Operational Semantics
Semantics and applications to verification

Xavier Rival
École Normale Supérieure

February 19, 2016
Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. A model of programs: transition systems
 - definition, a small step semantics
 - a few common examples

2. Trace semantics: a kind of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics
Outline

1 Transition systems and small step semantics
 - Definition and properties
 - Examples

2 Traces semantics

3 Summary
Definition

We will characterize a program by:

- **states:**
 photography of the program status at an instant of the execution

- **execution steps:** how do we move from one state to the next one

Definition: transition systems (TS)

A **transition system** is a tuple \((S, \rightarrow)\) where:

- \(S\) is the **set of states** of the system
- \(\rightarrow \subseteq \mathcal{P}(S \times S)\) is the **transition relation** of the system

Note:

- the set of states **may be infinite**
A **deterministic** system is such that a state fully determines the next state:

\[\forall s_0, s_1, s_1' \in S, (s_0 \rightarrow s_1 \land s_0 \rightarrow s_1') \implies s_1 = s_1' \]

Otherwise, a transition system is **non deterministic**, i.e.:

\[\exists s_0, s_1, s_1' \in S, s_0 \rightarrow s_1 \land s_0 \rightarrow s_1' \land s_1 \neq s_1' \]

Notes:
- the transition relation \rightarrow defines atomic execution steps; it is often called **small-step semantics** or **structured operational semantics**
- steps are **discrete** (not continuous)
 to describe both discrete and continuous behaviors, we would need to look at **hybrid systems** (beyond the scope of this lecture)
Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** $S_I \subseteq S$ denotes states where the execution should start
- a set of **final states** $S_F \subseteq S$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $(S, \rightarrow, S_I, S_F)$.

Blocking state (not the same as final state):

- a state $s_0 \in S$ is **blocking** when it is the origin of no transition: $\forall s_1 \in S, \neg (s_0 \rightarrow s_1)$
- example: we often introduce an **error state** (usually noted Ω to denote the erroneous, blocking configuration)
Outline

1 Transition systems and small step semantics
 • Definition and properties
 • Examples

2 Traces semantics

3 Summary
Finite automata as transition systems

We can clearly formalize the **word recognition** by a finite automaton using a transition system:

- We consider **automaton** $A = (Q, q_i, q_f, \rightarrow)$
- A “state” is defined by:
 - the remaining of the word to recognize
 - the **automaton state** that has been reached so far
 thus, $S = Q \times L^*$
- The **transition relation** \rightarrow of the transition system is defined by:
 $$(q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1$$
- The initial and **final states** are defined by:
 $$S_I = \{(q_i, w) \mid w \in L^*\} \quad S_F = \{(q_f, \epsilon)\}$$
Pure λ-calculus

A bare bones model of functional programing:

<table>
<thead>
<tr>
<th>λ-terms</th>
<th>β-reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set of λ-terms is defined by:</td>
<td></td>
</tr>
<tr>
<td>(t, u, \ldots) ::= (x) variable</td>
<td></td>
</tr>
<tr>
<td>(\lambda x \cdot t) abstraction</td>
<td>((\lambda x \cdot t) (u)) (\rightarrow_\beta) (t[x \leftarrow u])</td>
</tr>
<tr>
<td>(t u) application</td>
<td>if (u \rightarrow_\beta v) then (\lambda x \cdot u \rightarrow_\beta \lambda x \cdot v)</td>
</tr>
<tr>
<td></td>
<td>if (u \rightarrow_\beta v) then (u t \rightarrow_\beta v t)</td>
</tr>
<tr>
<td></td>
<td>if (u \rightarrow_\beta v) then (t u \rightarrow_\beta t v)</td>
</tr>
</tbody>
</table>

The λ-calculus defines a transition system:

- \(\mathcal{S} \) is the set of λ-terms and \(\rightarrow_\beta \) the transition relation
- \(\rightarrow_\beta \) is **non-deterministic**; example?
 - though, ML fixes an execution order
- given a lambda term \(t_0 \), we may consider \((\mathcal{S}, \rightarrow_\beta, \mathcal{S}_I) \) where \(\mathcal{S}_I = \{ t_0 \} \)
- **blocking states** are terms with no redex \((\lambda x \cdot u) v \)
A MIPS like assembly language: syntax

We now consider a (very simplified) **assembly language**

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: \mathbb{I}_{MIPS}) and stored into the same space as data (i.e., $\mathbb{I}_{\text{MIPS}} \subseteq \mathbb{B}^{32}$)
- we assume a fixed set of addresses \mathbb{A}

Memory configurations

- **Program counter** pc
 - current instruction
- **General purpose registers**
 - $r_0 \ldots r_{31}$
- **Main memory** (RAM)
 - $\text{mem} : \mathbb{A} \rightarrow \mathbb{B}^{32}$
 - where $\mathbb{A} \subseteq \mathbb{B}^{32}$

Instructions

$$i ::= (\in \mathbb{I}_{\text{MIPS}})$$

- $\text{add } r_d, r_s, r_{s'}$ addition
- $\text{addi } r_d, r_s, v$ add. $v \in \mathbb{B}^{32}$
- $\text{sub } r_d, r_s, r_{s'}$ subtraction
- $b t$ branch
- $\text{blt } r_s, r_{s'}, t$ cond. branch
- $\text{ld } r_d, o, r_x$ relative load
- $\text{st } r_d, o, r_x$ relative store

$v, t, o \in \mathbb{B}^{32}, d, s, s', x \in [0, 31]$
A MIPS like assembly language: states

Definition: state

A state is a tuple \((\pi, \rho, \mu)\) which comprises:

- A **program counter** value \(\pi \in \mathbb{B}^{32}\)
- A function mapping each **general purpose register** to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- A function mapping each **memory cell** to its value \(\mu : A \rightarrow \mathbb{B}^{32}\)

What would a **dangerous state** be?

- writing **over an instruction**
- reading or writing **outside the program’s memory**
- we cannot fully formalize these yet...

 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{add } r_d, r_s, r_{s'}$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)$$

- **if** $i = \text{addi } r_d, r_s, v$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)$$

- **if** $i = \text{sub } r_d, r_s, r_{s'}$, **then**:
 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)$$

- **if** $i = \text{b } t$, **then**:
 $$s \rightarrow (t, \rho, \mu)$$
A MIPS like assembly language: transition relation

We assume a state \(s = (\pi, \rho, \mu) \) and that \(\mu(\pi) = i \); then:

- **if** \(i = \text{blt} \, r_s, r_{s'}, t \), then:
 \[
 s \rightarrow \begin{cases}
 (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\
 (\pi + 4, \rho, \mu) & \text{otherwise}
 \end{cases}
 \]

- **if** \(i = \text{ld} \, r_d, o, r_x \), then:
 \[
 s \rightarrow \begin{cases}
 (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in A \\
 \Omega & \text{otherwise}
 \end{cases}
 \]

- **if** \(i = \text{st} \, r_d, o, r_x \), then:
 \[
 s \rightarrow \begin{cases}
 (\pi + 4, \rho, \mu[r(x) + o \leftarrow \rho(d)]) & \text{if } \rho(x) + o \in A \\
 \Omega & \text{otherwise}
 \end{cases}
 \]
A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- **variables** X: finite, predefined set of variables
- **labels** L: before and after each statement
- **values** V: $V_{\text{int}} \cup V_{\text{float}} \cup \ldots$

Syntax

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>expressions</td>
</tr>
<tr>
<td>c</td>
<td>conditions</td>
</tr>
<tr>
<td>i</td>
<td>assignment</td>
</tr>
<tr>
<td>b</td>
<td>loop</td>
</tr>
</tbody>
</table>

- $e ::= v \ (v \in V) \mid x \ (x \in X) \mid e + e \mid e * e \mid \ldots$
- $c ::= \text{TRUE} \mid \text{FALSE} \mid e < e \mid e = e$
- $i ::= x := e;$
- $i ::= \text{if}(c) \ b \ \text{else} \ b$
- $i ::= \text{while}(c) \ b$
- $b ::= \{i; \ldots; i;\}$
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution.

The **control state** defines *where* the program currently is:

- analogous to the *program counter*
- can be defined by adding **labels** \(L = \{ \ell_0, \ell_1, \ldots \} \) between each pair of consecutive statements; then:

\[
S = L \times M \cup \{ \Omega \}
\]

- or by the **program remaining to be executed**; then:

\[
S = P \times M \cup \{ \Omega \}
\]

The **memory state** defines the current contents of the memory:

\[
m \in M = X \rightarrow V
\]
A simple imperative language: semantics of expressions

- The semantics $\llbracket e \rrbracket$ of expression e should evaluate each expression into a value, given a memory state.

- Evaluation errors may occur: division by zero...
 error value is also noted Ω

Thus: $\llbracket e \rrbracket : M \rightarrow V \cup \{\Omega\}$

Definition, by induction over the syntax:

- $\llbracket v \rrbracket (m) = v$
- $\llbracket x \rrbracket (m) = m(x)$
- $\llbracket e_0 + e_1 \rrbracket (m) = \llbracket e_0 \rrbracket (m) \oplus \llbracket e_1 \rrbracket (m)$
- $\llbracket e_0 \div e_1 \rrbracket (m) = \begin{cases} \Omega & \text{if } \llbracket e_1 \rrbracket (m) = 0 \\ \llbracket e_0 \rrbracket (m) \div \llbracket e_1 \rrbracket (m) & \text{otherwise} \end{cases}$

where \oplus is the machine implementation of operator \oplus, and is Ω-strict, i.e., $\forall v \in V, \ v \oplus \Omega = \Omega \oplus v = \Omega$.
The semantics $[c]$ of condition c should return a boolean value. It follows a similar definition to that of the semantics of expressions:

$$[c] : M \rightarrow \mathbb{V}_{\text{bool}} \cup \{\Omega\}$$

Definition, by induction over the syntax:

$$[\text{TRUE}](m) = \text{TRUE}$$
$$[\text{FALSE}](m) = \text{FALSE}$$

$$[e_0 < e_1](m) = \begin{cases}
\text{TRUE} & \text{if } [e_0](m) < [e_1](m) \\
\text{FALSE} & \text{if } [e_0](m) \geq [e_1](m) \\
\Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega
\end{cases}$$

$$[e_0 = e_1](m) = \begin{cases}
\text{TRUE} & \text{if } [e_0](m) = [e_1](m) \\
\text{FALSE} & \text{if } [e_0](m) \neq [e_1](m) \\
\Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega
\end{cases}$$
A simple imperative language: transitions

Transitions describe **local program execution steps**, thus are defined by case analysis on the program statements

Case of **assignment** \(l_0 : x = e; l_1 \)

- if \([e](m) \neq \Omega \), then \((l_0, m) \rightarrow (l_1, m[x \leftarrow [e](m)]) \)
- if \([e](m) = \Omega \), then \((l_0, m) \rightarrow \Omega \)

Case of **condition** \(l_0 : \text{if}(c)\{ l_1 : b_t \ l_2 \} \text{else}\{ l_3 : b_f \ l_4 \} \ l_5 \)

- if \([c](m) = \text{TRUE} \), then \((l_0, m) \rightarrow (l_1, m) \)
- if \([c](m) = \text{FALSE} \), then \((l_0, m) \rightarrow (l_3, m) \)
- if \([c](m) = \Omega \), then \((l_0, m) \rightarrow \Omega \)
- \((l_2, m) \rightarrow (l_5, m) \)
- \((l_4, m) \rightarrow (l_5, m) \)
A simple imperative language: transitions

Case of **loop** $l_0 : \text{while}(c)\{l_1 : b_t \ l_2 \} \ l_3$

- if $[c](m) = \text{TRUE}$, then $\begin{cases} (l_0, m) \rightarrow (l_1, m) \\ (l_2, m) \rightarrow (l_1, m) \end{cases}$
- if $[c](m) = \text{FALSE}$, then $\begin{cases} (l_0, m) \rightarrow (l_3, m) \\ (l_2, m) \rightarrow (l_3, m) \end{cases}$
- if $[c](m) = \Omega$, then $\begin{cases} (l_0, m) \rightarrow \Omega \\ (l_2, m) \rightarrow \Omega \end{cases}$

Case of $\{l_0 : i_0; l_1 : \ldots; l_{n-1} i_{n-1}; l_n\}$
- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit limited:
- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non-deterministic inputs...

... with an input instruction:
- \(i ::= \ldots \mid x ::= \text{input()} \)
- \(\ell_0 : x ::= \text{input()} ; \ell_1 \) generates transitions
 \[
 \forall v \in \mathcal{V}, (\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow v])
 \]
- one instruction induces non-determinism

... with a random function:
- \(e ::= \ldots \mid \text{rand()} \)
- expressions have a non-deterministic semantics:
 \[
 \begin{align*}
 \llbracket e \rrbracket : M & \rightarrow \mathcal{P}(\mathcal{V} \cup \{\Omega\}) \\
 \llbracket \text{rand()} \rrbracket (m) & = \mathcal{V} \\
 \llbracket v \rrbracket (m) & = \{v\} \\
 \llbracket c \rrbracket : M & \rightarrow \mathcal{P}(\mathcal{V}_{\text{bool}} \cup \{\Omega\})
 \end{align*}
 \]
- all instructions induce non-determinism
Semantics of real world programming languages

C language:
- several **norms**: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- **formalizations** in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
So far, we considered only states and atomic transitions.

We now consider program executions as a whole.

Definition: traces

- A **finite trace** is a finite sequence of states s_0, \ldots, s_n, noted $\langle s_0, \ldots, s_n \rangle$.
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$.

Besides, we write:

- S^* for the set of finite traces
- S^ω for the set of infinite traces
- $S^\infty = S^* \cup S^\omega$ for the set of finite or infinite traces
Operations on traces: concatenation

Definition: concatenation

The concatenation operator \cdot is defined by:

\[
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_n \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots, s'_n \rangle \\
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots \rangle \\
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' = \langle s_0, \ldots, s_n, \ldots \rangle
\]

We also define:

- the empty trace ϵ, neutral element for \cdot.
- the length operator $|.|$:

\[
\begin{cases}
|\epsilon| &= 0 \\
|\langle s_0, \ldots, s_n \rangle| &= n + 1 \\
|\langle s_0, \ldots \rangle| &= \omega
\end{cases}
\]
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \(\prec \) is defined by:

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_n \rangle \iff \left\{ \begin{array}{l}
 n \leq n' \\
 \forall i \in [0, n], \ s_i = s'_i
\end{array} \right.
\]

\[
\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, \ s_i = s'_i
\]

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], \ s_i = s'_i
\]

Proof: straightforward application of the definition of order relations
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Semantics of finite traces

We consider a transition system $\mathcal{S} = (\mathcal{S}, \rightarrow)$

Definition

The *finite traces semantics* $\mathcal{F}[\mathcal{S}]$ is defined by:

$$\mathcal{F}[\mathcal{S}] = \{ \langle s_0, \ldots, s_n \rangle \in \mathcal{S}^* | \forall i, s_i \rightarrow s_{i+1} \}$$

Example:

- contrived transition system $\mathcal{S} = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

$$\mathcal{F}[\mathcal{S}] = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \langle c \rangle, \langle d \rangle \}$$
Interesting subsets of the finite trace semantics

We consider a transition system $S = (S, \rightarrow, S_I, S_F)$

- the **initial traces**, i.e., starting from an initial state:
 \[\{\langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_0 \in S_I\}\]

- the **traces reaching a blocking state**:
 \[\{\sigma \in [S]^* \mid \forall \sigma' \in [S]^*, \sigma < \sigma' \implies \sigma = \sigma'\}\]

- the **traces ending in a final state**:
 \[\{\langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_n \in S_F\}\]

- the **maximal traces** are both initial and final

Example (same transition system, with $S_I = \{a\}$ and $S_F = \{c\}$):

- traces from an initial state ending in a final state:
 \[\{\langle a, b, \ldots, a, b, a, b, c \rangle\}\]
Example: finite automaton

We consider the example of the previous course:

\[L = \{a, b\} \quad Q = \{q_0, q_1, q_2\} \]

\[q_i = q_0 \quad q_f = q_2 \]

\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1 \]

Then, we have the following traces:

\[\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle \]
\[\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle \]
\[\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle \]
\[\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle \]

Then:

- \(\tau_0, \tau_1 \) are initial traces, reaching a final state
- \(\tau_2 \) is an initial trace, and is not maximal
- \(\tau_3 \) reaches a blocking state, but not a final state
Example: λ-term

We consider λ-term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

$\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \lambda y \cdot y \rangle$

$\tau_1 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \rangle$

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[
\begin{align*}
\ell_0 : & \quad x := 1; \\
\ell_1 : & \quad y := 0; \\
\ell_2 : & \quad \textbf{while}(x < 4)\{ \\
& \quad \ell_3 : \quad y := y + x; \\
& \quad \ell_4 : \quad x := x + 1; \\
\ell_5 : & \quad \} \\
\ell_6 : & \quad \text{(final program point)}
\end{align*}
\]

\[
\tau = \langle \ell_0, (x = 6, y = 8) \rangle, (\ell_1, (x = 1, y = 8)) \rangle, \\
(\ell_2, (x = 1, y = 0)), (\ell_3, (x = 1, y = 0)) \rangle, \\
(\ell_4, (x = 1, y = 1)), (\ell_5, (x = 2, y = 1)) \rangle, \\
(\ell_3, (x = 2, y = 1)), (\ell_4, (x = 2, y = 3)) \rangle, \\
(\ell_5, (x = 3, y = 3)), (\ell_3, (x = 3, y = 3)) \rangle, \\
(\ell_4, (x = 3, y = 6)), (\ell_5, (x = 4, y = 6)) \rangle, \\
(\ell_6, (x = 4, y = 6)) \rangle
\]

- very **precise** description of what the program does...
- ... but **quite cumbersome**
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a\rangle, \langle b\rangle, \langle c\rangle, \langle d\rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b\rangle, \langle b, a\rangle, \langle b, c\rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a\rangle, \langle b, a, b\rangle, \langle a, b, c\rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b\rangle, \langle b, a, b, a\rangle, \langle b, a, b, c\rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1\) can be derived from the traces of length \(i\), by adding a transition
Trace semantics fixpoint form

We define a semantic function, that computes the traces of length \(i + 1 \) from the traces of length \(i \) (where \(i \geq 1 \)), and adds the traces of length 1:

Finite traces semantics as a fixpoint

Let \(\mathcal{I} = \{ \epsilon \} \cup \{ \langle s \rangle \mid s \in \mathcal{S} \} \). Let \(F_* \) be the function defined by:

\[
F_* : \mathcal{P}(\mathcal{S}^*) \rightarrow \mathcal{P}(\mathcal{S}^*)
\]

\[
\quad X \quad \mapsto \quad \mathcal{I} \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1} \}
\]

Then, \(F_* \) is continuous and thus has a least-fixpoint and:

\[
\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
First, we prove that F_* is continuous.

Let $\mathcal{X} \subseteq \mathcal{P}(S^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

\[
F_*(\bigcup_{X \in \mathcal{X}} X) = I \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U \land s_n \rightarrow s_{n+1}\}
\]

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(S^*), \subseteq)$ is a CPO, the continuity of F_* entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

\[
\text{Ifp } F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
Fixpoint definition: proof (2), fixpoint equality

We now show that $\llbracket S \rrbracket^*$ is equal to $\text{lfp} \ F_\ast$, by showing the property below, by induction over n:

$$\forall k < n, \langle s_0, \ldots, s_k \rangle \in F_\ast^n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in \llbracket S \rrbracket^*$$

- at rank 0, only trace ϵ needs to be considered, and its case is trivial
- at rank $n + 1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n + 1$ for some integer $n \geq 1$:

\[
\begin{align*}
\langle s_0, \ldots, s_k, s_{k+1} \rangle &\in \llbracket S \rrbracket^* \\
\iff &\langle s_0, \ldots, s_k \rangle \in \llbracket S \rrbracket^* \land s_k \rightarrow s_{k+1} \\
\iff &\langle s_0, \ldots, s_k \rangle \in F_\ast^n(\emptyset) \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1) \\
\iff &\langle s_0, \ldots, s_k, s_{k+1} \rangle \in F_\ast^{n+1}(\emptyset)
\end{align*}
\]
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (\mathcal{S}, \rightarrow)$:
- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

\[
\begin{align*}
F^0_*(\emptyset) & = \emptyset \\
F^1_*(\emptyset) & = \{\epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\} \\
F^2_*(\emptyset) & = F^1_*(\emptyset) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\} \\
F^3_*(\emptyset) & = F^2_*(\emptyset) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\} \\
F^4_*(\emptyset) & = F^3_*(\emptyset) \cup \{\langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\} \\
F^5_*(\emptyset) & = F^4_*(\emptyset) \cup \{\langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle\} \\
F^6_*(\emptyset) & = \ldots
\]

The traces of $[\mathcal{S}]^*$ of length $n + 1$ appear in $F^*_n(\emptyset)$
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
The traces semantics definition we have seen is global:

- the whole system defines a transition relation
- we iterate this relation until we get a fixpoint

Though, a modular definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure

- **λ-terms** are defined by induction over the syntax
- **imperative programs** are defined by induction over the syntax
- **there are exceptions**: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics $[.]$ is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,

When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that

$[\pi] = F_C([\pi_0], \ldots, [\pi_k])$, where F_C depends only on syntactic construction F_C.
Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$b^* = [i_0]^* \cup [i_1]^* \cup \{ \langle s_0, \ldots, s_m \rangle | \exists n \in [0, m], \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}$$

This amounts to concatenating traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language
Case of λ-calculus

Case of a λ-term $t = (\lambda x \cdot u)v$:
- executions may start with a reduction in u
- executions may start with a reduction in v
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in u and v in an arbitrary order

No nice compositional trace semantics of λ-calculus...
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\} \]

System behaviors:

- this system clearly has non-terminating behaviors:
 it can loop from a to b and back forever
- the finite traces semantics does show the existence of this cycle as
 there exists an infinite chain of finite traces for the prefix order \(\prec \):
 \[\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [S]^* \]
 though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system \(\mathcal{S} = (\mathcal{S}, \rightarrow) \)

Definition

The **infinite traces semantics** \([\mathcal{S}]^{\omega}\) is defined by:

\[
[\mathcal{S}]^{\omega} = \{ \langle s_0, \ldots \rangle \in \mathcal{S}^{\omega} | \forall i, s_i \rightarrow s_{i+1} \}
\]

Infinite traces starting from an initial state (considering \(\mathcal{S} = (\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F) \)):

\[
\{ \langle s_0, \ldots \rangle \in [\mathcal{S}]^{\omega} | s_0 \in \mathcal{S}_I \}
\]

Example:

- contrived transition system defined by
 \[
 \mathcal{S} = \{ a, b, c, d \} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\}
 \]

- the infinite traces semantics contains exactly two traces
 \[
 [\mathcal{S}]^{\omega} = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}
 \]
Fixpoint form

Can we also provide a fixpoint form for $[S]^\omega$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^\omega$ if and only if $\forall n, s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, s_k \rightarrow s_{k+1}$$

Let F_ω be defined by:

$$F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)$$

$$X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^\omega \iff \forall n \in \mathbb{N}, \sigma \in F_\omega^n(S^\omega)$$

$$\iff \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

$$F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)$$

$$X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle | \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, F_ω is \cap-continuous and thus has a greatest-fixpoint; moreover:

$$\text{gfp } F_\omega = \llbracket S \rrbracket^\omega = \bigcap_{n \in \mathbb{N}} F^n_\omega(S^\omega)$$

Proof sketch:

- the \cap-continuity proof is similar as for the \cup-continuity of F_*
- by the dual version of Kleene’s theorem, $\text{gfp } F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F^n_\omega(S^\omega)$, i.e. to $\llbracket S \rrbracket^\omega$ (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- $S = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

- $F_0^\omega(S^\omega) = S^\omega$
- $F_1^\omega(S^\omega) = \langle a, b \rangle \cdot S^\omega \cup \langle b, a \rangle \cdot S^\omega \cup \langle b, c \rangle \cdot S^\omega$
- $F_2^\omega(S^\omega) = \langle b, a, b \rangle \cdot S^\omega \cup \langle a, b, a \rangle \cdot S^\omega \cup \langle a, b, c \rangle \cdot S^\omega$
- $F_3^\omega(S^\omega) = \langle a, b, a, b \rangle \cdot S^\omega \cup \langle b, a, b, a \rangle \cdot S^\omega \cup \langle b, a, b, c \rangle \cdot S^\omega$
- $F_4^\omega(S^\omega) = \ldots$

Intuition

- at iterate n, prefixes of length $n + 1$ match the traces in the infinite semantics
- only $\langle a, b, \ldots, a, b, a, b, \ldots \rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots \rangle$ belong to all iterates
Outline

1 Transition systems and small step semantics
2 Traces semantics
3 Summary
Summary

We have discussed today:

- **small-step / structural operational semantics:** individual program steps
- **big-step / natural semantics:** program executions as sequences of transitions
- their **fixpoint definitions** and properties will play a great role to design verification techniques

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program** and proof methods