The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival
École Normale Supérieure

February, 24. 2017
What is a proof assistant?

A tool to **formalize** and **verify** proofs

The key word is assistant: it *assists* the user in

- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:

- formalization is done with respect to the knowledge of the user, it is **error prone**
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)

- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps

- Proof search is usually mostly manual and takes most of the time
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. Define the objects properties need be proved about
 Data-structures, base types, programs written in the Coq (or vernacular) language

2. Write and prove intermediate lemmas
 ▶ a theorem is defined by a formula in the Coq language.
 ▶ a proof requires a sequence of tactics applications
 tactics are described as part of a separate language.
 ▶ at the end of the proof, a proof term is constructed and verified.

3. Write and prove the main theorems

4. If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- **The core of Coq** is defined by a language of **terms**
- **Commands** are used in order to manipulate terms

Examples of terms:

- **base values:** 0, 1, true...
- **types:** nat, bool, but also Prop...
- **functions:** fun (n: nat) => n + 1
- **function applications:** (fun (n: nat) => n + 1) 8
- **logical formulas:**
 - exists p: nat, 8 = 2 * p,
 - forall a b: Prop, a/\b -> a
- **complex functions** (more on this one later):
 - fun (a b : Prop) (H : a /\ b) =>
 and_ind (fun (H0 : a) (_, b) => H0) H
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by \(\text{term: type} \)

- \(0 : \text{nat} \)
- \(\text{nat: Set} \)
- \(\text{Set: Type} \)
- \(\text{Type: Type (caveat: not quite the same instance)} \)
- \(\text{(fun (n: nat) => n + 1): nat -> nat} \)
- more complex types get interesting:

 \[
 \text{fun (a b : Prop) (H : a \land b) =>}
 \text{and_ind (fun (H0 : a) (_ : b) =>} H0) H
 : \forall a b : \text{Prop}, a \land b \rightarrow a
 \]
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed as a **term of type** P
- A proof of $P \implies Q$ can be viewed as a **function** transforming a proof of P into a proof of Q, hence, a **function of type** $P \to Q$...

Similarity between **typing** rules and **proof** rules:

\[
\begin{align*}
\Gamma, x : P & \vdash u : Q \\
\hline \\
\Gamma & \vdash \lambda x \cdot u : P \to_Q \\
\hline \\
\Gamma & \vdash u : P \to_Q \\
\Gamma & \vdash v : P \\
\hline \\
\Gamma & \vdash u \; v : Q
\end{align*}
\]

fun

\[
\begin{align*}
\Gamma, P & \vdash Q \\
\hline \\
\Gamma & \vdash P \to Q \\
\Gamma & \vdash P \\
\hline \\
\Gamma & \vdash Q
\end{align*}
\]

implic

\[
\begin{align*}
\Gamma & \vdash P \\
\hline \\
\Gamma & \vdash Q \\
\Gamma & \vdash P \\
\hline \\
\Gamma & \vdash Q
\end{align*}
\]

mp

Correspondance:

<table>
<thead>
<tr>
<th>program</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Searching a proof of P
\[\equiv \text{searching } u \text{ of type } P \]
Defining a term

Two ways:

1. Define it fully, with its type and its definition

 Definition zero: nat := 0.

2. Provide only its type and search for a proof of it

 Lemma lzero: nat.
 exact 0.
 Save.
 Definition lincr: forall n: nat, nat.
 intro. exact (n + 1).
 Save.

• Definition: Definition name u: t := def.
• Proof: Definition name u: t. or Lemma name u: t.
Inductive definition

- **A very powerful** mechanism
- **In Coq, almost everything** is actually an inductive definition
 ... examples: *integers, booleans, equality, conjunction...*

Syntax:

```
Inductive tree : Set :=
  | leaf : tree
  | node : tree -> tree -> tree.
```

Induction principles automatically provided by Coq, and to use in induction proofs:

```
tree_ind : forall P : tree -> Prop,
  P leaf
  -> (forall t : tree, P t -> forall t0 : tree, P t0
     -> P (node t t0))
  -> forall t : tree, P t
```
Recursive functions

- Very natural to work with inductive definitions
- **Caveat: must provably terminate**
 this is usually checked with a **strict sub-term condition**

Syntax:

```
Fixpoint size (t: tree) : nat :=
  match t with
    | leaf => 0
    | node t0 t1 => 1 + (size t0) + (size t1)
  end.
```

Ill formed definition, rejected by the system (termination issue):

```
Fixpoint f (t: tree): nat :=
  match t with
    | leaf | node leaf leaf => 0
    | node _ _ => f (node leaf leaf)
  end.
```
Proving a term

View in proof mode:

- above the bar: current assumptions
- below the bar: current subgoal (there may be several goals)
- at the end: displays No more subgoals.
- command Save. stores the term.

Progression towards a finished proof:

- based on commands called tactics
- in the background, Coq constructs the proof term
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq **constructs the proof term**
- At the end, the term is **independently checked** (very reliable !)

Introduction of an assumption (proof tree and term):

\[
\Gamma, P \vdash Q \quad \Gamma, x : P \vdash u : Q
\]

\[
\frac{\Gamma \vdash P \implies Q \quad \Gamma \vdash P}{\Gamma \vdash Q} \quad \frac{\Gamma \vdash \lambda x \cdot u : P \rightarrow Q}{\Gamma \vdash v : P \implies u \cdot v : Q}
\]

Application of an implication:

\[
\Gamma \vdash P \implies Q \quad \Gamma \vdash P \implies P \\
\Gamma \vdash Q \quad \Gamma \vdash v : P
\]

Immediate conclusion of a subgoal:

\[
\Gamma, P \vdash P \quad \Gamma, x : P \vdash x : P
\]
So far, we have considered fairly manual tactics...

There are also **automated tactics**, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Tauto: decides propositional logic

Omega: solves a class of numeric (in)-equalities (see manual)
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H.</td>
<td>Applies assumption H (should be of the form $A \rightarrow B$)</td>
</tr>
<tr>
<td>elim H.</td>
<td>Decomposes assumption H</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs.</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term t</td>
</tr>
<tr>
<td>rewrite H.</td>
<td>Rewrite assumption H (should be of the form $t_0=t_1$)</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check (t)</td>
<td>Prints the type of term (t)</td>
</tr>
<tr>
<td>Print (t)</td>
<td>Prints the type and definition of term (t)</td>
</tr>
<tr>
<td>Definition (u: t := [\text{term}]).</td>
<td>Full definition of term (u)</td>
</tr>
<tr>
<td>Lemma (t)</td>
<td>Start a proof of term (t)</td>
</tr>
<tr>
<td>Theorem (t)</td>
<td></td>
</tr>
<tr>
<td>Definition (t)</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>