpha(lfp_{c_0} f)$ is the least-fixpoint of $f^\#$,
 we assume that X is another fixpoint of $f^\#$ greater than a_0 and we
 show that $\alpha(lfp_{c_0} f) \subseteq X$, i.e., that $lfp_{c_0} f \subseteq \gamma(X)$.

 As $lfp_{c_0} f = \bigcup_{n \in \mathbb{N}} f_0^n(c_0)$ (by Kleene’s fixpoint theorem), it amounts
 to proving that $\forall n \in \mathbb{N}, f_0^n(c_0) \subseteq \gamma(X)$.

 By induction over n:
 - $f^0(c_0) = c_0$, thus $\alpha(f^0(c_0)) = a_0 \subseteq X$; thus, $f^0(c_0) \subseteq \gamma(X)$.
 - let us assume that $f^n(c_0) \subseteq \gamma(X)$, and let us show that
 $f^{n+1}(c_0) \subseteq \gamma(X)$, i.e. that $\alpha(f^{n+1}(c_0)) \subseteq X$:

 $$\alpha(f^{n+1}(c_0)) = \alpha \circ f(f^n(c_0)) = f^1 \circ \alpha(f^n(c_0)) \subseteq f^1(X) = X$$

 as $\alpha(f^n(c_0)) \subseteq X$ and f^1 is monotone.
Constructive analysis of loops

How to get a constructive fixpoint transfer theorem?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

- lattice A is of finite height

We compute the sequence $(a_n)_{n \in \mathbb{N}}$ defined by $a_{n+1} = a_n \sqcup f^\#(a_n)$.

Then, $(a_n)_{n \in \mathbb{N}}$ converges and its limit a_∞ is such that $\alpha(\text{lfp}_{c_0} f) = a_\infty$.

Proof: exercise.

Note:

- the assumptions we have made are too restrictive in practice
- more general fixpoint abstraction methods in the next lectures
Outline

1. Abstraction
2. Abstract interpretation
3. Application of abstract interpretation
4. Conclusion
Comparing existing semantics

1. A **concrete semantics** $[P]$ is given: e.g., big steps operational semantics

2. An **abstract semantics** $[P]^\#$ is given: e.g., denotational semantics

3. **Search for an abstraction relation between them**
 e.g., $[P]^\# = \alpha([P])$, or $[P] \subseteq \gamma([P]^\#)$

Examples:
- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics
- ...

Payoff:
- better understanding of ties across semantics
- chance to generalize existing definitions
Derivation of a static analysis

1. Start from a concrete semantics $[P]$
2. Choose an abstraction defined by a Galois connection or a concretization function (usually)
3. Derive an abstract semantics $[P]'$ such that $[P] \subseteq \gamma([P]')$

Examples:
- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language

Payoff:
- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.
A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis step by step, from a concrete semantics and an abstraction.

- we assume a fixed set of n integer variables x_0, \ldots, x_{n-1}
- we consider the language defined by the grammar below:

\[
P ::= x_i = n \quad \text{where } n \in \mathbb{Z}
\]

- basic, three-addresses arithmetics

\[
x_i = x_j + x_k
\]

- basic, three-addresses arithmetics

\[
x_i = x_j - x_k
\]

- basic, three-addresses arithmetics

\[
x_i = x_j \cdot x_k
\]

- basic, three-addresses arithmetics

\[
P; P
\]

- concatenation

\[
\text{input}(x_i)
\]

- reading of a positive input

\[
\text{if}(x_i > 0) P \text{ else } P
\]

\[
\text{while}(x_i > 0) P
\]

- a state is a vector $\sigma = (\sigma_0, \ldots, \sigma_{n-1}) \in \mathbb{Z}^n$

- a single initial state $\sigma_{\text{init}} = (0, \ldots, 0)$
Concrete semantics

We let $\llbracket P \rrbracket : \mathcal{P}(\mathbb{Z}^n) \rightarrow \mathcal{P}(\mathbb{Z}^n)$ be defined by:

$\llbracket x_i = n \rrbracket (S) = \{ \sigma[i \leftarrow n] | \sigma \in S \}$

$\llbracket x_i = x_j + x_k \rrbracket (S) = \{ \sigma[i \leftarrow \sigma_j + \sigma_k] | \sigma \in S \}$

$\llbracket x_i = x_j - x_k \rrbracket (S) = \{ \sigma[i \leftarrow \sigma_j - \sigma_k] | \sigma \in S \}$

$\llbracket x_i = x_j \cdot x_k \rrbracket (S) = \{ \sigma[i \leftarrow \sigma_j \cdot \sigma_k] | \sigma \in S \}$

$\llbracket \text{input}(x_i) \rrbracket (S) = \{ \sigma[i \leftarrow n] | \sigma \in S \land n > 0 \}$

$\llbracket \text{if}(x_i > 0) \ P_0 \text{ else } P_1 \rrbracket (S) = \llbracket P_0 \rrbracket (\{ \sigma \in S | \sigma_i > 0 \}) \cup \llbracket P_1 \rrbracket (\{ \sigma \in S | \sigma_i \leq 0 \})$

$\llbracket \text{while}(x_i > 0) \ P \rrbracket (S) = \{ \sigma \in \text{lfp}_S f | \sigma_i \leq 0 \}$ where

$f : S^0 \mapsto S^0 \cup \llbracket P \rrbracket (\{ \sigma \in S^0 | \sigma_i > 0 \})$

- given a complete program P, the **reachable states** are defined by $\llbracket P \rrbracket (\{ \sigma_{\text{init}} \})$
Abstraction

We compose two abstractions:

- **non relational abstraction**: the values a variable may take is abstracted separately from the other variables
- **sign abstraction**: the set of values observed for each variable is abstracted into the lattice of signs

Abstraction

- **concrete domain**: \((\mathcal{P}(\mathbb{Z}^n), \subseteq)\)
- **abstract domain**: \((D^\#, \sqsubseteq), \text{ where } D^\# = (D^\#_S)^n\) and \(\sqsubseteq\) is the pointwise ordering
- **Galois connection** \((\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\gamma} (D^\#, \sqsubseteq)\), defined by

\[
\alpha : S \mapsto (\alpha_S(\{\sigma_0 \mid \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in S\}))
\]

\[
\gamma : S^\# \mapsto \{\sigma \in \mathbb{Z}^n \mid \forall i, \sigma_i \in \gamma_S(S^\#_i)\}
\]
Example

Factorial function:

```plaintext
input(x_0);
\n\nx_1 = 1;
\nx_2 = 1;
while(x_0 > 0){
   x_1 = x_0 \cdot x_1;
   x_0 = x_0 - x_2;
}
```

Abstraction of the semantics:
- abstract pre-condition: \((\top, \top, \top)\)
- abstract state before the loop: \((\pm, \pm, \pm)\)
- abstract post-condition (after the loop): \((\top, \pm, \pm)\)
Application of abstract interpretation

Computation of the abstract semantics

We search for an abstract semantics $\llbracket P \rrbracket^\# : D^\# \rightarrow D^\#$ such that:

$$\alpha \circ \llbracket P \rrbracket = \llbracket P \rrbracket^\# \circ \alpha$$

We observe that:

$$\alpha(S) = (\alpha_S(\{\sigma_0 \mid \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in S\}))$$

$$\alpha \circ \llbracket P \rrbracket(S) = (\alpha_S(\{\sigma_0 \mid \sigma \in \llbracket P \rrbracket(S)\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(S)\}))$$

We start with $x_i = n$:

$$\alpha \circ \llbracket x_i = n \rrbracket(S)$$

$$= (\alpha_S(\{\sigma_0 \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\}))\}, \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\}))\}))$$

$$= (\alpha_S(\{\sigma_0 \mid \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} \mid \sigma \in S\}))[i \leftarrow \alpha_S(\{n\})]$$

$$= \alpha(S)[i \leftarrow \alpha_S(\{n\})]$$

$$= \llbracket x_i = n \rrbracket^\#(\alpha(S))$$

where

$$\llbracket x_i = n \rrbracket^\#(S^\#) = S^\#[i \leftarrow \alpha_S(\{n\})]$$
Computation of the abstract semantics

Other assignments are treated in a similar manner:

\[
\begin{align*}
\llbracket x_i = x_j + x_k \rrbracket (S^\#) &= S^\#[i \leftarrow S_j^\# \oplus^\# S_k^\#] \\
\llbracket x_i = x_j - x_k \rrbracket (S^\#) &= S^\#[i \leftarrow S_j^\# \ominus^\# S_k^\#] \\
\llbracket x_i = x_j \cdot x_k \rrbracket (S^\#) &= S^\#[i \leftarrow S_j^\# \otimes^\# S_k^\#] \\
\llbracket \text{input}(x_i) \rrbracket (S^\#) &= S^\#[i \leftarrow \pm]
\end{align*}
\]

Proofs are left as exercises
Application of abstract interpretation

Computation of the abstract semantics

We now consider the case of tests:

\[\alpha \circ \llbracket \text{if}(x_i > 0) \text{P}_0 \text{ else } \text{P}_1 \rrbracket(S) \]

\[= \alpha(\llbracket \text{P}_0 \rrbracket(\{\sigma \in S \mid \sigma_i > 0\})) \cup \llbracket \text{P}_1 \rrbracket(\{\sigma \in S \mid \sigma_i \leq 0\})) \]

as \(\alpha \) preserves least upper bounds

\[= \llbracket \text{P}_0 \rrbracket^\#(\alpha(\{\sigma \in S \mid \sigma_i > 0\})) \cup \llbracket \text{P}_1 \rrbracket^\#(\alpha(\{\sigma \in S \mid \sigma_i \leq 0\})) \]

where \(\llbracket \text{if}(x_i > 0) \text{P}_0 \text{ else } \text{P}_1 \rrbracket^\#(S^\#) = \llbracket \text{P}_0 \rrbracket^\#(S^\# \cap \top [i \leftarrow \pm]) \cup \llbracket \text{P}_1 \rrbracket^\#(S^\#) \)

In the case of loops:

\[\llbracket \text{while}(x_i > 0) \text{P} \rrbracket^\#(S^\#) = \text{lfp}_{S^\#} f^\# \]

where \(f^\#: S^\# \rightarrow S^\# \sqcup \llbracket \text{P} \rrbracket^\#(S^\# \cap \top [i \leftarrow \pm]) \)

Proof: exercise
Abstract semantics and soundness

We have derived the following definition of $\llbracket P \rrbracket^\#$:

\[
\begin{align*}
\llbracket x_i = n \rrbracket^\#(S^\#) &= S^\#[i \leftarrow \alpha_S \{n\}] \\
\llbracket x_i = x_j + x_k \rrbracket^\#(S^\#) &= S^\#[i \leftarrow S_j^\# \oplus^\# S_k^\#] \\
\llbracket x_i = x_j - x_k \rrbracket^\#(S^\#) &= S^\#[i \leftarrow S_j^\# \ominus^\# S_k^\#] \\
\llbracket x_i = x_j \cdot x_k \rrbracket^\#(S^\#) &= S^\#[i \leftarrow S_j^\# \otimes^\# S_k^\#] \\
\llbracket \text{input}(x_i) \rrbracket^\#(S^\#) &= S^\#[i \leftarrow +] \\
\llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket^\#(S^\#) &= \llbracket P_0 \rrbracket^\#(S^\# \sqcap \top[i \leftarrow +]) \sqcup \llbracket P_1 \rrbracket^\#(S^\#) \\
\llbracket \text{while}(x_i > 0) \ P \rrbracket^\#(S^\#) &= \text{lfp}_{S^\#} f^\# \text{ where } \\
& \quad f^\# : S^\# \mapsto S^\# \sqcup \llbracket P \rrbracket^\#(S^\# \sqcap \top[i \leftarrow +])
\end{align*}
\]

Furthermore, for all program P: $\alpha \circ \llbracket P \rrbracket = \llbracket P \rrbracket^\# \circ \alpha$

An over-approximation of the final states is computed by $\llbracket P \rrbracket^\#(\top)$.
Example

Factorial function:

```plaintext
input(x_0);
\textbf{x_1} = 1;
\textbf{x_2} = 1;
\textbf{while}(x_0 > 0)\{
  \textbf{x_1} = x_0 \cdot x_1;
  \textbf{x_0} = x_0 - x_2;
\}
```

Abstract state \textbf{before the loop}: (\pm, \pm, \pm)

Iterates on the loop:

<table>
<thead>
<tr>
<th>iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>\pm</td>
<td>\top</td>
<td>\top</td>
</tr>
<tr>
<td>x_1</td>
<td>\pm</td>
<td>\pm</td>
<td>\pm</td>
</tr>
<tr>
<td>x_2</td>
<td>\pm</td>
<td>\pm</td>
<td>\pm</td>
</tr>
</tbody>
</table>

Abstract state \textbf{after the loop}: (\top, \pm, \pm)
Outline

1. Abstraction
2. Abstract interpretation
3. Application of abstract interpretation
4. Conclusion
Summary

This lecture:
- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:
- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties

Update on projects...