Axiomatic semantics
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015–2016

Course 6
18 March 2016
Introduction

Operational semantics
Models precisely program execution as low-level transitions between internal states
(transition systems, execution traces, big-step semantics)

Denotational semantics
Maps programs into objects in a mathematical domain
(higher level, compositional, domain oriented)

Axiomatic semantics (today)
Prove properties about programs

- programs are annotated with logical assertions
- a rule-system defines the validity of assertions (logical proofs)
- clearly separates programs from specifications
 (specification \simeq user-provided abstraction of the behavior, it is not unique)
- enables the use of logic tools (partial automation, increased confidence)
Overview

- **Specifications** (informal examples)
- Floyd–Hoare logic
- Dijkstra’s predicate calculus
 (weakest precondition, strongest postcondition)
- Verification conditions
 (partially automated program verification)
- Total correctness (termination)
- Non-determinism
- Arrays
- Concurrency
Specifications
Example: function specification

```c
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
    }
    return R;
}
```
Example in C + ACSL

```c
//@ ensures \result == A mod B;
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
    }
    return R;
}
```

- express the intended behavior of the function (returned value)
Example: function specification

Example in C + ACSL

```c
//@ requires A>=0 && B>=0;
//@ ensures result == A mod B;
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
    }
    return R;
}
```

- express the intended behavior of the function (returned value)
- add requirements for the function to actually behave as intended
 (a requires/ensures pair is a function contract)
Example: function specification

```c
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
    }
    return R;
}
```

- express the intended behavior of the function (returned value)
- add requirements for the function to actually behave as intended (a requires/ensures pair is a function contract)
- strengthen the requirements to ensure termination
Example: program annotations

```c
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    //@ assert A>=0 && B>0 && Q=0 && R==A;
    while (R >= B) {
        //@ assert A>=0 && B>0 && R>=B && A==Q*B+R;
        R = R - B;
        Q = Q + 1;
    }
    //@ assert A>=0 && B>0 && R>=0 && R<B && A==Q*B+R;
    return R;
}
```

Assertions give detail about the internal computations why and how contracts are fulfilled

(Note: \(r = a \mod b \) means \(\exists q: a = qb + r \land 0 \leq r < b \))
Example: ghost variables

```c
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
    int R = A;
    while (R >= B) {
        R = R - B;
    }
    // ∃Q: A = QB + R and 0 ≤ R < B
    return R;
}
```

The annotations can be more complex than the program itself
Example: ghost variables

```c
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
  //@ ghost int q = 0;
  int R = A;
  //@ assert A>=0 && B>0 && q=0 && R==A;
  while (R >= B) {
    //@ assert A>=0 && B>0 && R>=B && A==q*B+R;
    R = R - B;
    //@ ghost q = q + 1;
  }
  //@ assert A>=0 && B>0 && R>=0 && R<B && A==q*B+R;
  return R;
}
```

The annotations can be more complex than the program itself and require reasoning on enriched states (ghost variables)
Example: class invariants

Example in ESC/Java

```java
public class OrderedArray {
    int a[];
    int nb;
    //@invariant nb >= 0 && nb <= 20
    //@invariant (\forall int i; (i >= 0 && i < nb-1) ==> a[i] <= a[i+1])

    public OrderedArray() { a = new int[20]; nb = 0; }

    public void add(int v) {
        if (nb >= 20) return;
        int i; for (i=nb; i > 0 && a[i-1] > v; i--) a[i] = a[i-1];
        a[i] = v; nb++;
    }
}
```

class invariant: property of the fields true outside all methods

it can be temporarily broken within a method
but it must be restored before exiting the method
Contracts (and class invariants):
- built in few languages (Eiffel)
- available as a library / external tool (C, Java, C#, etc.)

Contracts can be:
- checked dynamically
- **checked statically** (Frama-C, Why, ESC/Java)
- inferred statically (CodeContracts)

In this course:
deductive methods (logic) to check (prove) statically (at compile-time) partially automatically (with user help) that contracts hold
Floyd–Hoare logic
Hoare triples

Hoare triple: \(\{ P \} \text{ prog } \{ Q \} \)

- \textit{prog} is a program fragment
- \(P \) and \(Q \) are \textit{logical assertions} over program variables

 \(P \) def \((X \geq 0 \land Y \geq 0) \lor (X < 0 \land Y < 0))\)

A triple means:

- if \(P \) holds before \textit{prog} is executed
- then \(Q \) holds after the execution of \textit{prog}
- unless \textit{prog} does not terminate or encounters an error

\(P \) is the \textit{precondition}, \(Q \) is the \textit{postcondition}

\(\{ P \} \text{ prog } \{ Q \} \) expresses \textit{partial correctness}

(do not rule out errors and non-termination)

Hoare triples serve as \textit{judgements} in a proof system

(introduced in [Hoare69])
Language

\[
stat ::= \begin{array}{ll}
X \leftarrow expr & \text{(assignment)} \\
\mid \text{skip} & \text{(do nothing)} \\
\mid \text{fail} & \text{(error)} \\
\mid \text{stat; stat} & \text{(sequence)} \\
\mid \text{if expr then stat else stat} & \text{(conditional)} \\
\mid \text{while expr do stat} & \text{(loop)}
\end{array}
\]

- $X \in \mathbb{V}$: integer-valued variables

- \textit{expr}: integer arithmetic expressions

we assume that:

- expressions are deterministic (for now)

- expression evaluation does not cause error (only \texttt{fail} does)

for instance, to avoid divisions by zero, we assume that all divisions are \textit{explicitly} guarded

as in: \texttt{if $X = 0$ then fail else \ldots /X\ldots}
Hoare rules: axioms

Axioms:

\[
\{ P \} \text{skip} \{ P \} \\
\{ P \} \text{fail} \{ Q \}
\]

- any property true before \text{skip} is true afterwards
- any property is true after \text{fail}
Hoare rules: axioms

Assignment axiom:

\[
\{ P[e/X] \} \ X \leftarrow e \ \{ P \}
\]

for \(P \) over \(X \) to be true after \(X \leftarrow e \)

\(P \) must be true over \(e \) before the assignment

- \(P[e/X] \) is \(P \) where all free occurrences of \(X \) are replaced with \(e \)
- \(e \) must be deterministic
- the rule is “backwards”: \(P \) appears as a postcondition

Examples:

\[
\begin{align*}
\{ \text{true} \} \ X & \leftarrow 5 \ \{ X = 5 \} \\
\{ Y = 5 \} \ X & \leftarrow Y \ \{ X = 5 \} \\
\{ X + 1 \geq 0 \} \ X & \leftarrow X + 1 \ \{ X \geq 0 \} \\
\{ \text{false} \} \ X & \leftarrow Y + 3 \ \{ Y = 0 \land X = 12 \} \\
\{ Y \in [0, 10] \} \ X & \leftarrow Y + 3 \ \{ X = Y + 3 \land Y \in [0, 10] \}
\end{align*}
\]
Floyd–Hoare logic

Hoare rules: consequence

Rule of consequence:

\[
P \Rightarrow P' \quad Q' \Rightarrow Q \quad \{P'\} \leftarrow \{Q'\}
\]

\[
\{P\} \leftarrow \{Q\}
\]

we can weaken a Hoare triple by:

- **weakening its postcondition** \(Q \leftarrow Q' \)
- **strengthening its precondition** \(P \Rightarrow P' \)

we assume a logic system to be available to prove formulas on assertions, such as \(P \Rightarrow P' \) (e.g., arithmetic, set theory, etc.)

examples:

- the axiom for **fail** can be replaced with \(\{true\} \) **fail** \(\{false\} \)
 (as \(P \Rightarrow true \) and \(false \Rightarrow Q \) always hold)

- \(\{X = 99 \land Y \in [1,10]\} \ X \leftarrow Y + 10 \ \{X = Y + 10 \land Y \in [1,10]\} \)
 (as \(\{Y \in [1,10]\} \ X \leftarrow Y + 10 \ \{X = Y + 10 \land Y \in [1,10]\} \) and \(X = 99 \land Y \in [1,10] \Rightarrow Y \in [1,10] \))
Hoare rules: tests

Tests:

\[\begin{align*}
\{ P \land e \} & \quad s \quad \{ Q \} \\
\{ P \land \neg e \} & \quad t \quad \{ Q \} \\
\{ P \} & \quad \text{if } e \text{ then } s \text{ else } t \quad \{ Q \}
\end{align*} \]

to prove that \(Q \) holds after the test
we prove that it holds after each branch \((s, t)\)
under the assumption that the branch is executed \((e, \neg e)\)

example:

\[
\begin{align*}
\{ X < 0 \} & \quad X \leftarrow -X \quad \{ X > 0 \} \\
\{ X \neq 0 \} \land (X < 0) & \quad X \leftarrow -X \quad \{ X > 0 \} \\
\{ X \neq 0 \} & \quad \text{if } X < 0 \text{ then } X \leftarrow -X \text{ else skip } \{ X > 0 \} \\
\{ X > 0 \} & \quad \text{skip } \{ X > 0 \} \\
\{ X \neq 0 \} \land (X \geq 0) & \quad \text{skip } \{ X > 0 \}
\end{align*}
\]
Hoare rules: sequences

Sequences: \[
\begin{array}{c}
\{P\} \ s \ \{R\} \quad \{R\} \ t \ \{Q\} \\
\{P\} \ s; \ t \ \{Q\}
\end{array}
\]

to prove a sequence \(s; t \)
we must invent an intermediate assertion \(R \)
 implied by \(P \) after \(s \), and implying \(Q \) after \(t \)
(often denoted \(\{P\} \ s \ \{R\} \ t \ \{Q\} \))

example:
\[
\{X = 1 \land Y = 1\} \ X \leftarrow X + 1 \ \{X = 2 \land Y = 1\} \ Y \leftarrow Y - 1 \ \{X = 2 \land Y = 0\}
\]
Floyd–Hoare logic

Hoare rules: loops

Loops:

\[
\begin{align*}
\{ P \land e \} \ s \ \{ P \} \\
\{ P \} \ \textbf{while} \ e \ \textbf{do} \ s \ \{ P \land \neg e \}
\end{align*}
\]

\(P \) is a loop invariant:

\(P \) holds before each loop iteration, before even testing \(e \)

Practical use:

actually, we would rather prove the triple: \(\{ P \} \ \textbf{while} \ e \ \textbf{do} \ s \ \{ Q \} \)

it is sufficient to invent an assertion \(I \) that:

- holds when the loop start: \(P \Rightarrow I \)
- is invariant by the body \(s \): \(\{ I \land e \} \ s \ \{ I \} \)
- implies the assertion when the loop stops: \((I \land \neg e) \Rightarrow Q \)

we can derive the rule:

\[
\begin{align*}
P \Rightarrow I & \quad I \land \neg e \Rightarrow Q \\
\{ I \land e \} \ s \ \{ I \} \\
\{ I \} \ \textbf{while} \ e \ \textbf{do} \ s \ \{ I \land \neg e \}
\end{align*}
\]

\(\{ P \} \ \textbf{while} \ e \ \textbf{do} \ s \ \{ Q \} \)
Hoare rules: logical part

Hoare logic is **parameterized** by the choice of logical theory of assertions. The logical theory is used to:

- **prove** properties of the form $P \Rightarrow Q$ (rule of consequence)
- **simplify** formulas
 (replace a formula with a simpler one, equivalent in a logical sens: \Leftrightarrow)

Examples: (generally first order theories)

- booleans ($\mathbb{B}, \neg, \land, \lor$)
- bit-vectors ($\mathbb{B}^n, \neg, \land, \lor$)
- Presburger arithmetic ($\mathbb{N}, +$)
- Peano arithmetic ($\mathbb{N}, +, \times$)
- linear arithmetic on \mathbb{R}
- Zermelo-Fraenkel set theory ($\in, \{\}$)
- theory of arrays (lookup, update)

Theories have different expressiveness, decidability and complexity results. This is an important factor when trying to automate program verification.
Hoare rules: summary

\[
\begin{align*}
\{P\} \text{ skip } \{P\} & \\
\{\text{true}\} \text{ fail } \{\text{false}\} & \\
\{P[e/X]\} X \leftarrow e \{P\} & \\
\{P\} s \{R\} & \quad \{R\} t \{Q\} \quad \{P\} s; t \{Q\} \\
\{P \land e\} s \{Q\} & \quad \{P \land \neg e\} t \{Q\} \quad \{P\} \text{ if } e \text{ then } s \text{ else } t \{Q\} \\
\{P \land e\} s \{P\} & \quad \{P\} \text{ while } e \text{ do } s \{P \land \neg e\} \\
\end{align*}
\]

\[
\begin{align*}
P \Rightarrow P' & \quad Q' \Rightarrow Q & \quad \{P'\} c \{Q'\} \\
\{P\} c \{Q\} &
\end{align*}
\]
Proof tree example

\[s \overset{\text{def}}{=} \text{while } I < N \text{ do } (X \leftarrow 2X; \ I \leftarrow I + 1) \]

\[
\begin{array}{c}
\{ P_3 \} \ X \leftarrow 2X & \{ P_2 \} \\
\{ P_2 \} \ I \leftarrow I + 1 & \{ P_1 \} \\
\{ P_1 \land I < N \} \ X \leftarrow 2X; \ I \leftarrow I + 1 & \{ P_1 \} \\
\end{array}
\]

\[
\begin{array}{c}
\{ P_1 \} \ s & \{ P_1 \land I \geq N \} \\
\{ X = 1 \land I = 0 \land N \geq 0 \} \ s & \{ X = 2^N \land N = I \land N \geq 0 \}
\end{array}
\]

\[
P_1 \overset{\text{def}}{=} X = 2^I \land I \leq N \land N \geq 0
\]

\[
P_2 \overset{\text{def}}{=} X = 2^{I+1} \land I + 1 \leq N \land N \geq 0
\]

\[
P_3 \overset{\text{def}}{=} 2X = 2^{I+1} \land I + 1 \leq N \land N \geq 0 \quad \equiv \quad X = 2^I \land I < N \land N \geq 0
\]

\[
A : (X = 1 \land I = 0 \land N \geq 0) \Rightarrow P_1
\]

\[
B : (P_1 \land I \geq N) \Rightarrow (X = 2^N \land N = I \land N \geq 0)
\]

\[
C : P_3 \iff (P_1 \land I < N)
\]
Proof tree example

\[s \overset{\text{def}}{=} \text{while } l \neq 0 \text{ do } l \leftarrow l - 1 \]

\[
\begin{align*}
\{\text{true}\} & \quad l \leftarrow l - 1 \quad \{\text{true}\} \\
\{l \neq 0\} & \quad l \leftarrow l - 1 \quad \{\text{true}\}
\end{align*}
\]

\[
\{\text{true}\} \quad \text{while } l \neq 0 \text{ do } l \leftarrow l - 1 \quad \{\text{true} \land \neg(l \neq 0)\}
\]

\[
\{\text{true}\} \quad \text{while } l \neq 0 \text{ do } l \leftarrow l - 1 \quad \{l = 0\}
\]

- in some cases, the program does not terminate
 (if the program starts with \(l < 0 \))

- the same proof holds for:
 \(\{\text{true}\} \quad \text{while } l \neq 0 \text{ do } J \leftarrow J - 1 \quad \{l = 0\} \)

- anything can be proven of a program that never terminates:

\[
\begin{align*}
\{l = 1 \land l \neq 0\} & \quad J \leftarrow J - 1 \quad \{l = 1\} \\
\{l = 1\} & \quad \text{while } l \neq 0 \text{ do } J \leftarrow J - 1 \quad \{l = 1 \land l = 0\}
\end{align*}
\]

\[
\{l = 1\} \quad \text{while } l \neq 0 \text{ do } J \leftarrow J - 1 \quad \{\text{false}\}
\]
Example: we wish to prove:

\[
\{ X = Y = 0 \} \textbf{ while } X < 10 \textbf{ do } (X \leftarrow X + 1; \ Y \leftarrow Y + 1) \{ X = Y = 10 \}
\]

we need to find an invariant assertion \(P \) for the \textbf{while} rule

Incorrect invariant: \(P \overset{\text{def}}{=} X, Y \in [0, 10] \)

- \(P \) indeed holds at each loop iteration \((P \) is an invariant\)
- but \(\{ P \land (X < 10) \} \ X \leftarrow X + 1; \ Y \leftarrow Y + 1 \{ P \} \) does not hold

\(P \land X < 10 \) does not prevent \(Y = 10 \) after \(Y \leftarrow Y + 1 \), \(P \) does not hold anymore
Example: we wish to prove:

\[\{ X = Y = 0 \} \textbf{while } X < 10 \textbf{ do } (X \leftarrow X + 1; \ Y \leftarrow Y + 1) \{ X = Y = 10 \} \]

we need to find an invariant assertion \(P \) for the \textbf{while} rule

Correct invariant: \(P' \overset{\text{def}}{=} X \in [0, 10] \land X = Y \)

- \(P' \) also holds at each loop iteration \((P' \text{ is an invariant}) \)
- \(\{ P' \land (X < 10) \} X \leftarrow X + 1; \ Y \leftarrow Y + 1 \{ P' \} \) can be proven
- \(P' \) is an \textbf{inductive invariant}
 \(\text{(passes to the induction, stable by a loop iteration)} \)

\[\implies \]

to prove a loop invariant
 it is often necessary to find a \textbf{stronger} inductive loop invariant
Auxiliary variables:

Auxiliary variables: mathematical variables that do not appear in the program they are constant during program execution

Applications:

- simplify proofs
- express more properties (contracts, input-output relations)
- achieve (relative) completeness on extended languages (concurrency, recursive procedures)

Example:

\[\{ X = x \land Y = y \} \text{ if } X < Y \text{ then } Y \leftarrow X \text{ else skip } \{ Y = \min(x, y) \} \]

- \(x \) and \(y \) retain the values of \(X \) and \(Y \) from the program entry
- \(Y = \min(X, Y) \) is much less useful as a specification of a \(\min \) function

"\{true\} \text{ if } X < Y \text{ then } Y \leftarrow X \text{ else skip } \{ Y = \min(X, Y) \}" holds, but "\{true\} \(X \leftarrow Y + 1 \text{ } \{ Y = \min(X, Y) \} \)" also holds
Floyd–Hoare logic

Link with denotational semantics

Reminder: \(S[\text{ stat }] : \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E}) \) where \(\mathcal{E} \overset{\text{def}}{=} \forall \leftrightarrow \emptyset \)

\(S[\text{ skip }] R \overset{\text{def}}{=} R \)

\(S[\text{ fail }] R \overset{\text{def}}{=} \emptyset \)

\(S[s_1; s_2] \overset{\text{def}}{=} S[s_2] \circ S[s_1] \)

\(S[X \leftarrow e] R \overset{\text{def}}{=} \{ \rho[X \mapsto v] | \rho \in R, v \in E[e] \rho \} \)

\(S[\text{ if } e \text{ then } s_1 \text{ else } s_2] R \overset{\text{def}}{=} S[s_1] \{ \rho \in R | \text{true} \in E[e] \rho \} \cup S[s_2] \{ \rho \in R | \text{false} \in E[e] \rho \} \)

\(S[\text{ while } e \text{ do } s] R \overset{\text{def}}{=} \{ \rho \in \text{lf} \rho F | \text{false} \in E[e] \rho \} \)

where \(F(X) \overset{\text{def}}{=} R \cup S[s] \{ \rho \in X | \text{true} \in E[e] \rho \} \)

Theorem

\(\{ P \} \ c \ \{ Q \} \overset{\text{def}}{\leftrightarrow} \forall R \subseteq \mathcal{E}: R \models P \implies S[c] R \models Q \)

\((A \models P \text{ means } \forall \rho \in A, \text{ the formula } P \text{ is true on the variable assignment } \rho) \)
Floyd–Hoare logic

Link with denotational semantics

- Hoare logic reasons on formulas
- denotational semantics reasons on state sets

we can assimilate assertion formulas and state sets
(logical abuse: we assimilate formulas and models)

let \([R]\) be any formula representing the set \(R\), then:

- \([[R]] \ c \ {[S\[c]\] R}]\) is always valid
- \([[R]] \ c \ {[R']}\) \(\Rightarrow\) \(S\[c]\ R \subseteq R'\)

\(\Rightarrow\) \([S\[c]\ R]\) provides the best valid postcondition
Link with denotational semantics

Loop invariants

- **Hoare:**
 to prove \(\{ P \} \textbf{while} e \textbf{do} s \{ P \land \neg e \} \) we must prove \(\{ P \land e \} \textbf{do} s \{ P \} \)
 i.e., \(P \) is an **inductive invariant**

- **Denotational semantics:**
 we must find \(\text{lfp} \ F \) where \(F(X) \stackrel{\text{def}}{=} R \cup S[\{s\}] \{ \rho \in X \mid \rho \models e \} \)
 - \(\text{lfp} \ F = \cap \{ X \mid F(X) \subseteq X \} \) (Tarski’s theorem)
 - \(F(X) \subseteq X \iff ([R] \Rightarrow [X]) \land \{[X \land e]\} \textbf{do} s \{[X]\} \)
 - \(R \subseteq X \) means \([R] \Rightarrow [X]\),
 - \(S[\{s\}] \{ \rho \in X \mid \rho \models e \} \subseteq X \) means \([X \land e]\) \textbf{do} s \{[X]\}

As a consequence:

- any \(X \) such that \(F(X) \subseteq X \) gives an inductive invariant
- \(\text{lfp} \ F \) gives the best inductive invariant
- any \(X \) such that \(\text{lfp} \ F \subseteq X \) gives an invariant
 (not necessarily inductive)

(see [Cousot02])
Predicate calculus
Dijkstra’s weakest liberal preconditions

Principle: predicate calculus
- calculus to derive preconditions from postconditions
- order and mechanize the search for intermediate assertions
 (easier to go backwards, mainly due to assignments)

Weakest liberal precondition \(\text{wlp} : (\text{prog} \times \text{Prop}) \rightarrow \text{Prop} \)

\(\text{wlp}(c, P) \) is the weakest, i.e. most general, precondition ensuring that \(\{ \text{wlp}(c, P) \} \ c \ \{P\} \) is a Hoare triple

(greatest state set that ensures that the computation ends up in \(P \))

formally: \(\{P\} \ c \ \{Q\} \iff (P \Rightarrow \text{wlp}(c, Q)) \)

“liberal” means that we do not care about termination and errors

Examples:

\[
\begin{align*}
\text{wlp}(X \leftarrow X + 1, X = 1) &= \\
\text{wlp(while } X < 0 \ X \leftarrow X + 1, X \geq 0) &= \\
\text{wlp(while } X \neq 0 \ X \leftarrow X + 1, X \geq 0) &=
\end{align*}
\]

(introduced in [Dijkstra75])
Dijkstra’s weakest liberal preconditions

Principle: predicate calculus
- calculus to derive preconditions from postconditions
- order and mechanize the search for intermediate assertions
 (easier to go backwards, mainly due to assignments)

Weakest liberal precondition \(wlp : (\text{prog} \times \text{Prop}) \rightarrow \text{Prop} \)

\(wlp(c, P) \) is the weakest, i.e. most general, precondition ensuring that \(\{ wlp(c, P) \} \ c \ \{ P \} \) is a Hoare triple
(greatest state set that ensures that the computation ends up in \(P \))

formally: \(\{ P \} \ c \ \{ Q \} \iff (P \Rightarrow wlp(c, Q)) \)

“liberal” means that we do not care about termination and errors

Examples:
\[
\begin{align*}
wlp(X \leftarrow X + 1, \ X = 1) &= (X = 0) \\
wlp(\text{while } X < 0 \ X \leftarrow X + 1, \ X \geq 0) &= \text{true} \\
wlp(\text{while } X \neq 0 \ X \leftarrow X + 1, \ X \geq 0) &= \text{true}
\end{align*}
\]
(introduced in [Dijkstra75])
A calculus for \textit{wlp}

\textit{wlp} is defined by induction on the syntax of programs:

\[
\text{wlp}(\text{skip}, P) \overset{\text{def}}{=} P \\
\text{wlp}(\text{fail}, P) \overset{\text{def}}{=} \text{true} \\
\text{wlp}(X \leftarrow e, P) \overset{\text{def}}{=} P[e/X] \\
\text{wlp}(s; t, P) \overset{\text{def}}{=} \text{wlp}(s, \text{wlp}(t, P)) \\
\text{wlp}(\text{if } e \text{ then } s \text{ else } t, P) \overset{\text{def}}{=} (e \Rightarrow \text{wlp}(s, P)) \land (\neg e \Rightarrow \text{wlp}(t, P)) \\
\text{wlp}(\text{while } e \text{ do } s, P) \overset{\text{def}}{=} I \land ((e \land I) \Rightarrow \text{wlp}(s, I)) \land ((\neg e \land I) \Rightarrow P)
\]

- \(e \Rightarrow Q \) is equivalent to \(Q \lor \neg e \)
 - weakest property that matches \(Q \) when \(e \) holds
 - but says nothing when \(e \) does not hold

- \textbf{while} loops require providing an \textbf{invariant predicate} \(I \)
 - intuitively, \textit{wlp} checks that \(I \) is an inductive invariant implying \(P \)
 - if so, it returns \(I \); otherwise, it returns false
 - \textit{wlp} is the weakest precondition only if \(I \) is well-chosen...
\[\text{wlp}(\text{if } X < 0 \text{ then } Y \leftarrow -X \text{ else } Y \leftarrow X, \ Y \geq 10) = \]

\[(X < 0 \Rightarrow \text{wlp}(Y \leftarrow -X, \ Y \geq 10)) \land (X \geq 0 \Rightarrow \text{wlp}(Y \leftarrow X, \ Y \geq 10)) \]

\[(X < 0 \Rightarrow -X \geq 10) \land (X \geq 0 \Rightarrow X \geq 10) = \]

\[(X \geq 0 \lor -X \geq 10) \land (X < 0 \lor X \geq 10) = \]

\[X \geq 10 \lor X \leq -10 \]

\text{wlp} \text{ generates complex formulas}
\text{it is important to simplify them from time to time}
Properties of \(wlp \)

- \(wlp(c, \text{false}) \equiv \text{false} \) (excluded miracle)

- \(wlp(c, P) \land wlp(d, Q) \equiv wlp(c, P \land Q) \) (distributivity)

- \(wlp(c, P) \lor wlp(d, Q) \equiv wlp(c, P \lor Q) \) (distributivity)

 (\(\Rightarrow \) always true, \(\Leftarrow \) only true for deterministic, error-free programs)

- if \(P \Rightarrow Q \), then \(wlp(c, P) \Rightarrow wlp(c, Q) \) (monotonicity)

\(A \equiv B \) means that the formulas \(A \) and \(B \) are equivalent

i.e., \(\forall \rho: \rho \models A \iff \rho \models B \)

(stronger than syntactic equality)
Strongest liberal postconditions

we can define \(slp : (\text{Prop} \times \text{prog}) \rightarrow \text{Prop} \)

\[
\{ P \} \ c \ \{ slp(P, c) \}
\]

(postcondition)

\[
\{ P \} \ c \ \{ Q \} \iff (slp(P, c) \Rightarrow Q)
\]

(strongest postcondition)

(corresponds to the smallest state set)

\(slp(P, c) \) does not care about non-termination

(liberal)

allows forward reasoning

we have a duality:

\[
(P \Rightarrow wlp(c, Q)) \iff (slp(P, c) \Rightarrow Q)
\]

proof: \((P \Rightarrow wlp(c, Q)) \iff \{ P \} \ c \ \{ Q \} \iff (slp(P, c) \Rightarrow Q) \)
Calculus for slp

\[slp(P, \text{skip}) \stackrel{\text{def}}{=} P \]

\[slp(P, \text{fail}) \stackrel{\text{def}}{=} \text{false} \]

\[slp(P, X \leftarrow e) \stackrel{\text{def}}{=} \exists v: P[v/X] \land X = e[v/X] \]

\[slp(P, s; t) \stackrel{\text{def}}{=} slp(slp(P, s), t) \]

\[slp(P, \text{if } e \text{ then } s \text{ else } t) \stackrel{\text{def}}{=} slp(P \land e, s) \lor slp(P \land \neg e, t) \]

\[slp(P, \text{while } e \text{ do } s) \stackrel{\text{def}}{=} (P \Rightarrow I) \land (slp(I \land e, s) \Rightarrow I) \land (\neg e \land I) \]

(the rule for \(X \leftarrow e \) makes \(slp \) much less attractive than \(wlp \))
Verification conditions
How can we automate program verification using logic?

- **Hoare logic**: deductive system
 - can only automate the checking of proofs

- **Predicate transformers**: \(wlp \), \(slp \) calculus
 - construct (big) formulas mechanically
 - invention is still needed for loops

- **Verification condition generation**
 - take as input a program with annotations
 (at least contracts and loop invariants)
 - generate mechanically logic formulas ensuring the correctness
 (reduction to a mathematical problem, no longer any reference to a program)
 - use an automatic SAT/SMT solver to prove (discharge) the formulas
 or an interactive theorem prover

(the idea of logic-based automated verification appears as early as \([\text{King69}]\))
Language

\[
\begin{align*}
\text{stat} & ::= \ X \leftarrow \text{expr} \\
& \mid \text{skip} \\
& \mid \text{stat; stat} \\
& \mid \text{if expr then stat else stat} \\
& \mid \text{while \{ Prop\} expr do stat} \\
& \mid \text{assert expr}
\end{align*}
\]

\[
\begin{align*}
\text{prog} & ::= \ \{ \text{Prop}\} \text{stat} \{ \text{Prop}\}
\end{align*}
\]

- loops are annotated with loop invariants
- optional assertions at any point
- programs are annotated with a contract
 (precondition and postcondition)
Verification condition generation algorithm

\[\text{vcg}_p : \text{prog} \rightarrow \mathcal{P}(\text{Prop}) \]

\[\text{vcg}_p(\{P\} \ c \ \{Q\}) \overset{\text{def}}{=} \text{let } (R, C) = \text{vcg}_s(c, Q) \text{ in } C \cup \{P \Rightarrow R\} \]

\[\text{vcg}_s : (\text{stat} \times \text{Prop}) \rightarrow (\text{Prop} \times \mathcal{P}(\text{Prop})) \]

\[\text{vcg}_s(\text{skip}, Q) \overset{\text{def}}{=} (Q, \emptyset) \]

\[\text{vcg}_s(X \leftarrow e, Q) \overset{\text{def}}{=} (Q[e/X], \emptyset) \]

\[\text{vcg}_s(s; t, Q) \overset{\text{def}}{=} \text{let } (R, C) = \text{vcg}_s(t, Q) \text{ in let } (P, D) = \text{vcg}_s(s, R) \text{ in } (P, C \cup D) \]

\[\text{vcg}_s(\text{if } e \text{ then } s \text{ else } t, Q) \overset{\text{def}}{=} \]

\[\text{let } (S, C) = \text{vcg}_s(s, Q) \text{ in let } (T, D) = \text{vcg}_s(t, Q) \text{ in } ((e \Rightarrow S) \land (\neg e \Rightarrow T), C \cup D) \]

\[\text{vcg}_s(\text{while } \{I\} e \text{ do } s, Q) \overset{\text{def}}{=} \]

\[\text{let } (R, C) = \text{vcg}_s(s, I) \text{ in } (I, C \cup \{(I \land e) \Rightarrow R, (I \land \neg e) \Rightarrow Q\}) \]

\[\text{vcg}_s(\text{assert } e, Q) \overset{\text{def}}{=} (e \Rightarrow Q, \emptyset) \]

We use \textit{wlp} to infer assertions automatically when possible.

\[\text{vcg}_s(c, P) = (P', C) \text{ propagates postconditions backwards and accumulates into } C \text{ verification conditions (from loops).} \]
Verification condition generation example

Consider the program:

$$\{N \geq 0\} \quad X \leftarrow 1; \ I \leftarrow 0;$$

while $$\{X = 2^I \land 0 \leq I \leq N\} \ I < N$$ do

$$\quad (X \leftarrow 2X; \ I \leftarrow I + 1)$$

$$\{X = 2^N\}$$

we get three verification conditions:

$$C_1 \overset{\text{def}}{=} (X = 2^I \land 0 \leq I \leq N) \land I \geq N \Rightarrow X = 2^N$$

$$C_2 \overset{\text{def}}{=} (X = 2^I \land 0 \leq I \leq N) \land I < N \Rightarrow 2X = 2^{I+1} \land 0 \leq I + 1 \leq N$$

(from $$(X = 2^I \land 0 \leq I \leq N)[I + 1/I, 2X/X]$$)

$$C_3 \overset{\text{def}}{=} N \geq 0 \Rightarrow 1 = 2^0 \land 0 \leq 0 \leq N$$

(from $$(X = 2^I \land 0 \leq I \leq N)[0/I, 1/X]$$)

which can be checked independently
What about real languages?

In a real language such as C, the rules are not so simple

Example: the assignment rule

\[
\{ P[e/X] \} \; X \leftarrow e \{ P \}
\]

requires that

- \(e \) has no effect (memory write, function calls)
- there is no pointer aliasing
- \(e \) has no run-time error

moreover, the operations in the program and in the logic may not match:

- integers: logic models \(\mathbb{Z} \), computers use \(\mathbb{Z}/2^n\mathbb{Z} \) (wrap-around)
- continuous:
 - logic models \(\mathbb{Q} \) or \(\mathbb{R} \), programs use floating-point numbers (rounding error)
 - a logic for pointers and dynamic allocation is also required (separation logic)

(see for instance the tool Why, to see how some problems can be circumvented)
Termination
Total correctness

Hoare triple: \([P] \text{ prog } [Q]\)
- if \(P\) holds before \text{ prog} is executed
- then \text{ prog} always terminates
- and \(Q\) holds after the execution of \text{ prog}

Rules: we only need to change the rule for \textbf{while}

\[
\forall t \in W: [P \land e \land u = t] \implies [P \land u < t] \\
\hline
[|P|] \text{ while } e \text{ do } s [P \land \neg e]
\]

\((W, \prec)\) well-founded \(\iff\) every \(V \subseteq W, V \neq \emptyset\) has a minimal element for \(\prec\)
ensures that we cannot decrease infinitely by \(\prec\) in \(W\)
generally, we simply use \((\mathbb{N}, <)\)
(also useful: lexicographic orders, ordinals)

- in addition to the loop invariant \(P\)
we invent an expression \(u\) that strictly decreases by \(s\)
\(u\) is called a “ranking function”
only often \(\neg e \implies u = 0\): \(u\) counts the number of steps until termination
To simplify, we can decompose a proof of total correctness into:

- a proof of partial correctness $\{P\} \ c \ \{Q\}$ ignoring termination
- a proof of termination $[P] \ c \ [true]$ ignoring the specification

we must still include the precondition P as the program may not terminate for all inputs.

Indeed, we have:

$$
\frac{\{P\} \ c \ \{Q\} \quad [P] \ c \ [true]}{[P] \ c \ [Q]}
$$
Total correctness example

We use a simpler rule for integer ranking functions \(((W, \prec) \overset{\text{def}}{=} (\mathbb{N}, \leq)) \) using an integer expression \(r \) over program variables:

\[
\forall n: [P \land e \land (r = n)] \quad s \quad [P \land (r < n)] \quad (P \land e) \Rightarrow (r \geq 0)
\]

\[
[P] \quad \textbf{while} \quad e \quad \textbf{do} \quad s \quad [P \land \neg e]
\]

Example: \(p \overset{\text{def}}{=} \textbf{while} \quad I < N \quad \textbf{do} \quad I \leftarrow I + 1; \quad X \leftarrow 2X \quad \textbf{done} \)

we use \(r \overset{\text{def}}{=} N - I \) and \(P \overset{\text{def}}{=} \text{true} \)

\[
\forall n: [I \land N - I = n] \quad I \leftarrow I + 1; \quad X \leftarrow 2X \quad [N - I = n - 1]
\]

\[
I \land N \Rightarrow N - I \geq 0
\]

\[
\text{[true]} \quad p \quad [I \geq N]
\]
Weakest precondition

Weakest precondition \(wp(prog, \text{Prop}) : \text{Prop} \)

- similar to \(wlp \), but also additionally imposes termination
- \([P] c [Q] \iff (P \Rightarrow wp(c, Q)) \)

As before, only the definition for \textbf{while} needs to be modified:

\[
wp(\text{while } e \text{ do } s, P) \overset{\text{def}}{=} I \land (I \Rightarrow v \geq 0) \land \\
\forall n: ((e \land I \land v = n) \Rightarrow wp(s, I \land v < n)) \land \\
((\neg e \land I) \Rightarrow P)
\]

the invariant predicate \(I \) is combined with a \textbf{variant expression} \(v \)

- \(v \) is positive (this is an invariant: \(I \Rightarrow v \geq 0 \))
- \(v \) decreases at each loop iteration

and similarly for strongest postconditions
Non-determinism
Non-determinism in Hoare logic

We model non-determinism with the statement $X \leftarrow ?$ meaning: X is assigned a random value

($X \leftarrow [a, b]$ can be modeled as: $X \leftarrow ?;\text{ if } X < a \lor X > b \text{ then fail;}$)

Hoare axiom:

$$\{\forall X : P\} \quad X \leftarrow ? \quad \{P\}$$

If P is true after assigning X to random then P must hold whatever the value of X before

Often, X does not appear in P and we get simply:

$$\{P\} \quad X \leftarrow ? \quad \{P\}$$

Example:

$$\begin{align*}
\{X = x\} \quad Y &\leftarrow X \quad \{Y = x\} \\
\{Y = x\} \quad X &\leftarrow ? \quad \{Y = x\} \\
\{Y = x\} \quad X &\leftarrow Y \quad \{X = x\} \\
\{X = x\} \quad Y &\leftarrow X; \quad X \leftarrow ?; \quad X \leftarrow Y \quad \{X = x\}
\end{align*}$$
Non-determinism in predicate calculus

Predicate transformers:

- \(\text{wlp}(X \leftarrow ?, P) \overset{\text{def}}{=} \forall X: P \)

 \((P \text{ must hold whatever the value of } X \text{ before the assignment})\)

- \(\text{slp}(P, X \leftarrow ?) \overset{\text{def}}{=} \exists X: P \)

 \((\text{if } P \text{ held for one value of } X, P \text{ holds for all values of } X \text{ after the assignment})\)

Link with operational semantics (as transition systems)

predicates \(P \) as sets of states \(P \subseteq \Sigma \)
commands \(c \) as transition relations \(c \subseteq \Sigma \times \Sigma \)

we define:
\[
\text{post}[\tau](P) \overset{\text{def}}{=} \{ \sigma' | \exists \sigma \in P: (\sigma, \sigma') \in \tau \} \\
\text{pre}[\tau](P) \overset{\text{def}}{=} \{ \sigma | \forall \sigma' \in \Sigma: (\sigma, \sigma') \in \tau \implies \sigma' \in P \}
\]

then:
\(\text{slp}(P, c) = \text{post}[c](P) \)
\(\text{wlp}(c, P) = \text{pre}[c](P) \)
Arrays
Arrays

Array syntax

We enrich our language with:

- a set \mathcal{A} of array variables
- array access in expressions: $A(expr)$, $A \in \mathcal{A}$
- array assignment: $A(expr) \leftarrow expr$, $A \in \mathcal{A}$
 (arrays have unbounded size here, we do not care about overflow)

Issue:

a natural idea is to generalize the assignment axiom:

$$\{P[f/A(e)]\} \ A(e) \leftarrow f \ \{P\}$$

but this is not sound, due to aliasing

example:

we would derive the invalid triple: $$\{A(J) = 1 \land I = J\} \ A(I) \leftarrow 0 \ \{A(J) = 1 \land I = J\}$$
as $(A(J) = 1)[0/A(I)] = (A(J) = 1)$
Solution: use a specific theory of arrays (McCarthy 1962)

- enrich the assertion language with expressions $A\{e \mapsto f\}$
 meaning: the array equal to A except that index e maps to value f

- add the axiom

\[
\{P[A\{e \mapsto f\} / A]\} \quad A(e) \leftarrow f \quad \{P\}
\]

intuitively, we use “functional arrays” in the logic world

- add logical axioms to reason about our arrays in assertions

\[
A\{e \mapsto f\}(e) = f \quad (e \neq e') \Rightarrow (A\{e \mapsto f\}(e') = A(e'))
\]
Example: swap

given the program \(p \overset{\text{def}}{=} T \leftarrow A(I); \ A(I) \leftarrow A(J); \ A(J) \leftarrow T \)

we wish to prove: \(\{A(I) = x \land A(J) = y\} \ p \ \{A(I) = y \land A(J) = x\} \)

by propagating \(A(I) = y \) backwards by the assignment rule, we get
\[
\begin{align*}
A\{ J \mapsto T \}(I) &= y \\
A\{ I \mapsto A(J) \}\{ J \mapsto T \}(I) &= y \\
A\{ I \mapsto A(J) \}\{ J \mapsto A(I) \}(I) &= y
\end{align*}
\]

we consider two cases:

if \(I = J \), then \(A\{ I \mapsto A(J) \}\{ J \mapsto A(I) \} = A \)
so, \(A\{ I \mapsto A(J) \}\{ J \mapsto A(I) \}(I) = A(I) = A(J) \)

if \(I \neq J \), then \(A\{ I \mapsto A(J) \}\{ J \mapsto A(I) \}(I) = A\{ I \mapsto A(J) \}(I) = A(J) \)
in both cases, we get \(A(J) = y \) in the precondition

likewise, \(A(I) = x \) in the precondition
Concurrent programs
Concurrent programs

Concurrent program syntax

Language

add a parallel composition statement: $\text{stat} || \text{stat}$

semantics: $s_1 || s_2$

- execute s_1 and s_2 in parallel
- allowing an arbitrary interleaving of atomic statements
 (expression evaluation or assignments)
- terminates when both s_1 and s_2 terminate

Hoare logic: extended by Owicki and Gries [Owicki76]

first idea: $\begin{align*}
\{P_1\} s_1 \{Q_1\} \quad \{P_2\} s_2 \{Q_2\} \\
\{P_1 \land P_2\} s_1 || s_2 \{Q_1 \land Q_2\}
\end{align*}$

but this is unsound
Concurrent programs: rule soundness

Issue:

\[
\begin{array}{c}
\{ P_1 \} \ s_1 \ \{ Q_1 \} \\
\{ P_2 \} \ s_2 \ \{ Q_2 \}
\end{array}
\]

\[
\{ P_1 \land P_2 \} \ s_1 \ || \ s_2 \ \{ Q_1 \land Q_2 \}
\]

is not always sound

example:

given \(s_1 \ \overset{\text{def}}{=} \ X \leftarrow 1 \) and \(s_2 \ \overset{\text{def}}{=} \ \text{if } X = 0 \text{ then } Y \leftarrow 1 \), we derive:

\[
\begin{array}{c}
\{ X = Y = 0 \} \ s_1 \ \{ X = 1 \land Y = 0 \} \\
\{ X = 1 \land Y = 0 \} \ s_1 \ || \ s_2 \ \{ X = Y = 0 \land Y = 1 \}
\end{array}
\]

\[
\{ X = Y = 0 \} \ s_1 \ || \ s_2 \ \{ \text{false} \}
\]

Solution:

the proofs of \(\{ P_1 \} \ s_1 \ \{ Q_1 \} \) and \(\{ P_2 \} \ s_2 \ \{ Q_2 \} \) must not interfere
Concurrent programs: rule soundness

interference freedom

given proofs Δ_1 and Δ_2 of $\{P_1\} s_1 \{Q_1\}$ and $\{P_2\} s_2 \{Q_2\}$

Δ_1 does not interfere with Δ_2 if:

for any Φ appearing before a statement in Δ_1

for any $\{P'_2\} s'_2 \{Q'_2\}$ appearing in Δ_2

$\{\Phi \land P'_2\} s'_2 \{\Phi\}$ holds

and moreover $\{Q_1 \land P'_2\} s'_2 \{Q_1\}$

i.e.: the assertions used to prove $\{P_1\} s_1 \{Q_1\}$ are stable by s_2

example:

given $s_1 \overset{\text{def}}{=} X \leftarrow 1$ and $s_2 \overset{\text{def}}{=} \text{if } X = 0 \text{ then } Y \leftarrow 1$, we derive:

$\{X = 0 \land Y \in [0, 1]\} s_1 \{X = 1 \land Y \in [0, 1]\}$

$\{X \in [0, 1] \land Y = 0\} s_2 \{X \in [0, 1] \land Y \in [0, 1]\}$

$\{X = Y = 0\} s_1 \parallel s_2 \{X = 1 \land Y \in [0, 1]\}$
Concurrent programs: rule completeness

Issue: incompleteness

\[
\{X = 0\} \ X \leftarrow X + 1 \ || \ X \leftarrow X + 1 \ \{X = 2\} \text{ is valid}
\]

but no proof of it can be derived

Solution: auxiliary variables

introduce explicitly program points and program counters

example:

\[
\ell_1 X \leftarrow X + 1 \ || \ \ell_2 X \leftarrow X + 1 \ \ell_3 X \leftarrow X + 1 \ \ell_4
\]

with auxiliary variables \(pc_1 \in \{1, 2\}\), \(pc_2 \in \{3, 4\}\)

we can now express that a process is at a given control point and distinguish assertions based on the location of other processes

\[
s_1 \overset{\text{def}}{=} \ell_1 X \leftarrow X + 1 \ \ell_2, \ s_2 \overset{\text{def}}{=} \ell_3 X \leftarrow X + 1 \ \ell_4
\]

\[
\{(pc_2 = 3 \land X = 0) \lor (pc_2 = 4 \land X = 1)\} \ s_1 \ \{(pc_2 = 3 \land X = 1) \lor (pc_2 = 4 \land X = 2)\}
\]

\[
\{(pc_1 = 1 \land X = 0) \lor (pc_1 = 2 \land X = 1)\} \ s_2 \ \{(pc_1 = 1 \land X = 1) \lor (pc_1 = 2 \land X = 2)\}
\]

\[
\implies \{pc_1 = 1 \land pc_2 = 3 \land X = 0\} \ s_1 \ || \ s_2 \ \{pc_1 = 2 \land pc_2 = 4 \land X = 1\}
\]

in fact, auxiliary variables make the proof method complete
Conclusion
Conclusion

- logic allows us to reason about program correctness
- verification can be reduced to proofs of simple logic statements

Issue: automation

- annotations are required (loop invariants, contracts)
- verification conditions must be proven

To scale up to realistic programs, we need to automate as much as possible

Some solutions:

- automatic logic solvers to discharge proof obligations
 - SAT / SMT solvers
- abstract interpretation to approximate the semantics
 - fully automatic
 - able to infer invariants

