Operational Semantics
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 10, 2017
Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. A model of programs: transition systems
 - definition, a small step semantics
 - a few common examples

2. Trace semantics: a kind of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics
Outline

1. Transition systems and small step semantics
 - Definition and properties
 - Examples

2. Traces semantics

3. Summary
Definition

We will characterize a program by:

- **states:**
 - photography of the program status at an instant of the execution

- **execution steps:** how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple \((\mathcal{S}, \rightarrow)\) where:

- \(\mathcal{S}\) is the set of states of the system
- \(\rightarrow \subseteq \mathcal{P}(\mathcal{S} \times \mathcal{S})\) is the transition relation of the system

Note:

- the set of states may be infinite
Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

$$\forall s_0, s_1, s'_1 \in S, \ (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1$$

Otherwise, a transition system is non deterministic, i.e.:

$$\exists s_0, s_1, s'_1 \in S, \ s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1$$

Notes:

- the transition relation \rightarrow defines atomic execution steps; it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous) to describe both discrete and continuous behaviors, we would need to look at hybrid systems (beyond the scope of this lecture)
Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** $\mathcal{S}_I \subseteq \mathcal{S}$ denotes states where the execution should start
- a set of **final states** $\mathcal{S}_F \subseteq \mathcal{S}$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $((\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F))$.

Blocking state (not the same as final state):

- a state $s_0 \in \mathcal{S}$ is **blocking** when it is the origin of no transition: $\forall s_1 \in \mathcal{S}, \neg(s_0 \rightarrow s_1)$
- example: we often introduce an **error state** (usually noted Ω to denote the erroneous, blocking configuration)
Outline

1 Transition systems and small step semantics
 • Definition and properties
 • Examples

2 Traces semantics

3 Summary
Finite automata as transition systems

We can clearly formalize the word recognition by a finite automaton using a transition system:

- We consider **automaton** $A = (Q, q_i, q_f, \rightarrow)$
- A “state” is defined by:
 - the remaining of the word to recognize
 - the automaton state that has been reached so far
 thus, $S = Q \times L^*$
- The **transition relation** \rightarrow of the transition system is defined by:
 $$(q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1$$
- The **initial** and **final states** are defined by:

$$S_I = \{(q_i, w) \mid w \in L^*\} \quad S_F = \{(q_f, \epsilon)\}$$
Pure λ-calculus

A bare bones model of functional programming:

λ-terms

The set of λ-terms is defined by:

\[t, u, \ldots ::= x \quad \text{variable} \]
\[\mid \lambda x \cdot t \quad \text{abstraction} \]
\[\mid t u \quad \text{application} \]

β-reduction

- \((\lambda x \cdot t) u \rightarrow_\beta t[x \leftarrow u]\)
- if \(u \rightarrow_\beta v\) then \(\lambda x \cdot u \rightarrow_\beta \lambda x \cdot v\)
- if \(u \rightarrow_\beta v\) then \(u t \rightarrow_\beta v t\)
- if \(u \rightarrow_\beta v\) then \(t u \rightarrow_\beta t v\)

The λ-calculus defines a transition system:

- \(\mathcal{S}\) is the set of λ-terms and \(\rightarrow_\beta\) the transition relation
- \(\rightarrow_\beta\) is non-deterministic; example ? though, ML fixes an execution order
- given a lambda term \(t_0\), we may consider \((\mathcal{S}, \rightarrow_\beta, \mathcal{S}_I)\) where \(\mathcal{S}_I = \{t_0\}\)
- blocking states are terms with no redex \((\lambda x \cdot u) v\)
A MIPS like assembly language: syntax

We now consider a (very simplified) **assembly language**

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: I_{MIPS}) and stored into the same space as data (i.e., $I_{\text{MIPS}} \subseteq \mathbb{B}^{32}$)
- we assume a fixed set of addresses A

Memory configurations

- **Program counter** pc
 - current instruction
- **General purpose registers**
 - $r_0 \ldots r_{31}$
- **Main memory** (RAM)
 - $\text{mem} : A \rightarrow \mathbb{B}^{32}$
 - where $A \subseteq \mathbb{B}^{32}$

Instructions

\[
i ::= (\in I_{\text{MIPS}}) \\
 \quad \mid \text{add } r_d, r_s, r_s' \quad \text{addition} \\
 \quad \mid \text{addi } r_d, r_s, v \quad \text{add. } v \in \mathbb{B}^{32} \\
 \quad \mid \text{sub } r_d, r_s, r_s' \quad \text{subtraction} \\
 \quad \mid \text{b } t \quad \text{branch} \\
 \quad \mid \text{blt } r_s, r_s', t \quad \text{cond. branch} \\
 \quad \mid \text{ld } r_d, o, r_x \quad \text{relative load} \\
 \quad \mid \text{st } r_d, o, r_x \quad \text{relative store} \\
 \quad \mid v, t, o \in \mathbb{B}^{32}, \quad d, s, s', x \in [0, 31]
\]
Definition: state

A state is a tuple \((\pi, \rho, \mu)\) which comprises:

- A **program counter** value \(\pi \in \mathbb{B}^{32}\)
- A function mapping each **general purpose register** to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- A function mapping each **memory cell** to its value \(\mu : A \rightarrow \mathbb{B}^{32}\)

What would a **dangerous state** be?

- Writing **over an instruction**
- Reading or writing **outside the program’s memory**
- We cannot fully formalize these yet...

 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{add } r_d, r_s, r_{s'}$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)$$

- **if** $i = \text{addi } r_d, r_s, v$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)$$

- **if** $i = \text{sub } r_d, r_s, r_{s'}$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)$$

- **if** $i = b t$, **then**:
 $$s \rightarrow (t, \rho, \mu)$$
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{blt } r_s, r_{s'}, t$, **then**:
 $$ s \rightarrow \begin{cases} (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\ (\pi + 4, \rho, \mu) & \text{otherwise} \end{cases} $$

- **if** $i = \text{ld } r_d, o, r_x$, **then**:
 $$ s \rightarrow \begin{cases} (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases} $$

- **if** $i = \text{st } r_d, o, r_x$, **then**:
 $$ s \rightarrow \begin{cases} (\pi + 4, \rho, \mu[x \leftarrow \rho(d)]) & \text{if } \rho(x) + o \in \mathbb{A} \\ \Omega & \text{otherwise} \end{cases} $$
A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- **variables** \(X \): finite, predefined set of variables
- **labels** \(L \): before and after each statement
- **values** \(V \): \(V_{\text{int}} \cup V_{\text{float}} \cup \ldots \)

Syntax

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>(v (v \in V) \mid x (x \in X) \mid e + e \mid e \ast e \mid \ldots)</td>
<td>expressions</td>
</tr>
<tr>
<td>(c)</td>
<td>(\text{TRUE} \mid \text{FALSE} \mid e < e \mid e = e)</td>
<td>conditions</td>
</tr>
<tr>
<td>(i)</td>
<td>(x := e; \mid \text{if}(c) \ b \ \text{else} \ b \mid \text{while}(c) \ b)</td>
<td>assignment, condition, loop</td>
</tr>
<tr>
<td>(b)</td>
<td>({i; \ldots; i;})</td>
<td>block, program((\mathbb{P}))</td>
</tr>
</tbody>
</table>
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution, including a memory state and a control state.

The **memory state** defines the current contents of the memory.

\[m \in M = X \rightarrow V \]

The **control state** defines *where* the program currently is:

- analogous to the program counter
- can be defined by adding **labels** \(L = \{ l_0, l_1, \ldots \} \) between each pair of consecutive statements; then:

\[S = L \times M \uplus \{ \Omega \} \]

- or by the **program remaining to be executed**; then:

\[S = P \times M \uplus \{ \Omega \} \]
A simple imperative language: semantics of expressions

- The **semantics** \([e]\) of expression \(e\) should evaluate each expression into a value, given a memory state.

- **Evaluation errors** may occur: division by zero...

 Error value is also noted \(\Omega\).

Thus: \([e] : M \rightarrow V \cup \{\Omega\}\)

Definition, by induction over the syntax:

\[
\begin{align*}
\llbracket v \rrbracket(m) &= v \\
\llbracket x \rrbracket(m) &= m(x) \\
\llbracket e_0 + e_1 \rrbracket(m) &= \llbracket e_0 \rrbracket(m) \oplus \llbracket e_1 \rrbracket(m) \\
\llbracket e_0 / e_1 \rrbracket(m) &= \begin{cases}
\Omega & \text{if } \llbracket e_1 \rrbracket(m) = 0 \\
\llbracket e_0 \rrbracket(m) \oslash \llbracket e_1 \rrbracket(m) & \text{otherwise}
\end{cases}
\end{align*}
\]

where \(\oplus\) is the machine implementation of operator \(\oplus\), and is \(\Omega\)-strict, i.e.,

\(\forall v \in V, \; v \oplus \Omega = \Omega \oplus v = \Omega\).
A simple imperative language: semantics of conditions

- The **semantics** $\llbracket c \rrbracket$ of condition c should return a *boolean value*
- It follows a similar definition to that of the semantics of expressions:
 \[
 \llbracket c \rrbracket : M \rightarrow \mathbb{V}_\text{bool} \cup \{\Omega\}
 \]

Definition, by induction over the syntax:

\[
\begin{align*}
\llbracket \text{TRUE} \rrbracket (m) &= \text{TRUE} \\
\llbracket \text{FALSE} \rrbracket (m) &= \text{FALSE} \\
\llbracket e_0 < e_1 \rrbracket (m) &= \begin{cases}
 \text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) < \llbracket e_1 \rrbracket (m) \\
 \text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \geq \llbracket e_1 \rrbracket (m) \\
 \Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases} \\
\llbracket e_0 = e_1 \rrbracket (m) &= \begin{cases}
 \text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) = \llbracket e_1 \rrbracket (m) \\
 \text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \neq \llbracket e_1 \rrbracket (m) \\
 \Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases}
\end{align*}
\]
A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by case analysis on the program statements

Case of **assignment** $\ell_0 : x = e; \ell_1$
- if $\llbracket e \rrbracket (m) \neq \Omega$, then $(\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow \llbracket e \rrbracket (m)])$
- if $\llbracket e \rrbracket (m) = \Omega$, then $(\ell_0, m) \rightarrow \Omega$

Case of **condition** $\ell_0 : \text{if}(c)\{ \ell_1 : b_t \ \ell_2 \} \text{else}\{ \ell_3 : b_f \ \ell_4 \} \ \ell_5$
- if $\llbracket c \rrbracket (m) = \text{TRUE}$, then $(\ell_0, m) \rightarrow (\ell_1, m)$
- if $\llbracket c \rrbracket (m) = \text{FALSE}$, then $(\ell_0, m) \rightarrow (\ell_3, m)$
- if $\llbracket c \rrbracket (m) = \Omega$, then $(\ell_0, m) \rightarrow \Omega$
- $(\ell_2, m) \rightarrow (\ell_5, m)$
- $(\ell_4, m) \rightarrow (\ell_5, m)$
A simple imperative language: transitions

Case of **loop** \(\ell_0 : \text{while}(c) \{ \ell_1 : b \ell_2 \} \ell_3 \)

- if \(\llbracket c \rrbracket(m) = \text{TRUE} \), then
 \[
 \begin{align*}
 (\ell_0, m) &\rightarrow (\ell_1, m) \\
 (\ell_2, m) &\rightarrow (\ell_1, m)
 \end{align*}
 \]

- if \(\llbracket c \rrbracket(m) = \text{FALSE} \), then
 \[
 \begin{align*}
 (\ell_0, m) &\rightarrow (\ell_3, m) \\
 (\ell_2, m) &\rightarrow (\ell_3, m)
 \end{align*}
 \]

- if \(\llbracket c \rrbracket(m) = \Omega \), then
 \[
 \begin{align*}
 (\ell_0, m) &\rightarrow \Omega \\
 (\ell_2, m) &\rightarrow \Omega
 \end{align*}
 \]

Case of \(\{ \ell_0 : i_0; \ell_1 : \ldots; \ell_{n-1} i_{n-1}; \ell_n \} \)

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit **limited**:

- it is **deterministic**: at most one transition possible from any state
- it does not support the **input of values**

Changes if we model non-deterministic inputs...

... with an input instruction:
- \(i ::= \ldots \ | \ x ::= \text{input}() \)
- \(\ell_0 : x ::= \text{input}(); \ell_1 \) generates transitions
 \[\forall v \in V, (\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow v]) \]
- one instruction induces non determinism

... with a random function:
- \(e ::= \ldots \ | \ \text{rand}() \)
- **expressions** have a **non-deterministic** semantics:
 \[[\text{rand}()] (m) = V \]
 \[[\text{rand}()] (m) = \{ v \} \]
- all instructions induce non determinism
Semantics of real world programming languages

C language:
- several **norms**: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - **undefined behavior**
 - **implementation dependent behavior**: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations

- **formalizations** in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A **finite trace** is a finite sequence of states s_0, \ldots, s_n, noted $\langle s_0, \ldots, s_n \rangle$
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$

Besides, we write:

- S^* for the set of finite traces
- S^ω for the set of infinite traces
- $S^\propto = S^* \cup S^\omega$ for the set of finite or infinite traces
Operations on traces: concatenation

Definition: concatenation

The concatenation operator \(\cdot \) is defined by:

\[
\begin{align*}
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_{n'} \rangle &= \langle s_0, \ldots, s_n, s'_0, \ldots, s'_{n'} \rangle \\
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle &= \langle s_0, \ldots, s_n, s'_0, \ldots \rangle \\
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' &= \langle s_0, \ldots, s_n, \ldots \rangle
\end{align*}
\]

We also define:

- the **empty trace** \(\epsilon \), neutral element for \(\cdot \).
- the **length** operator \(|.| \):

\[
\begin{align*}
|\epsilon| &= 0 \\
|\langle s_0, \ldots, s_n \rangle| &= n + 1 \\
|\langle s_0, \ldots \rangle| &= \omega
\end{align*}
\]
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_{n'} \rangle \iff \begin{cases}
 n \leq n' \\
 \forall i \in [0, n], \ s_i = s'_i
\end{cases}
\]

\[
\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, \ s_i = s'_i
\]

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], \ s_i = s'_i
\]

Proof: straightforward application of the definition of order relations
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Semantics of finite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The **finite traces semantics** $\langle S \rangle^*$ is defined by:

$$\langle S \rangle^* = \{ \langle s_0, \ldots, s_n \rangle \in S^* \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Example:
- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

$$\langle S \rangle^* = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \langle c \rangle, \langle d \rangle \}$$
Interesting subsets of the finite trace semantics

We consider a transition system $S = (\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F)$

- the **initial traces**, i.e., starting from an initial state:
 $$\{\langle s_0, \ldots, s_n \rangle \in [\mathcal{S}]^* \mid s_0 \in \mathcal{S}_I\}$$

- the **traces reaching a blocking state**:
 $$\{\sigma \in [\mathcal{S}]^* \mid \forall \sigma' \in [\mathcal{S}]^*, \sigma < \sigma' \implies \sigma = \sigma'\}$$

- the **traces ending in a final state**:
 $$\{\langle s_0, \ldots, s_n \rangle \in [\mathcal{S}]^* \mid s_n \in \mathcal{S}_F\}$$

- the **maximal traces** are both initial and final

Example (same transition system, with $\mathcal{S}_I = \{a\}$ and $\mathcal{S}_F = \{c\}$):

- traces from an initial state ending in a final state are all of the form: $\langle a, b, \ldots, a, b, a, b, c \rangle$
Example: finite automaton

We consider the example of the previous course:

\[L = \{ a, b \} \quad Q = \{ q_0, q_1, q_2 \} \]

\[q_i = q_0 \quad q_f = q_2 \]

\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1 \]

Then, we have the following traces:

\[\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle \]
\[\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle \]
\[\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle \]
\[\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle \]

Then:

- \(\tau_0, \tau_1 \) are initial traces, reaching a final state
- \(\tau_2 \) is an initial trace, and is not maximal
- \(\tau_3 \) reaches a blocking state, but not a final state
Example: λ-term

We consider λ-term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

\[
\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))), \\
\lambda y \cdot y \rangle
\]

\[
\tau_1 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))), \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))), \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \rangle
\]

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[
\begin{align*}
 \ell_0 & : \quad x := 1; \\
 \ell_1 & : \quad y := 0; \\
 \ell_2 & : \quad \textbf{while}(x < 4)\{ \\
 \ell_3 & : \quad y := y + x; \\
 \ell_4 & : \quad x := x + 1; \\
 \ell_5 & : \quad \} \\
 \ell_6 & : \quad (\text{final program point})
\end{align*}
\]

\[
\tau = \langle (\ell_0, \langle x = 6, y = 8 \rangle), (\ell_1, \langle x = 1, y = 8 \rangle), (\ell_2, \langle x = 1, y = 0 \rangle), (\ell_3, \langle x = 1, y = 0 \rangle), (\ell_4, \langle x = 1, y = 1 \rangle), (\ell_5, \langle x = 2, y = 1 \rangle), (\ell_3, \langle x = 2, y = 1 \rangle), (\ell_4, \langle x = 2, y = 3 \rangle), (\ell_5, \langle x = 3, y = 3 \rangle), (\ell_3, \langle x = 3, y = 3 \rangle), (\ell_4, \langle x = 3, y = 6 \rangle), (\ell_5, \langle x = 4, y = 6 \rangle), (\ell_6, \langle x = 4, y = 6 \rangle) \rangle
\]

- very \textbf{precise} description of what the program does...
- ... but \textbf{quite cumbersome}
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b \rangle, \langle b, a, b, a \rangle, \langle b, a, b, c \rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1 \) can be derived from the traces of length \(i \), by adding a transition.
Trace semantics fixpoint form

We define a **semantic function**, that computes the **traces of length** $i + 1$ **from the traces of length** i (where $i \geq 1$), and **adds the traces of length** 1:

Finite traces semantics as a fixpoint

Let $\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in S\}$. Let F_* be the function defined by:

$$F_* : \mathcal{P}(S^*) \longrightarrow \mathcal{P}(S^*)$$

$$X \longmapsto \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \to s_{n+1}\}$$

Then, F_* is **continuous** and thus has a least-fixpoint and:

$$\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)$$
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is continuous.

Let $\mathcal{X} \subseteq \mathcal{P}(S^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

$$F_*(\bigcup_{X \in \mathcal{X}} X) = I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U) \wedge s_n \to s_{n+1}\}$$

$$= I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{X}, \langle s_0, \ldots, s_n \rangle \in U \wedge s_n \to s_{n+1}\}$$

$$= I \cup \left(\bigcup_{U \in \mathcal{X}} \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \wedge s_n \to s_{n+1}\}\right)$$

$$= \bigcup_{U \in \mathcal{X}} \left(I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in U \wedge s_n \to s_{n+1}\}\right)$$

$$= \bigcup_{U \in \mathcal{X}} F_*(U)$$

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $\langle \mathcal{P}(S^*), \subseteq \rangle$ is a CPO, the continuity of F_* entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

$$\text{Ifp } F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)$$
We now show that $\llbracket S \rrbracket^*$ is equal to lfp F_\ast, by showing the property below, by induction over n:

$$\forall k < n, \langle s_0, \ldots, s_k \rangle \in F^n_\ast(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in \llbracket S \rrbracket^*$$

- at rank 0, only trace ϵ needs to be considered, and its case is trivial
- at rank $n + 1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n + 1$ for some integer $n \geq 1$:

$$\langle s_0, \ldots, s_k, s_{k+1} \rangle \in \llbracket S \rrbracket^*$$

$$\iff \langle s_0, \ldots, s_k \rangle \in \llbracket S \rrbracket^* \land s_k \to s_{k+1}$$

$$\iff \langle s_0, \ldots, s_k \rangle \in F^n_\ast(\emptyset) \land s_k \to s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)$$

$$\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F^{n+1}_\ast(\emptyset)$$
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (\mathcal{S}, \rightarrow)$:

- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

$$
F_0^*(\emptyset) = \emptyset
$$
$$
F_1^*(\emptyset) = \{\epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\}
$$
$$
F_2^*(\emptyset) = F_1^*(\emptyset) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\}
$$
$$
F_3^*(\emptyset) = F_2^*(\emptyset) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\}
$$
$$
F_4^*(\emptyset) = F_3^*(\emptyset) \cup \{\langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\}
$$
$$
F_5^*(\emptyset) = F_4^*(\emptyset) \cup \{\langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle\}
$$
$$
F_6^*(\emptyset) = \ldots
$$

The traces of $[\mathcal{S}]^*$ of length $n + 1$ appear in $F_n^*(\emptyset)$
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Notion of compositional semantics

The traces semantics definition we have seen is **global**:

- the *whole system* defines a *transition relation*
- we *iterate* this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics ?
Notion of compositional semantics

Observation: programs often have an inductive structure
- λ-terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics
A semantics $\llbracket . \rrbracket$ is said to be compositional when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,
When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that $\llbracket \pi \rrbracket = F_C(\llbracket \pi_0 \rrbracket, \ldots, \llbracket \pi_k \rrbracket)$, where F_C depends only on syntactic construction F_C.
Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$\begin{align*}
[b]^* &= [i_0]^* \cup [i_1]^* \\
&\quad \cup \{ \langle s_0, \ldots, s_m \rangle \mid \exists n \in [0, m], \\
&\quad \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}
\end{align*}$$

This amounts to concatenating traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language
Case of \(\lambda \)-calculus

Case of a \(\lambda \)-term \(t = (\lambda x \cdot u) \, v \):

- executions may start with a reduction in \(u \)
- executions may start with a reduction in \(v \)
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in \(u \) and \(v \) in an arbitrary order

No nice compositional trace semantics of \(\lambda \)-calculus...
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\} \]

System behaviors:

- this system clearly has non-terminating behaviors: it can loop from \(a\) to \(b\) and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order \(\prec\):
 \[\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [S]^* \]
- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system \(S = (S, \rightarrow) \)

Definition

The **infinite traces semantics** \([S]^\omega\) is defined by:

\[
[S]^\omega = \{ \langle s_0, \ldots \rangle \in S^\omega \mid \forall i, s_i \rightarrow s_{i+1} \}
\]

Infinite traces starting from an initial state (considering \(S = (S, \rightarrow, S_I, S_F) \)):

\[
\{ \langle s_0, \ldots \rangle \in [S]^\omega \mid s_0 \in S_I \}
\]

Example:

- contrived transition system defined by
 \[
 S = \{ a, b, c, d \} \quad (\rightarrow) = \{ (a, b), (b, a), (b, c) \}
 \]
- the infinite traces semantics contains **exactly two** traces
 \[
 [S]^\omega = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}
 \]
Fixpoint form

Can we also provide a fixpoint form for $[S]^\omega$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^\omega$ if and only if $\forall n$, $s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, \ s_k \rightarrow s_{k+1}$$

Let F_ω be defined by:

$$F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)$$

$$X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^\omega \iff \forall n \in \mathbb{N}, \sigma \in F_\omega^n(S^\omega) \iff \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

$$F_\omega : \mathcal{P}(S^{\omega}) \longrightarrow \mathcal{P}(S^{\omega})$$

$$X \longmapsto \{\langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1\}$$

Then, F_ω is \cap-continuous and thus has a greatest-fixpoint; moreover:

$$\text{gfp } F_\omega = [S]^{\omega} = \bigcap_{n \in \mathbb{N}} F^n_\omega(S^{\omega})$$

Proof sketch:

- the \cap-continuity proof is similar as for the \cup-continuity of F_*
- by the dual version of Kleene’s theorem, $\text{gfp } F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F^n_\omega(S^{\omega})$, i.e. to $[S]^{\omega}$ (similar induction proof)
<table>
<thead>
<tr>
<th>Traces semantics</th>
<th>Infinite traces semantics</th>
</tr>
</thead>
</table>

Outline

1 Transition systems and small step semantics
2 Traces semantics
3 Summary
Summary

We have discussed today:

- **small-step / structural operational semantics:** individual program steps
- **big-step / natural semantics:** program executions as sequences of transitions
- their **fixpoint definitions** and properties will play a great role to design verification techniques

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program and proof methods**