The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival
École Normale Supérieure
What is a proof assistant?

A tool to **formalize and verify** proofs

The key word is assistant: it *assists* the user in
- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:
- formalization is done with respect to the knowledge of the user, it is **error prone**
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Purpose of Coq and principle

Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)

- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps

- Proof search is usually mostly manual and takes most of the time
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. **Define the objects** properties need be proved about
 Data-structures, base types, programs written in the Coq (or vernacular) language

2. **Write and prove intermediate lemmas**
 - a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of tactics applications
 tactics are described as part of a separate language.
 - at the end of the proof, a **proof term** is constructed and verified.

3. **Write and prove the main theorems**

4. If needed, **extract** programs

Two languages: one for **definitions/theorems/proofs**, one for **tactics**
In Coq, everything is a term

- The core of Coq is defined by a language of terms
- Commands are used in order to manipulate terms

Examples of terms:

- base values: 0, 1, true...
- types: nat, bool, but also Prop...
- functions: fun (n: nat) => n + 1
- function applications: (fun (n: nat) => n + 1) 8
- logical formulas:
 - exists p: nat, 8 = 2 * p,
 - forall a b: Prop, a/\b => a
- complex functions (more on this one later):
 - fun (a b : Prop) (H : a /\ b) =>
 and_ind (fun (H0 : a) (_ : b) => H0) H
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by `term: type`

0: nat

nat: Set

Set: Type

Type: Type (**caveat: not quite the same instance**)
	(fun (n: nat) => n + 1): nat -> nat

more complex types get interesting:

```coq
fun (a b : Prop) (H : a \ b) =>  
    and_ind (fun (H0 : a) (\ _ : b) => H0) H  
: forall a b : Prop, a \ b -> a
```
Curry-Howard correspondence

The core principle of Coq

- A proof of \(P \) can be viewed a term of type \(P \)
- A proof of \(P \Rightarrow Q \) can be viewed a function transforming a proof of \(P \) into a proof of \(Q \), hence, a function of type \(P \rightarrow Q \)...

Similarity between typing rules and proof rules:

\[
\begin{align*}
\Gamma, x : P & \vdash u : Q \\
\Gamma & \vdash \lambda x \cdot u : P \rightarrow Q & \text{fun} \\
\Gamma & \vdash u : P \rightarrow Q & \text{app} \\
\Gamma, P & \vdash Q & \text{implic} \\
\Gamma & \vdash P \Rightarrow Q & \text{mp}
\end{align*}
\]

Correspondance:

<table>
<thead>
<tr>
<th>program</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Searching a proof of \(P \) ≡ searching \(u \) of type \(P \)
Defining a term

Two ways:

1. **Define it fully, with its type and its definition**
 - Definition zero: nat := 0.

2. **Provide only its type and search for a proof of it**
 - Lemma lzero: nat.
 - exact 0.
 - Save.
 - Definition lincr: forall n: nat, nat.
 - intro. exact (n + 1).
 - Save.

- **Definition**: Definition name u: t := def.
- **Proof**: Definition name u: t. or Lemma name u: t.
Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition
 ... examples: integers, booleans, equality, conjunction...

- Syntax:

 Inductive tree : Set :=
 | leaf : tree
 | node : tree -> tree -> tree.

- Induction principles automatically provided by Coq, and to use in induction proofs:

 tree_ind : forall P : tree -> Prop,
 P leaf
 -> (forall t : tree, P t -> forall t0 : tree, P t0
 -> P (node t t0))
 -> forall t : tree, P t
Recursive functions

- Very natural to work with inductive definitions
- **Caveat**: must provably terminate
 this is usually checked with a **strict sub-term condition**

Syntax:

```coq
Fixpoint size (t: tree) : nat :=
  match t with
  | leaf => 0
  | node t0 t1 => 1 + (size t0) + (size t1)
  end.
```

Ill formed definition, rejected by the system (termination issue):

```coq
Fixpoint f (t: tree): nat :=
  match t with
  | leaf | node leaf leaf => 0
  | node _ _ => f (node leaf leaf)
  end.
```
Proving a term

View in proof mode:

\[
\begin{align*}
a & : \text{Prop} \\
b & : \text{Prop} \\
H & : a \land b \\
H0 & : a \\
H1 & : b \\
\end{align*}
\]

- above the bar: current assumptions
- below the bar: current subgoal (there may be several goals)
- at the end: displays
 No more subgoals.
- command Save stores the term.

Progression towards a finished proof:

- based on commands called tactics
- in the background, Coq constructs the proof term
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal.
- In the background, Coq constructs the proof term.
- At the end, the term is independently checked (very reliable!)

Introduction of an assumption (proof tree and term):

\[
\Gamma, P \vdash Q \\
\frac{}{\Gamma \vdash P \iff Q}
\]

Application of an implication:

\[
\Gamma \vdash P \iff Q \\
\frac{}{\Gamma \vdash Q}
\]

\[
\Gamma \vdash u : P \rightarrow Q \\
\frac{}{\Gamma \vdash u \, v : Q}
\]

Immediate conclusion of a subgoal:

\[
\Gamma, P \vdash P
\]

\[
\Gamma, x : P \vdash x : P
\]
Automation in Coq

So far, we have considered fairly manual tactics...

There are also automated tactics, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Tauto: decides propositional logic

Omega: solves a class of numeric (in)-equalities (see manual)
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H.</td>
<td>Applies assumption H (should be of the form $A \rightarrow B$)</td>
</tr>
<tr>
<td>elim H.</td>
<td>Decomposes assumption H</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term t</td>
</tr>
<tr>
<td>rewrite H.</td>
<td>Rewrite assumption H (should be of the form $t_0 = t_1$)</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check (t).</td>
<td>Prints the type of term (t)</td>
</tr>
<tr>
<td>Print (t).</td>
<td>Prints the type and definition of term (t)</td>
</tr>
<tr>
<td>Definition (u: t := [\text{term}]).</td>
<td>Full definition of term (u)</td>
</tr>
<tr>
<td>Lemma (t).</td>
<td>Start a proof of term (t)</td>
</tr>
<tr>
<td>Theorem (t).</td>
<td></td>
</tr>
<tr>
<td>Definition (t).</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>