Program of this first lecture

Operational semantics
Mathematical description of the executions of a program

1 A model of programs: transition systems
 - definition, a small step semantics
 - a few common examples

2 Trace semantics: a kind of big step semantics
 - finite and infinite executions
 - fixpoint-based definitions
 - notion of compositional semantics
Outline

1 Transition systems and small step semantics
 - Definition and properties
 - Examples

2 Traces semantics

3 Summary
Definition

We will characterize a program by:

- **states**: photography of the program status at an instant of the execution
- **execution steps**: how do we move from one state to the next one

Definition: transition systems (TS)

A **transition system** is a tuple \((S, \rightarrow)\) where:

- \(S\) is the **set of states** of the system
- \(\rightarrow \subseteq \mathcal{P}(S \times S)\) is the **transition relation** of the system

Note:
- the set of states **may be infinite**
Transition systems: properties of the transition relation

A **deterministic** system is such that a state fully determines the next state

\[\forall s_0, s_1, s'_1 \in S, \ (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1 \]

Otherwise, a transition system is **non deterministic**, i.e.:

\[\exists s_0, s_1, s'_1 \in S, \ s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1 \]

Notes:

- the transition relation \rightarrow defines atomic execution steps; it is often called **small-step semantics** or **structured operational semantics**
- steps are **discrete** (not continuous) to describe both discrete and continuous behaviors, we would need to look at **hybrid systems** (beyond the scope of this lecture)
Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of initial states $S_I \subseteq S$ denotes states where the execution should start
- a set of final states $S_F \subseteq S$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems ($(S, \rightarrow, S_I, S_F)$).

Blocking state (not the same as final state):

- a state $s_0 \in S$ is blocking when it is the origin of no transition: $\forall s_1 \in S, \neg (s_0 \rightarrow s_1)$
- example: we often introduce an error state (usually noted Ω to denote the erroneous, blocking configuration)
Outline

1 Transition systems and small step semantics
 • Definition and properties
 • Examples

2 Traces semantics

3 Summary
Finite automata as transition systems

We can clearly formalize the **word recognition** by a finite automaton using a transition system:

- **We consider automaton** \(A = (Q, q_i, q_f, \rightarrow) \)
- **A “state”** is defined by:
 - the *remaining of the word to recognize*
 - the *automaton state* that has been reached so far
 thus, \(S = Q \times L^* \)
- **The transition relation** \(\rightarrow \) of the transition system is defined by:
 \[
 (q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1
 \]
- **The initial and final states** are defined by:
 \[
 S_I = \{(q_i, w) \mid w \in L^*\} \quad S_F = \{(q_f, \epsilon)\}
 \]
Pure λ-calculus

A bare bones model of functional programing:

λ-terms

The set of λ-terms is defined by:

$$t, u, \ldots ::= x \quad \text{variable}$$

$$| \quad \lambda x \cdot t \quad \text{abstraction}$$

$$| \quad t \ u \quad \text{application}$$

β-reduction

- $$(\lambda x \cdot t) \ u \rightarrow_{\beta} t[x \leftarrow u]$$
- if $u \rightarrow_{\beta} v$ then $\lambda x \cdot u \rightarrow_{\beta} \lambda x \cdot v$
- if $u \rightarrow_{\beta} v$ then $u \ t \rightarrow_{\beta} v \ t$
- if $u \rightarrow_{\beta} v$ then $t \ u \rightarrow_{\beta} t \ v$

The λ-calculus defines a transition system:

- S is the set of λ-terms and \rightarrow_{β} the transition relation
- \rightarrow_{β} is non-deterministic; example?
 - though, ML fixes an execution order
- given a lambda term t_0, we may consider $(S, \rightarrow_{\beta}, S_I)$ where $S_I = \{ t_0 \}$
- **blocking states** are terms with no redex $(\lambda x \cdot u) \ v$
A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: \mathbb{I}_{MIPS})
 and stored into the same space as data (i.e., $\mathbb{I}_{\text{MIPS}} \subseteq \mathbb{B}^{32}$)
- we assume a fixed set of addresses \mathbb{A}

Memory configurations

- **Program counter** pc
 current instruction
- **General purpose registers** $r_0 \ldots r_{31}$
- **Main memory** (RAM)
 $\text{mem} : \mathbb{A} \rightarrow \mathbb{B}^{32}$
 where $\mathbb{A} \subseteq \mathbb{B}^{32}$

Instructions

$$i ::= (\in \mathbb{I}_{\text{MIPS}})$$

- $\text{add } r_d, r_s, r_s'$ addition
- $\text{addi } r_d, r_s, v$ add. $v \in \mathbb{B}^{32}$
- $\text{sub } r_d, r_s, r_s'$ subtraction
- $\text{blt } r_s, r_s', t$ cond. branch
- $\text{ld } r_d, o, r_x$ relative load
- $\text{st } r_d, o, r_x$ relative store

$v, t, o \in \mathbb{B}^{32}$, $d, s, s', x \in [0, 31]$
A MIPS like assembly language: states

Definition: state

A state is a tuple \((\pi, \rho, \mu)\) which comprises:

- A **program counter** value \(\pi \in \mathbb{B}^{32}\)
- A function mapping each **general purpose register** to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- A function mapping each **memory cell** to its value \(\mu : A \rightarrow \mathbb{B}^{32}\)

What would a **dangerous state** be?

- writing **over an instruction**
- reading or writing **outside the program’s memory**
- we cannot fully formalize these yet...

 as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (\pi, \rho, \mu)$ and that $\mu(\pi) = i$; then:

- **if** $i = \text{add } r_d, r_s, r_{s'}$, **then**:

 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + \rho(s')], \mu)$$

- **if** $i = \text{addi } r_d, r_s, v$, **then**:

 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) + v], \mu)$$

- **if** $i = \text{sub } r_d, r_s, r_{s'}$, **then**:

 $$s \rightarrow (\pi + 4, \rho[d \leftarrow \rho(s) - \rho(s')], \mu)$$

- **if** $i = \text{bt } t$, **then**:

 $$s \rightarrow (t, \rho, \mu)$$
A MIPS like assembly language: transition relation

We assume a state \(s = (\pi, \rho, \mu) \) and that \(\mu(\pi) = i \); then:

- **if** \(i = \text{blt } r_s, r_{s'}, t \), then:
 \[
 s \rightarrow \begin{cases}
 (t, \rho, \mu) & \text{if } \rho(s) < \rho(s') \\
 (\pi + 4, \rho, \mu) & \text{otherwise}
 \end{cases}
 \]

- **if** \(i = \text{ld } r_d, o, r_x \), then:
 \[
 s \rightarrow \begin{cases}
 (\pi + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \rho(x) + o \in \mathbb{A} \\
 \Omega & \text{otherwise}
 \end{cases}
 \]

- **if** \(i = \text{st } r_d, o, r_x \), then:
 \[
 s \rightarrow \begin{cases}
 (\pi + 4, \rho, \mu[\rho(x) + o \leftarrow \rho(d)]) & \text{if } \rho(x) + o \in \mathbb{A} \\
 \Omega & \text{otherwise}
 \end{cases}
 \]
A simple imperative language: syntax

We now look at a more classical **imperative language** (intuitively, a bare-bone subset of C):

- **variables** X: finite, predefined set of variables
- **labels** L: before and after each statement
- **values** V: $\mathbb{V}_{\text{int}} \cup \mathbb{V}_{\text{float}} \cup \ldots$

Syntax

<table>
<thead>
<tr>
<th>e</th>
<th>::=</th>
<th>$v \ (v \in V)$</th>
<th>$x \ (x \in X)$</th>
<th>$e + e$</th>
<th>$e * e$</th>
<th>\ldots</th>
<th>expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>::=</td>
<td>TRUE</td>
<td>FALSE</td>
<td>$e < e$</td>
<td>$e = e$</td>
<td>conditions</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>::=</td>
<td>$x := e;$</td>
<td>$\text{if}(c) \ b \ \text{else} \ b$</td>
<td>$\text{while}(c) \ b$</td>
<td>assignment</td>
<td>condition</td>
<td>loop</td>
</tr>
<tr>
<td>b</td>
<td>::=</td>
<td>${i ; \ldots ; i ;}$</td>
<td>block, program(P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution.

The **control state** defines where the program currently is:
- analogous to the **program counter**
- can be defined by adding **labels** \(\mathbb{L} = \{ \ell_0, \ell_1, \ldots \} \) between each pair of consecutive statements; then:

\[
S = \mathbb{L} \times \mathbb{M} \uplus \{ \Omega \}
\]

- or by the **program remaining to be executed**; then:

\[
S = \mathbb{P} \times \mathbb{M} \uplus \{ \Omega \}
\]

The **memory state** defines the current contents of the memory:

\[
m \in \mathbb{M} = \mathbb{X} \rightarrow \mathbb{V}
\]
A simple imperative language: semantics of expressions

- The semantics $[e]$ of expression e should evaluate each expression into a value, given a memory state.
- **Evaluation errors** may occur: division by zero...

 Error value is also noted Ω.

Thus: $[e] : M \rightarrow V \cup \{\Omega\}$

Definition, by induction over the syntax:

- $[v](m) = v$
- $[x](m) = m(x)$
- $[e_0 + e_1](m) = [e_0](m) \oplus [e_1](m)$
- $[e_0 / e_1](m) = \begin{cases}
\Omega & \text{if } [e_1](m) = 0 \\
[e_0](m) \oplus [e_1](m) & \text{otherwise}
\end{cases}$

where \oplus is the machine implementation of operator \oplus, and is Ω-strict, i.e.,

$\forall v \in V, \ v \oplus \Omega = \Omega \oplus v = \Omega$.
A simple imperative language: semantics of conditions

- The semantics $[c]$ of condition c should return a boolean value.
- It follows a similar definition to that of the semantics of expressions: $[c] : M \rightarrow \mathbb{V}_{\text{bool}} \cup \{\Omega\}$

Definition, by induction over the syntax:

- $[\text{TRUE}](m) = \text{TRUE}$
- $[\text{FALSE}](m) = \text{FALSE}$
- $[e_0 < e_1](m) = \begin{cases} \text{TRUE} & \text{if } [e_0](m) < [e_1](m) \\ \text{FALSE} & \text{if } [e_0](m) \geq [e_1](m) \\ \Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega \end{cases}$
- $[e_0 = e_1](m) = \begin{cases} \text{TRUE} & \text{if } [e_0](m) = [e_1](m) \\ \text{FALSE} & \text{if } [e_0](m) \neq [e_1](m) \\ \Omega & \text{if } [e_0](m) = \Omega \text{ or } [e_1](m) = \Omega \end{cases}$
A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by case analysis on the program statements.

Case of assignment $l_0 : x = e; l_1$

- if $\llbracket e \rrbracket(m) \neq \Omega$, then $(l_0, m) \rightarrow (l_1, m[x \leftarrow \llbracket e \rrbracket(m)])$
- if $\llbracket e \rrbracket(m) = \Omega$, then $(l_0, m) \rightarrow \Omega$

Case of condition $l_0 : \text{if}(c)\{ l_1 : b_t \ l_2 \} \ \text{else}\{ l_3 : b_f \ l_4 \} \ l_5$

- if $\llbracket c \rrbracket(m) = \text{TRUE}$, then $(l_0, m) \rightarrow (l_1, m)$
- if $\llbracket c \rrbracket(m) = \text{FALSE}$, then $(l_0, m) \rightarrow (l_3, m)$
- if $\llbracket c \rrbracket(m) = \Omega$, then $(l_0, m) \rightarrow \Omega$
- $(l_2, m) \rightarrow (l_5, m)$
- $(l_4, m) \rightarrow (l_5, m)$
A simple imperative language: transitions

Case of **loop** $l_0 : \textbf{while}(c)\{ l_1 : b \; l_2 \} \; l_3$

- if $\llbracket c \rrbracket(m) = \text{TRUE}$, then

 \[
 \begin{aligned}
 & (l_0, m) \rightarrow (l_1, m) \\
 & (l_2, m) \rightarrow (l_1, m)
 \end{aligned}
 \]

- if $\llbracket c \rrbracket(m) = \text{FALSE}$, then

 \[
 \begin{aligned}
 & (l_0, m) \rightarrow (l_3, m) \\
 & (l_2, m) \rightarrow (l_3, m)
 \end{aligned}
 \]

- if $\llbracket c \rrbracket(m) = \Omega$, then

 \[
 \begin{aligned}
 & (l_0, m) \rightarrow \Omega \\
 & (l_2, m) \rightarrow \Omega
 \end{aligned}
 \]

Case of $\{ l_0 : i_0; l_1 : \ldots ; l_{n-1} : i_{n-1}; l_n \}$

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit **limited**:
- it is **deterministic**: at most one transition possible from any state
- it does not support the **input of values**

Changes if we model non deterministic inputs...

... with an input instruction:
- $i ::= \ldots | x := \text{input}()$
- $\ell_0 : x := \text{input}(); \ell_1$ generates transitions
 \[
 \forall v \in \mathcal{V}, \ (\ell_0, m) \rightarrow (\ell_1, m[x \leftarrow v])
 \]
- one instruction induces non determinism

... with a random function:
- $e ::= \ldots | \text{rand}()$
- **expressions** have a non-deterministic semantics:
 \[
 \begin{align*}
 \llbracket e \rrbracket : \mathcal{M} &\rightarrow \mathcal{P}(\mathcal{V} \cup \{\Omega\}) \\
 \llbracket \text{rand()} \rrbracket (m) &\rightarrow \mathcal{V} \\
 \llbracket v \rrbracket (m) &\rightarrow \{v\} \\
 \llbracket c \rrbracket : \mathcal{M} &\rightarrow \mathcal{P}(\mathcal{V}_{\text{bool}} \cup \{\Omega\})
 \end{align*}
 \]
- all instructions induce non determinism
Semantics of real world programming languages

C language:
- several norms: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- formalizations in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A **finite trace** is a finite sequence of states s_0, \ldots, s_n, noted $\langle s_0, \ldots, s_n \rangle$
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$

Besides, we write:

- S^* for the **set of finite traces**
- S^ω for the **set of infinite traces**
- $S^\propto = S^* \cup S^\omega$ for the **set of finite or infinite traces**
Operations on traces: concatenation

Definition: concatenation

The **concatenation operator** \(\cdot \) is defined by:

\[
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_n \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots, s'_n \rangle \\
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots \rangle \\
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' = \langle s_0, \ldots, s_n, \ldots \rangle
\]

We also define:

- the **empty trace** \(\epsilon \), neutral element for \(\cdot \).
- the **length** operator \(|.| \):

\[
\begin{align*}
|\epsilon| &= 0 \\
|\langle s_0, \ldots, s_n \rangle| &= n + 1 \\
|\langle s_0, \ldots \rangle| &= \omega
\end{align*}
\]
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

$$\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_n \rangle \iff \left\{ \begin{array}{l} n \leq n' \\ \forall i \in [0, n], s_i = s'_i \end{array} \right.$$

$$\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, s_i = s'_i$$

$$\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], s_i = s'_i$$

Proof: straightforward application of the definition of order relations
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Semantics of finite traces

We consider a transition system $S = (S, \rightarrow)$

Definition

The finite traces semantics $\llbracket S \rrbracket^*$ is defined by:

$$\llbracket S \rrbracket^* = \{ \langle s_0, \ldots, s_n \rangle \in S^* | \forall i, s_i \rightarrow s_{i+1} \}$$

Example:

- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

$$\llbracket S \rrbracket^* = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \langle c \rangle, \langle d \rangle \}$$
Interesting subsets of the finite trace semantics

We consider a transition system $S = (S, \rightarrow, S_I, S_F)$

- the **initial traces**, i.e., starting from an initial state:
 \[\{ \langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_0 \in S_I \} \]

- the **traces reaching a blocking state**:
 \[\{ \sigma \in [S]^* \mid \forall \sigma' \in [S]^*, \sigma < \sigma' \implies \sigma = \sigma' \} \]

- the **traces ending in a final state**:
 \[\{ \langle s_0, \ldots, s_n \rangle \in [S]^* \mid s_n \in S_F \} \]

- the **maximal traces** are both initial and final

Example (same transition system, with $S_I = \{a\}$ and $S_F = \{c\}$):

- traces from an initial state ending in a final state:
 \[\{ \langle a, b, \ldots, a, b, a, b, c \rangle \} \]
Example: finite automaton

We consider the example of the previous course:

\[L = \{a, b\} \quad Q = \{q_0, q_1, q_2\} \]

\[q_i = q_0 \quad q_f = q_2 \]

\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1 \]

Then, we have the following traces:

\[\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle \]
\[\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle \]
\[\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle \]
\[\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle \]

Then:

- \(\tau_0, \tau_1 \) are initial traces, reaching a final state
- \(\tau_2 \) is an initial trace, and is not maximal
- \(\tau_3 \) reaches a blocking state, but not a final state
Example: λ-term

We consider λ-term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

\[
\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))), \\
\lambda y \cdot y \rangle
\]

\[
\tau_1 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))), \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))), \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \rangle
\]

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[l_0 : \ x := 1; \]
\[l_1 : \ y := 0; \]
\[l_2 : \ \text{while}(x < 4)\{ \]
\[l_3 : \quad y := y + x; \]
\[l_4 : \quad x := x + 1; \]
\[l_5 : \ \} \]
\[l_6 : \quad \text{(final program point)} \]

\[\tau = \langle \quad \]
\[(l_0, (x = 6, y = 8)), (l_1, (x = 1, y = 8))), \]
\[(l_2, (x = 1, y = 0)), (l_3, (x = 1, y = 0)) \rangle, \]
\[(l_4, (x = 1, y = 1)), (l_5, (x = 2, y = 1)) \rangle, \]
\[(l_3, (x = 2, y = 1)), (l_4, (x = 2, y = 3)) \rangle, \]
\[(l_5, (x = 3, y = 3)), (l_3, (x = 3, y = 3)) \rangle, \]
\[(l_4, (x = 3, y = 6)), (l_5, (x = 4, y = 6)) \rangle, \]
\[(l_6, (x = 4, y = 6)) \quad \rangle \]

- very **precise** description of what the program does...
- ... but **quite cumbersome**
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces \textbf{by length}:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a\rangle, \langle b\rangle, \langle c\rangle, \langle d\rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b\rangle, \langle b, a\rangle, \langle b, c\rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a\rangle, \langle b, a, b\rangle, \langle a, b, c\rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b\rangle, \langle b, a, b, a\rangle, \langle b, a, b, c\rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1\) can be derived from the traces of length \(i\), by adding a transition
Trace semantics fixpoint form

We define a **semantic function**, that computes the traces of length $i + 1$ from the traces of length i (where $i \geq 1$), and adds the traces of length 1:

Finite traces semantics as a fixpoint

Let $\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in S\}$. Let F_* be the function defined by:

$$
F_* : \mathcal{P}(S^*) \rightarrow \mathcal{P}(S^*) \\
X \mapsto \mathcal{I} \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\}
$$

Then, F_* is **continuous** and thus has a least-fixpoint and:

\[
\text{lfp } F_* = [S]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_* is **continuous**.

Let $\mathcal{X} \subseteq \mathcal{P}(\mathbb{S}^*)$ such that $\mathcal{X} \neq \emptyset$ and $A = \bigcup_{U \in \mathcal{X}} U$. Then:

\[
F_*(\bigcup_{X \in \mathcal{X}} X) = I \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{U \in \mathcal{X}} U) \land s_n \to s_{n+1} \} \\
= I \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists U \in \mathcal{X}, (\langle s_0, \ldots, s_n \rangle \in U \land s_n \to s_{n+1}) \} \\
= I \cup \left(\bigcup_{U \in \mathcal{X}} \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in U \land s_n \to s_{n+1}) \} \right) \\
= \bigcup_{U \in \mathcal{X}} (I \cup \{ \langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in U \land s_n \to s_{n+1}) \}) \\
= \bigcup_{U \in \mathcal{X}} F_*(U)
\]

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_* is continuous.

As $(\mathcal{P}(\mathbb{S}^*), \subseteq)$ is a CPO, the continuity of F_* entails the **existence of a least-fixpoint** (Kleene theorem); moreover, it implies that:

\[
\text{lfp } F_* = \bigcup_{n \in \mathbb{N}} F_*^n(\emptyset)
\]
Fixpoint definition: proof (2), fixpoint equality

We now show that $[[S]]^*$ is equal to $\text{lfp } F_*$, by showing the property below, by induction over n:

$$\forall k < n, \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \iff \langle s_0, \ldots, s_k \rangle \in [[S]]^*$$

- at rank 0, only trace ϵ needs to be considered, and its case is trivial
- at rank $n + 1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n + 1$ for some integer $n \geq 1$:

$$\langle s_0, \ldots, s_k, s_{k+1} \rangle \in [[S]]^*$$

$$\iff \langle s_0, \ldots, s_k \rangle \in [[S]]^* \land s_k \rightarrow s_{k+1}$$

$$\iff \langle s_0, \ldots, s_k \rangle \in F_*^n(\emptyset) \land s_k \rightarrow s_{k+1} \quad (k < n \text{ since } k + 1 < n + 1)$$

$$\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F_*^{n+1}(\emptyset)$$
Trace semantics fixpoint form: example

Example, with the same simple transition system \(S = (S, \rightarrow) \):

- \(S = \{a, b, c, d\} \)
- \(\rightarrow \) is defined by \(a \rightarrow b, b \rightarrow a \) and \(b \rightarrow c \)

Then, the first iterates are:

\[
\begin{align*}
F_0^*(\emptyset) &= \emptyset \\
F_1^*(\emptyset) &= \{\varepsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\} \\
F_2^*(\emptyset) &= F_1^*(\emptyset) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\} \\
F_3^*(\emptyset) &= F_2^*(\emptyset) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\} \\
F_4^*(\emptyset) &= F_3^*(\emptyset) \cup \{\langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\} \\
F_5^*(\emptyset) &= F_4^*(\emptyset) \cup \{\langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle\} \\
F_6^*(\emptyset) &= \ldots
\end{align*}
\]

The traces of \([S]^*\) of length \(n + 1\) appear in \(F_n^*(\emptyset)\)
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
The traces semantics definition we have seen is **global**:
- the **whole system** defines a **transition relation**
- we **iterate** this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure
- λ-terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics $\llbracket . \rrbracket$ is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,

When program π writes down as $C[\pi_0, \ldots, \pi_k]$ where π_0, \ldots, π_k are its components, there exists a function F_C such that $\llbracket \pi \rrbracket = F_C(\llbracket \pi_0 \rrbracket, \ldots, \llbracket \pi_k \rrbracket)$, where F_C depends only on syntactic construction F_C.
Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$[[b]]^* = [[i_0]]^* \cup [[i_1]]^*$$

$$\cup \{ \langle s_0, \ldots, s_m \rangle \mid \exists n \in [0, m], \langle s_0, \ldots, s_n \rangle \in [[i_0]]^* \land \langle s_n, \ldots, s_m \rangle \in [[i_1]]^* \}$$

This amounts to concatenating traces of $[[i_0]]^*$ and $[[i_1]]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language
Case of \(\lambda \)-calculus

Case of a \(\lambda \)-term \(t = (\lambda x \cdot u)v \):

- executions may start with a reduction in \(u \)
- executions may start with a reduction in \(v \)
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in \(u \) and \(v \) in an arbitrary order

No nice compositional trace semantics of \(\lambda \)-calculus...
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{a, b, c, d\} \quad \rightarrow = \{(a, b), (b, a), (b, c)\} \]

System behaviors:

- this system clearly has non-terminating behaviors: it can loop from \(a\) to \(b\) and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order \(\prec\):

\[\langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [[S]]^* \]

- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system $S = (\mathcal{S}, \rightarrow)\]

Definition

The **infinite traces semantics** $\llbracket S \rrbracket^\omega$ is defined by:

$$\llbracket S \rrbracket^\omega = \{ \langle s_0, \ldots \rangle \in \mathcal{S}^\omega \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Infinite traces starting from an initial state (considering $S = (\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F)$):

$$\{ \langle s_0, \ldots \rangle \in \llbracket S \rrbracket^\omega \mid s_0 \in \mathcal{S}_I \}$$

Example:

- contrived transition system defined by
 $$\mathcal{S} = \{ a, b, c, d \} \quad (\rightarrow) = \{ (a, b), (b, a), (b, c) \}$$

- the infinite traces semantics contains **exactly two** traces
 $$\llbracket S \rrbracket^\omega = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}$$
Fixpoint form

Can we also provide a fixpoint form for $[S]^\omega$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^\omega$ if and only if $\forall n, s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, s_k \rightarrow s_{k+1}$$

Let F_ω be defined by:

$$F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)$$

$$X \longmapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle | \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^\omega \iff \forall n \in \mathbb{N}, \sigma \in F_\omega^n(S^\omega)$$

$$\iff \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let \(F_\omega \) be the function defined by:

\[
F_\omega : \mathcal{P}(S^\omega) \rightarrow \mathcal{P}(S^\omega)
\]

\[
X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}
\]

Then, \(F_\omega \) is \(\cap \)-continuous and thus has a greatest-fixpoint; moreover:

\[
\text{gfp } F_\omega = \llbracket S \rrbracket^\omega = \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)
\]

Proof sketch:

- the \(\cap \)-continuity proof is similar as for the \(\cup \)-continuity of \(F_* \)
- by the dual version of Kleene’s theorem, \(\text{gfp } F_\omega \) exists and is equal to \(\bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega) \), i.e. to \(\llbracket S \rrbracket^\omega \) (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:
- \(S = \{a, b, c, d\} \)
- \(\rightarrow \) is defined by \(a \rightarrow b \), \(b \rightarrow a \) and \(b \rightarrow c \)

Then, the first iterates are:

\[
\begin{align*}
F_0^0(S^\omega) &= S^\omega \\
F_1^0(S^\omega) &= \langle a, b \rangle \cdot S^\omega \cup \langle b, a \rangle \cdot S^\omega \cup \langle b, c \rangle \cdot S^\omega \\
F_2^0(S^\omega) &= \langle b, a, b \rangle \cdot S^\omega \cup \langle a, b, a \rangle \cdot S^\omega \cup \langle a, b, c \rangle \cdot S^\omega \\
F_3^0(S^\omega) &= \langle a, b, a, b \rangle \cdot S^\omega \cup \langle b, a, b, a \rangle \cdot S^\omega \cup \langle b, a, b, c \rangle \cdot S^\omega \\
F_4^0(S^\omega) &= \ldots
\end{align*}
\]

Intuition

- at iterate \(n \), prefixes of length \(n + 1 \) match the traces in the infinite semantics
- only \(\langle a, b, \ldots, a, b, a, b, \ldots \rangle \) and \(\langle b, a, \ldots, b, a, b, a, \ldots \rangle \) belong to **all** iterates
Outline

1. Transition systems and small step semantics
2. Traces semantics
3. Summary
We have discussed today:

- **small-step / structural operational semantics:**
 individual program steps

- **big-step / natural semantics:**
 program executions as sequences of transitions

- their **fixpoint definitions** and properties
 will play a great role to design verification techniques

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program** and **proof methods**