What is a proof assistant?

A tool to **formalize** and **verify** proofs

The **key word is assistant**: it *assists* the user in

- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:

- formalization is done with respect to the knowledge of the user, it is **error prone**
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Purpose of Coq and principle

Coq is a programming language
- We can **define data-types** and **write programs** in Coq.
- Language similar to a **pure functional language**.
- **Very expressive** type system (more on this later).
- Programs can be ran inside Coq.
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant
- It allows to **express theorems** and **proofs**.
- It can **verify** a proof.
- It can also **infer some proofs** or **proof steps**.
- Proof search is usually mostly manual and takes most of the time.
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. **Define the objects** properties need be proved about
 Data-structures, base types, programs written in the Coq (or vernacular) language

2. **Write and prove intermediate lemmas**
 - a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of **tactics applications**
 tactics are described as part of a separate language.
 - at the end of the proof, a **proof term** is constructed and verified.

3. **Write and prove the main theorems**

4. If needed, **extract** programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- The **core of Coq** is defined by a language of **terms**
- **Commands** are used in order to manipulate terms

Examples of terms:
- **base values:** 0, 1, true...
- **types:** nat, bool, but also Prop...
- **functions:** \(\text{fun} (n : \text{nat}) \Rightarrow n + 1 \)
- **function applications:** \((\text{fun} (n : \text{nat}) \Rightarrow n + 1) \ 8\)
- **logical formulas:**
 - \(\exists p : \text{nat}, \ 8 = 2 \ast p,\)
 - \(\forall a \ b : \text{Prop}, \ a \land \ b \Rightarrow a\)
- **complex functions** (more on this one later):
 - \(\text{fun} (a \ b : \text{Prop}) (H : a \land b) \Rightarrow\)
 - \(\text{and_ind} (\text{fun} (H0 : a) (_ : b) \Rightarrow H0) \ H\)
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by `term: type`

- `0: nat`
- `nat: Set`
- `Set: Type`
- `Type: Type (caveat: not quite the same instance)`
- `(fun (n: nat) => n + 1): nat -> nat`
- More complex types get interesting:

\[
\begin{align*}
\text{fun (a b : Prop) (H : a \land b) =>} \\
\text{and_ind (fun (H0 : a) (_, : b) => H0) H} \\
: \text{forall a b: Prop, a \land b -> a}
\end{align*}
\]
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a **term of type** P
- A proof of $P \Rightarrow Q$ can be viewed a **function** transforming a proof of P into a proof of Q, hence, a **function of type** $P \rightarrow Q$...

Similarity between typing rules and proof rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Type</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma, \chi : P \vdash u : Q$</td>
<td>$\Gamma \vdash \lambda \chi \cdot u : P \rightarrow Q$</td>
<td>fun</td>
</tr>
<tr>
<td>$\Gamma \vdash u : P \rightarrow Q$; $\Gamma \vdash v : P$</td>
<td>$\Gamma \vdash u \ v : Q$</td>
<td>app</td>
</tr>
<tr>
<td>$\Gamma \vdash P \Rightarrow Q$</td>
<td>$\Gamma \vdash P \Rightarrow Q$</td>
<td>implic</td>
</tr>
<tr>
<td>$\Gamma \vdash P \Rightarrow Q$</td>
<td>$\Gamma \vdash P$</td>
<td>mp</td>
</tr>
</tbody>
</table>

Correspondance:

<table>
<thead>
<tr>
<th>Program</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Searching a proof of P \equiv searching u of type P
Defining a term

Two ways:

1. **Define it fully**, with **its type** and **its definition**

 Definition zero: nat := 0.

2. **Provide only its type** and **search for a proof of it**

 Lemma lzero: nat.
 exact 0.
 Save.
 Definition lincr: forall n: nat, nat.
 intro. exact (n + 1).
 Save.

- **Definition**: Definition name u: t := def.
- **Proof**: Definition name u: t. or Lemma name u: t.
A very powerful mechanism

In Coq, almost everything is actually an inductive definition...
examples: integers, booleans, equality, conjunction...

Syntax:

Inductive tree : Set :=
 | leaf : tree
 | node : tree -> tree -> tree.

Induction principles automatically provided by Coq, and to use in induction proofs:

tree_ind: forall P : tree -> Prop,
 P leaf
 -> (forall t : tree, P t -> forall t0 : tree, P t0
 -> P (node t t0))
 -> forall t : tree, P t
Recursive functions

- Very natural to work with inductive definitions
- **Caveat:** must provably terminate
 - this is usually checked with a strict sub-term condition

Syntax:

```coq
Fixpoint size (t : tree) : nat :=
  match t with
  | leaf => 0
  | node t0 t1 => 1 + (size t0) + (size t1)
  end.
```

Ill formed definition, rejected by the system (termination issue):

```coq
Fixpoint f (t : tree) : nat :=
  match t with
  | leaf | node leaf leaf => 0
  | node _ _ => f (node leaf leaf)
  end.
```
Proving a term

View in proof mode:

- above the bar: **current assumptions**
- below the bar: **current subgoal** (there may be several goals)
- **at the end:** displays
 - No more subgoals.
- command `Save.` stores the term.

Progression towards a finished proof:

- based on commands called **tactics**
- in the background, Coq **constructs the proof term**
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independently checked (very reliable!)

Introduction of an assumption (proof tree and term):

\[
\begin{align*}
\Gamma, P & \vdash Q \\
\Gamma \vdash P \Rightarrow Q
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : P & \vdash u : Q \\
\Gamma \vdash \lambda x \cdot u : P \rightarrow Q
\end{align*}
\]

Application of an implication:

\[
\begin{align*}
\Gamma \vdash P \Rightarrow Q & \quad \Gamma \vdash P \\
\Gamma \vdash Q
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash u : P \rightarrow Q & \quad \Gamma \vdash v : P \\
\Gamma \vdash u \, v : Q
\end{align*}
\]

Immediate conclusion of a subgoal:

\[
\begin{align*}
\Gamma, P & \vdash P \\
\Gamma, x : P & \vdash x : P
\end{align*}
\]
Automation in Coq

So far, we have considered fairly manual tactics...

There are also **automated tactics**, that typically call an external program to try to solve a goal, and then constructs a proof term:
- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Tauto: decides propositional logic

Omega: solves a class of numeric (in)-equalities (see manual)
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H.</td>
<td>Applies assumption H (should be of the form $A \rightarrow B$)</td>
</tr>
<tr>
<td>elim H.</td>
<td>Decomposes assumption H</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs.</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term t</td>
</tr>
<tr>
<td>rewrite H.</td>
<td>Rewrite assumption H (should be of the form $t_0 = t_1$)</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check (t)</td>
<td>Prints the type of term (t)</td>
</tr>
<tr>
<td>Print (t)</td>
<td>Prints the type and definition of term (t)</td>
</tr>
<tr>
<td>Definition (u: t := \text{[term]}).</td>
<td>Full definition of term (u)</td>
</tr>
<tr>
<td>Lemma (t)</td>
<td>Start a proof of term (t)</td>
</tr>
<tr>
<td>Theorem (t)</td>
<td></td>
</tr>
<tr>
<td>Definition (t)</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>