Operational Semantics
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 10, 2017
Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. A model of programs: transition systems
 - definition, a small step semantics
 - a few common examples

2. Trace semantics: a kind of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics
Outline

1. Transition systems and small step semantics
 - Definition and properties
 - Examples

2. Traces semantics

3. Summary
We will characterize a program by:

- **states:**
 photography of the program status at an instant of the execution

- **execution steps:** how do we move from one state to the next one

Definition: transition systems (TS)

A **transition system** is a tuple \((S, \rightarrow)\) where:

- \(S\) is the set of states of the system
- \(\rightarrow \subseteq \mathcal{P}(S \times S)\) is the transition relation of the system

Note:

- the set of states **may be infinite**
Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

\[\forall s_0, s_1, s'_1 \in S, \ (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1 \]

Otherwise, a transition system is non deterministic, i.e.:

\[\exists s_0, s_1, s'_1 \in S, \ s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1 \]

Notes:

- the transition relation \(\rightarrow \) defines atomic execution steps; it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous)
- to describe both discrete and continuous behaviors, we would need to look at hybrid systems (beyond the scope of this lecture)
Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** \(S_I \subseteq S \) denotes states where the execution should start
- a set of **final states** \(S_F \subseteq S \) denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems \((S, \rightarrow, S_I, S_F)\).

Blocking state (not the same as final state):

- a state \(s_0 \in S \) is **blocking** when it is the origin of no transition: \(\forall s_1 \in S, \neg (s_0 \rightarrow s_1) \)
- example: we often introduce an **error state** (usually noted \(\Omega \) to denote the erroneous, blocking configuration)
Outline

1. Transition systems and small step semantics
 - Definition and properties
 - Examples

2. Traces semantics

3. Summary
Finite automata as transition systems

We can clearly formalize the **word recognition** by a finite automaton using a transition system:

- We consider **automaton** $\mathcal{A} = (Q, q_i, q_f, \rightarrow)$
- A “state” is defined by:
 - the **remaining of the word to recognize**
 - the **automaton state** that has been reached so far
 thus, $S = Q \times L^*$
- The **transition relation** \rightarrow of the transition system is defined by:
 $$ (q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1 $$
- The **initial** and **final states** are defined by:
 $$ S_I = \{(q_i, w) \mid w \in L^*\} \quad S_F = \{(q_f, \epsilon)\} $$
Pure λ-calculus

A bare bones model of functional programing:

λ-terms

The set of λ-terms is defined by:

\[
t, u, \ldots \ ::= \ x \quad \text{variable} \\
| \quad \lambda x \cdot t \quad \text{abstraction} \\
| \quad t \ u \quad \text{application}
\]

β-reduction

- $(\lambda x \cdot t) \ u \rightarrow_{\beta} t[x \leftarrow u]$
- if $u \rightarrow_{\beta} v$ then $\lambda x \cdot u \rightarrow_{\beta} \lambda x \cdot v$
- if $u \rightarrow_{\beta} v$ then $u \ t \rightarrow_{\beta} v \ t$
- if $u \rightarrow_{\beta} v$ then $t \ u \rightarrow_{\beta} t \ v$

The λ-calculus defines a transition system:

- S is the set of λ-terms and \rightarrow_{β} the transition relation
- \rightarrow_{β} is non-deterministic; example?

 though, ML fixes an execution order
- given a lambda term t_0, we may consider $(S, \rightarrow_{\beta}, S_I)$ where $S_I = \{ t_0 \}$
- blocking states are terms with no redex $(\lambda x \cdot u) \ n$
A MIPS like assembly language: syntax

We now consider a (very simplified) **assembly language**

- machine integers: sequences of 32-bits (set: \(\mathbb{B}^{32} \))
- instructions are encoded over 32-bits (set: \(\mathbb{I}_{\text{MIPS}} \))
 and stored into the same space as data (i.e., \(\mathbb{I}_{\text{MIPS}} \subseteq \mathbb{B}^{32} \))
- we assume a fixed set of addresses \(\mathbb{A} \)

Memory configurations

- **Program counter** \(\text{pc} \)
 current instruction
- **General purpose registers**
 \(r_0 \ldots r_{31} \)
- **Main memory** (RAM)
 \(\text{mem} : \mathbb{A} \rightarrow \mathbb{B}^{32} \)
 where \(\mathbb{A} \subseteq \mathbb{B}^{32} \)

Instructions

\[
i ::= (\in \mathbb{I}_{\text{MIPS}}) \\
- \text{add } r_d, r_s, r_{s'} \quad \text{addition} \\
- \text{addi } r_d, r_s, v \quad \text{add. } v \in \mathbb{B}^{32} \\
- \text{sub } r_d, r_s, r_{s'} \quad \text{subtraction} \\
- \text{b } t \quad \text{branch} \\
- \text{blt } r_s, r_{s'}, t \quad \text{cond. branch} \\
- \text{ld } r_d, o, r_x \quad \text{relative load} \\
- \text{st } r_d, o, r_x \quad \text{relative store} \\
\]

\(v, t, o \in \mathbb{B}^{32}, d, s, s', x \in [0, 31] \)
Definition: state

A state is a tuple \((\pi, \rho, \mu)\) which comprises:

- A **program counter** value \(\pi \in \mathbb{B}^{32}\)
- A function mapping each **general purpose register** to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- A function mapping each **memory cell** to its value \(\mu : A \rightarrow \mathbb{B}^{32}\)

What would a **dangerous state** be?

- writing **over an instruction**
- reading or writing **outside the program’s memory**
- we cannot fully formalize these yet...
 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- if $i = \text{add } r_d, r_s, r_s'$, then:
 \[
 s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)
 \]

- if $i = \text{addi } r_d, r_s, v$, then:
 \[
 s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)
 \]

- if $i = \text{sub } r_d, r_s, r_s'$, then:
 \[
 s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)
 \]

- if $i = \text{b t}$, then:
 \[
 s \rightarrow (t, \rho, \mu)
 \]
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{blt } r_s, r_{s'}, t$, **then**:

 $$s \rightarrow \begin{cases}
 (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\
 (\pi + 4, \rho, \mu) & \text{otherwise}
 \end{cases}$$

- **if** $i = \text{ld } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases}
 \Omega
 \end{cases}$$

- **if** $i = \text{st } r_d, o, r_x$, **then**:

 $$s \rightarrow \begin{cases}
 \Omega
 \end{cases}$$
A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- **variables** \(X \): finite, predefined set of variables
- **labels** \(L \): before and after each statement
- **values** \(V \): \(V_{\text{int}} \cup V_{\text{float}} \cup \ldots \)

Syntax

- **expressions**

 \[
 e ::= \nu \ (\nu \in V) \mid x \ (x \in X) \mid e + e \mid e \ast e \mid \ldots
 \]

- **conditions**

 \[
 c ::= \text{TRUE} \mid \text{FALSE} \mid e < e \mid e = e
 \]

- **assignment**

 \[
 i ::= x := e;
 \mid \text{if}(c) \ b \ \text{else} \ b
 \mid \text{while}(c) \ b
 \]

- **block, program**

 \[
 b ::= \{i; \ldots ; i;\}
 \]
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution, including a memory state and a control state.

The **memory state** defines the current contents of the memory:

\[
m \in M = X \rightarrow V
\]

The **control state** defines *where* the program currently is:

- analogous to the **program counter**
- can be defined by adding **labels** \(L = \{ \ell_0, \ell_1, \ldots \} \) between each pair of consecutive statements; then:

\[
S = L \times M \cup \{ \Omega \}
\]

- or by the **program remaining to be executed**; then:

\[
S = P \times M \cup \{ \Omega \}
\]
A simple imperative language: semantics of expressions

- The semantics \([e]\) of expression \(e\) should evaluate each expression into a value, given a memory state.
- Evaluation errors may occur: division by zero...
 error value is also noted \(\Omega\)

Thus: \([e]: \mathbb{M} \rightarrow \mathbb{V} \cup \{\Omega\}\)

Definition, by induction over the syntax:

\[
\begin{align*}
\llbracket v \rrbracket(m) & = v \\
\llbracket x \rrbracket(m) & = m(x) \\
\llbracket e_0 + e_1 \rrbracket(m) & = \llbracket e_0 \rrbracket(m) \oplus \llbracket e_1 \rrbracket(m) \\
\llbracket e_0 / e_1 \rrbracket(m) & = \begin{cases}
\Omega & \text{if } \llbracket e_1 \rrbracket(m) = 0 \\
\llbracket e_0 \rrbracket(m) / \llbracket e_1 \rrbracket(m) & \text{otherwise}
\end{cases}
\end{align*}
\]

where \(\oplus\) is the machine implementation of operator \(\oplus\), and is \(\Omega\)-strict, i.e.,
\[\forall v \in \mathbb{V}, \ v \oplus \Omega = \Omega \oplus v = \Omega.\]
A simple imperative language: semantics of conditions

- The **semantics** $[c]$ of condition c should return a *boolean value*
- It follows a similar definition to that of the semantics of expressions:

$$[c] : M \rightarrow \mathbb{V}_{\text{bool}} \cup \{\Omega\}$$

Definition, by induction over the syntax:

- $[\text{TRUE}](m) = \text{TRUE}$
- $[\text{FALSE}](m) = \text{FALSE}$
- $[e_0 < e_1](m) = \begin{cases} \text{TRUE} & \text{if } [e_0](m) < [e_1](m) \\ \text{FALSE} & \text{if } [e_0](m) \geq [e_1](m) \\ \Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega \end{cases}$
- $[e_0 = e_1](m) = \begin{cases} \text{TRUE} & \text{if } [e_0](m) = [e_1](m) \\ \text{FALSE} & \text{if } [e_0](m) \neq [e_1](m) \\ \Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega \end{cases}$
A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by case analysis on the program statements.

Case of **assignment** $l_0 : x = e; l_1$
- if $\llbracket e \rrbracket (m) \neq \Omega$, then $(l_0, m) \rightarrow (l_1, m[x \leftarrow \llbracket e \rrbracket (m))]$
- if $\llbracket e \rrbracket (m) = \Omega$, then $(l_0, m) \rightarrow \Omega$

Case of **condition** $l_0 : \text{if}(c)\{l_1 : b_t \ l_2\} \text{else}\{l_3 : b_f \ l_4\} \ l_5$
- if $\llbracket c \rrbracket (m) = \text{TRUE}$, then $(l_0, m) \rightarrow (l_1, m)$
- if $\llbracket c \rrbracket (m) = \text{FALSE}$, then $(l_0, m) \rightarrow (l_3, m)$
- if $\llbracket c \rrbracket (m) = \Omega$, then $(l_0, m) \rightarrow \Omega$
- $(l_2, m) \rightarrow (l_5, m)$
- $(l_4, m) \rightarrow (l_5, m)$
A simple imperative language: transitions

Case of \textbf{loop } \ell_0 : \textbf{while}(c)\{ \ell_1 : b_t \ell_2 \} \ell_3

- if $\llbracket c \rrbracket(m) = \text{TRUE}$, then\[(\ell_0, m) \rightarrow (\ell_1, m) \]
- if $\llbracket c \rrbracket(m) = \text{FALSE}$, then\[(\ell_2, m) \rightarrow (\ell_1, m) \]
- if $\llbracket c \rrbracket(m) = \Omega$, then\[(\ell_0, m) \rightarrow \Omega \]

Case of $\{ \ell_0 : i_0; \ell_1 : \ldots ; \ell_{n-1}i_{n-1}; \ell_n \}$

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit limited:
- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non deterministic inputs...

... with an input instruction:
- $i ::= \ldots \mid x ::= \text{input}()$
- $\ell_0 : x ::= \text{input}(); \ell_1$ generates transitions
- $\forall v \in V, (\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow v])$
- one instruction induces non determinism

... with a random function:
- $e ::= \ldots \mid \text{rand}()$
- expressions have a non-deterministic semantics:
 \[
 \begin{align*}
 [e] : M &\rightarrow \mathcal{P}(V \cup \{\Omega\}) \\
 \text{[rand]}(m) &\rightarrow V \\
 \text{[v]}(m) &\rightarrow \{v\} \\
 [c] : M &\rightarrow \mathcal{P}(V_{\text{bool}} \cup \{\Omega\})
 \end{align*}
 \]
- all instructions induce non determinism
Semantics of real world programming languages

C language:
- several **norms**: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- **formalizations** in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A **finite trace** is a finite sequence of states s_0, \ldots, s_n, noted $\langle s_0, \ldots, s_n \rangle$
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$

Besides, we write:

- S^* for the set of finite traces
- S^ω for the set of infinite traces
- $S^{\infty} = S^* \cup S^\omega$ for the set of finite or infinite traces
Operations on traces: concatenation

Definition: concatenation

The **concatenation operator** \cdot is defined by:

$$
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_{n'} \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots, s'_{n'} \rangle
$$

$$
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots \rangle
$$

$$
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' = \langle s_0, \ldots, s_n, \ldots \rangle
$$

We also define:

- the **empty trace** ϵ, neutral element for \cdot.
- the **length** operator $|.|$:

$$
\left\{
\begin{array}{c}
|\epsilon| = 0 \\
|\langle s_0, \ldots, s_n \rangle| = n + 1 \\
|\langle s_0, \ldots \rangle| = \omega
\end{array}\right.
$$
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_{n'} \rangle \iff \left\{ \begin{array}{l}
n \leq n' \\
\forall i \in [0, n], s_i = s'_i
\end{array} \right.
\]

\[
\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, s_i = s'_i
\]

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], s_i = s'_i
\]

Proof: straightforward application of the definition of order relations
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Semantics of finite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The *finite traces semantics* $\mathcal{[S]}^*$ is defined by:

$$\mathcal{[S]}^* = \{ \langle s_0, \ldots, s_n \rangle \in S^* \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Example:
- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:
 $$\mathcal{[S]}^* = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \langle c \rangle, \langle d \rangle \}$$
Interesting subsets of the finite trace semantics

We consider a transition system $S = (\mathbb{S}, \rightarrow, \mathbb{S}_I, \mathbb{S}_F)$$$

- the **initial traces**, i.e., starting from an initial state:
 \[\{ \langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_0 \in \mathbb{S}_I \} \]

- the **traces reaching a blocking state**:
 \[\{ \sigma \in [S]^* \mid \forall \sigma' \in [S]^*, \sigma < \sigma' \implies \sigma = \sigma' \} \]

- the **traces ending in a final state**:
 \[\{ \langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_n \in \mathbb{S}_F \} \]

- the **maximal traces** are both initial and final

Example (same transition system, with $\mathbb{S}_I = \{a\}$ and $\mathbb{S}_F = \{c\}$):$

- traces from an initial state ending in a final state are all of the form: $\langle a, b, \ldots, a, b, a, b, c \rangle$
Example: finite automaton

We consider the example of the previous course:

$L = \{a, b\} \quad Q = \{q_0, q_1, q_2\}$
$q_i = q_0 \quad q_f = q_2$
$q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1$

Then, we have the following traces:

$\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle$
$\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle$
$\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle$
$\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle$

Then:

- τ_0, τ_1 are initial traces, reaching a final state
- τ_2 is an initial trace, and is not maximal
- τ_3 reaches a blocking state, but not a final state
Example: λ-term

We consider λ-term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

$$
\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x)))
\lambda y \cdot y \rangle
$$

$$
\tau_1 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))),
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))),
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \rangle
$$

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[l_0: \ x := 1; \]
\[l_1: \ y := 0; \]
\[l_2: \ \textbf{while}(x < 4)\{ \]
\[\quad l_3: \ y := y + x; \]
\[\quad l_4: \ x := x + 1; \]
\[\quad l_5: \ \} \]
\[l_6: \ (\text{final program point}) \]

\[\tau = \langle \ (l_0, (x = 6, y = 8)), (l_1, (x = 1, y = 8)) , \]
\[\quad (l_2, (x = 1, y = 0)), (l_3, (x = 1, y = 0)) , \]
\[\quad (l_4, (x = 1, y = 1)), (l_5, (x = 2, y = 1)) , \]
\[\quad (l_3, (x = 2, y = 1)), (l_4, (x = 2, y = 3)) , \]
\[\quad (l_5, (x = 3, y = 3)), (l_3, (x = 3, y = 3)) , \]
\[\quad (l_4, (x = 3, y = 6)), (l_5, (x = 4, y = 6)) , \]
\[\quad (l_6, (x = 4, y = 6)) \ \rangle \]

- very **precise** description of what the program does...
- ... but quite cumbersome
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a\rangle, \langle b\rangle, \langle c\rangle, \langle d\rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b\rangle, \langle b, a\rangle, \langle b, c\rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a\rangle, \langle b, a, b\rangle, \langle a, b, c\rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b\rangle, \langle b, a, b, a\rangle, \langle b, a, b, c\rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1 \) can be derived from the traces of length \(i \), by adding a transition.
Trace semantics fixpoint form

We define a **semantic function**, that computes **the traces of length $i+1$ from the traces of length i** (where $i \geq 1$), and **adds the traces of length 1**:

Finite traces semantics as a fixpoint

Let $\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in S\}$. Let F_* be the function defined by:

$$F_* : \mathcal{P}(S^*) \rightarrow \mathcal{P}(S^*)$$

$$X \mapsto \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\}$$

Then, F_* is **continuous** and thus has a least-fixpoint and:

$$\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)$$
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is continuous.

Let $\mathcal{X} \subseteq \mathcal{P}(S^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

\[
F_*(\bigcup_{X \in \mathcal{X}} X) = \mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U) \land s_n \to s_{n+1} \}
\]
\[
= \mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{X}, \langle s_0, \ldots, s_n \rangle \in U \land s_n \to s_{n+1} \}
\]
\[
= \mathcal{I} \cup \left(\bigcup_{U \in \mathcal{X}} \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \to s_{n+1} \} \right)
\]
\[
= \bigcup_{U \in \mathcal{X}} \left(\mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \land s_n \to s_{n+1} \} \right)
\]
\[
= \bigcup_{U \in \mathcal{X}} F_*(U)
\]

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(S^*), \subseteq)$ is a CPO, the continuity of F_* entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

\[
\text{lfp } F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
We now show that $[S]^*$ is equal to $\text{lfp } F_*$, by showing the property below, by induction over n:

$$\forall k < n, \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in [S]^*$$

- at rank 0, only trace ϵ needs to be considered, and its case is trivial
- at rank $n + 1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n + 1$ for some integer $n \geq 1$:

$$\langle s_0, \ldots, s_k, s_{k+1} \rangle \in [S]^*$$

$$\iff \langle s_0, \ldots, s_k \rangle \in [S]^* \land s_k \rightarrow s_{k+1}$$

$$\iff \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)$$

$$\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F_*^{n+1}(\emptyset)$$
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (S, \rightarrow)$:

- $S = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

$$
\begin{align*}
F_0^* (\emptyset) &= \emptyset \\
F_1^* (\emptyset) &= \{ \epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle \} \\
F_2^* (\emptyset) &= F_1^* (\emptyset) \cup \{ \langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle \} \\
F_3^* (\emptyset) &= F_2^* (\emptyset) \cup \{ \langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle \} \\
F_4^* (\emptyset) &= F_3^* (\emptyset) \cup \{ \langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle \} \\
F_5^* (\emptyset) &= F_4^* (\emptyset) \cup \{ \langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle \} \\
F_6^* (\emptyset) &= \ldots
\end{align*}
$$

The traces of $[S]^*$ of length $n + 1$ appear in $F_n^* (\emptyset)$
Traces semantics

Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
The traces semantics definition we have seen is **global**:
- the **whole system** defines a **transition relation**
- we **iterate** this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure
- \(\lambda\)-terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics \([\cdot]\) is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e., when program \(\pi\) writes down as \(C[\pi_0, \ldots, \pi_k]\) where \(\pi_0, \ldots, \pi_k\) are its components, there exists a function \(F_C\) such that \(\llbracket \pi \rrbracket = F_C(\llbracket \pi_0 \rrbracket, \ldots, \llbracket \pi_k \rrbracket)\), where \(F_C\) depends only on syntactic construction \(F_C\).
Case of a simplified imperative language

Case of a sequence of two instructions \(b \equiv l_0 : i_0; l_1 : i_1; l_2 \):

\[
[b]^* = [i_0]^* \cup [i_1]^* \\
\cup \{ \langle s_0, \ldots, s_m \rangle | \exists n \in [0, m], \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}
\]

This amounts to concatenating traces of \([i_0]^*\) and \([i_1]^*\) that share a state in common (necessarily at point \(l_1\)).

Cases of a condition, a loop: similar
- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language
Case of \(\lambda \)-calculus

Case of a \(\lambda \)-term \(t = (\lambda x \cdot u) \nu \):

- executions may start with a reduction in \(u \)
- executions may start with a reduction in \(\nu \)
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in \(u \) and \(\nu \) in an arbitrary order

No nice compositional trace semantics of \(\lambda \)-calculus...
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{ a, b, c, d \} \quad (\rightarrow) = \{ (a, b), (b, a), (b, c) \} \]

System behaviors:

- this system clearly **has non-terminating behaviors**: it can loop from \(a \) to \(b \) and back forever
- the finite traces semantics does show the existence of this cycle as there exists an **infinite chain of finite traces** for the prefix order \(\prec \):
 \[\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [S]^* \]
- though, the existence of this chain is **not very obvious**

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The **infinite traces semantics** $[S]^\omega$ is defined by:

$$[S]^\omega = \{ \langle s_0, \ldots \rangle \in S^\omega \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Infinite traces starting from an initial state (considering $S = (S, \rightarrow, S_I, S_F)$):

$$\{ \langle s_0, \ldots \rangle \in [S]^\omega \mid s_0 \in S_I \}$$

Example:

- contrived transition system defined by
 $$S = \{ a, b, c, d \} \quad (\rightarrow) = \{ (a, b), (b, a), (b, c) \}$$

 the infinite traces semantics contains exactly two traces
 $$[S]^\omega = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}$$
Can we also provide a fixpoint form for $[S]^{\omega}$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^{\omega}$ if and only if $\forall n, s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, s_k \rightarrow s_{k+1}$$

Let F_{ω} be defined by:

$$F_{\omega} : \mathcal{P}(S^{\omega}) \longrightarrow \mathcal{P}(S^{\omega})$$

$$X \longmapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^{\omega} \iff \forall n \in \mathbb{N}, \sigma \in F_{\omega}^n(S^{\omega})$$

$$\iff \bigcap_{n \in \mathbb{N}} F_{\omega}^n(S^{\omega})$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

$$F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)$$

$$X \mapsto \{\langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1\}$$

Then, F_ω is \cap-continuous and thus has a greatest-fixpoint; moreover:

$$\text{gfp } F_\omega = [S]^\omega = \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$

Proof sketch:

- the \cap-continuity proof is similar as for the \cup-continuity of F_*
- by the dual version of Kleene’s theorem, $\text{gfp } F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$, i.e. to $[S]^\omega$ (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- $S = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

- $F^0_\omega(S_\omega) = S_\omega$
- $F^1_\omega(S_\omega) = \langle a, b \rangle \cdot S_\omega \cup \langle b, a \rangle \cdot S_\omega \cup \langle b, c \rangle \cdot S_\omega$
- $F^2_\omega(S_\omega) = \langle b, a, b \rangle \cdot S_\omega \cup \langle a, b, a \rangle \cdot S_\omega \cup \langle a, b, c \rangle \cdot S_\omega$
- $F^3_\omega(S_\omega) = \langle a, b, a, b \rangle \cdot S_\omega \cup \langle b, a, b, a \rangle \cdot S_\omega \cup \langle b, a, b, c \rangle \cdot S_\omega$
- $F^4_\omega(S_\omega) = \ldots$

Intuition

- At iterate n, prefixes of length $n + 1$ match the traces in the infinite semantics
- Only $\langle a, b, \ldots, a, b, a, b, \ldots \rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots \rangle$ belong to all iterates
Outline

1 Transition systems and small step semantics
2 Traces semantics
3 Summary
We have discussed today:

- **small-step / structural operational semantics:**
 individual program steps

- **big-step / natural semantics:**
 program executions as sequences of transitions

- their **fixpoint definitions** and properties
 will play a great role to design verification techniques

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program** and **proof methods**