Abstract Interpretation IV

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2014–2015

Course 13
20 May 2015
Overview

Selected advanced topics (not for the exam):

- **Disjunctive** abstract domains
- Inter-procedural analyses
- Abstracting arrays

Practical session:

- finish interval and relational analyses
- help with the project
Disjunctive domains
Motivation

Remark: most domains abstract **convex sets** (conjunctions of constraints)

⇒ ∪♯ causes a loss of precision!

The need for non-convex invariants

```
X ← rand(10, 20);
Y ← rand(0, 1);
if Y > 0 then X ← −X;
• Z ← 100/X
```

Concrete semantics:
At •, $X \in [-20, -10] \cup [10, 20]$

⇒ there is no division by zero

Abstract analysis:
Convex analyses (intervals, polyhedra) will find $X \in [-20, 20]$
(with intervals, $[-20, -10] \cup ^{♯} [10, 20] = [-20, 20]$)

⇒ possible division by zero (false alarm)
Disjunctive domains

Principle:
generic constructions to **lift** any numeric abstract domain to a domain able to represent disjunctions exactly

Example constructions:

- **powerset completion**
 unordered “soup” of abstract elements

- **state partitioning**
 abstract elements keyed to selected subsets of environments

- **decision tree abstract domains**
 efficient representation of state partitioning

- **path-sensitive analyses**
 partition with respect to the **history** of execution

Each construction has its strength and weakness, they can be combined during an analysis to exploit the best of each.
Powerset completion
Given: \((E^\#, \sqsubseteq, \gamma, \cup^\#, \cap^\#, \nabla, S^\#[\text{stat}]\))

abstract domain \(E^\#\)
ordered by \(\sqsubseteq\), which also acts as a sound abstraction of \(\subseteq\) (i.e., \(\subseteq^\# = \sqsubseteq\))
with concretization \(\gamma : E^\# \rightarrow \mathcal{P}(E)\)
sound abstractions \(\cup^\#, \cap^\#, S^\#[\text{stat}]\) of \(\cup, \cap, S[\text{stat}]\), and a widening \(\nabla\)

Construct: \((\hat{E}^\#, \sqsubseteq, \hat{\gamma}, \hat{\cup}^\#, \hat{\cap}^\#, \hat{\nabla}, \hat{S}^\#[\text{stat}]\))

\[\hat{E}^\# \overset{\text{def}}{=} \mathcal{P}_{\text{finite}}(E^\#)\] (finite sets of abstract elements)

\[\hat{\gamma}(A^\#) \overset{\text{def}}{=} \cup \{ \gamma(X^\#) \mid X^\# \in A^\# \}\] (join of concretizations)

Example: using the interval domain as \(E^\#\)

\[\hat{\gamma}(\{-10, -5\}, [2, 4], [0, 0], [2, 3]) = [-10, -5] \cup \{0\} \cup [2, 4]\]
Ordering

Issue: how can we compare two elements of $\hat{\gamma}^\#$?

- $\hat{\gamma}$ is generally not injective
 there is no canonical representation for $\hat{\gamma}(A^\#)$

- testing $\hat{\gamma}(A^\#) = \hat{\gamma}(B^\#)$ or $\hat{\gamma}(A^\#) \subseteq \hat{\gamma}(B^\#)$ is difficult

Example: powerset completion of the interval domain

\[
\begin{align*}
A^\# &= \{\{0\} \times \{0\}, [0, 1] \times \{1\}\} \\
B^\# &= \{\{0\} \times \{0\}, \{0\} \times \{1\}, \{1\} \times \{1\}\} \\
C^\# &= \{\{0\} \times [0, 1], [0, 1] \times \{1\}\}
\end{align*}
\]

$\hat{\gamma}(A^\#) = \hat{\gamma}(B^\#) = \hat{\gamma}(C^\#)$

$B^\#$ is more costly to represent: it requires three abstract elements instead of two

$C^\#$ is a covering and not a partition (red \cap blue $= \{0\} \times \{1\} \neq \emptyset$)
Ordering (cont.)

Solution: sound approximation of \subseteq

\[A^\# \triangleleft B^\# \iff \forall X^\# \in A^\# : \exists Y^\# \in B^\#: X^\# \subseteq Y^\# \] (Hoare powerdomain order)

- \triangleleft is a partial order (when \subseteq is)
- \triangleleft is a sound approximation of \subseteq (when \subseteq is)

 \[A^\# \triangleleft B^\# \implies \hat{\gamma}(A^\#) \subseteq \hat{\gamma}(B^\#) \] but the converse may not hold

- testing \triangleleft reduces to testing \subseteq finitely many times

Example: powerset completion of the interval domain

\[\begin{align*}
\hat{\gamma}(A^\#) &= \hat{\gamma}(B^\#) = \hat{\gamma}(C^\#) \\
B^\# &\triangleleft A^\# \triangleleft C^\#
\end{align*} \]
Abstract operations

Abstract operators

- \(\hat{S}^\# \[stat \] A^\# \overset{\text{def}}{=} \{ S^\# \[stat \] X^\# | X^\# \in A^\# \} \)
 - apply \(stat \) on each abstract element independently

- \(A^\# \hat{\cup}^\# B^\# \overset{\text{def}}{=} A^\# \cup B^\# \)
 - keep elements from both arguments without applying any abstract operation
 - \(\hat{\cup}^\# \) is exact

- \(A^\# \hat{\cap}^\# B^\# \overset{\text{def}}{=} \{ X^\# \cap^\# Y^\# | X^\# \in A^\#, Y^\# \in B^\# \} \)
 - \(\hat{\cap}^\# \) is exact if \(\cap^\# \) is (as \(\cup \) and \(\cap \) are distributive)

Galois connection:

- In general, there is no abstraction function \(\hat{\alpha} \) corresponding to \(\hat{\gamma} \)

Example: powerset completion \(\hat{E}^\# \) of the interval domain \(E^\# \)

- Given the disc \(S \overset{\text{def}}{=} \{ (x, y) | x^2 + y^2 \leq 1 \} \)
- \(\alpha(S) = [-1, 1] \times [-1, 1] \) (optimal interval abstraction)
- But there is no best abstraction in \(\hat{E}^\# \)
Dynamic approximation

Issue: the size $|A^\#| \in \hat{E}^\#$ of elements $A^\# \in \hat{E}^\#$ is unbounded

every application of $\hat{\cup}^\#$ adds some more elements

\implies efficiency and convergence problems

Solution: to reduce the size of elements

- **redundancy removal**

 $\text{simplify}(A^\#) \overset{\text{def}}{=} \{ X^\# \in A^\# \mid \forall Y^\# \not\equiv X^\# \in A^\#: X^\# \not\subseteq Y^\# \}$

 no loss of precision: $\gamma(\text{simplify}(A^\#)) = \gamma(A^\#)$

- **collapse:** join elements in $E^\#$

 $\text{collapse}(A^\#) \overset{\text{def}}{=} \{ \hat{\cup}^\# \{ X^\# \in A^\# \} \}$

 large loss of precision, but very effective: $|\text{collapse}(A^\#)| = 1$

- **partial collapse:** limit $|A^\#|$ to a fixed size k by $\hat{\cup}^\#$

 but how to choose which elements to merge? no easy solution!
Widening

Issue: for loops, abstract iterations \((A_n^\#)_{n \in \mathbb{N}}\) may not converge

- the size of \(A_n^\#\) may grow arbitrarily large
- even if \(|A_n^\#|\) is stable, some elements in \(A_n^\#\) may not converge
 - if \(E^\#\) has infinite increasing sequences

\[\Rightarrow\] we need a **widening** \(\nabla\)

Widenings for powerset domains are **difficult to design**

Example widening: collapse after a fixed number \(N\) of iterations

\[
A_{n+1}^\# \overset{\text{def}}{=} \begin{cases}
\text{simplify}(A_n^\# \cup^\# B_{n+1}^\#) & \text{if } n < N \\
\text{collapse}(A_n^\#) \nabla \text{collapse}(B_{n+1}^\#) & \text{otherwise}
\end{cases}
\]

this is very naïve, see Bagnara et al. STTT06 for more interesting widenings
State partitioning
State partitioning

Principle:
- partition \(a \ priori \ \mathcal{E} \) into finitely many sets
- abstract each partition of \(\mathcal{E} \) independently using an element of \(\mathcal{E}^\# \)

Abstract domain:

Given an abstract partition \(P^\# \subseteq \mathcal{E}^\# \), i.e., a set such that:
- \(P^\# \) is finite
- \(\bigcup \{ \gamma(X^\#) \mid X^\# \in P^\# \} = \mathcal{E} \)

for generality, we have in fact a covering, not a partitioning of \(\mathcal{E} \), i.e., we can have \(X^\# \neq Y^\# \in P^\# \) with \(\gamma(X^\#) \cap \gamma(Y^\#) \neq \emptyset \)

We define \(\tilde{\mathcal{E}}^\# \overset{\text{def}}{=} P^\# \rightarrow \mathcal{E}^\# \)

representable in memory, as \(P^\# \) is finite
Ordering

Example: $\mathcal{E}^\#$ is the interval domain

$P^\# = \{ P_1, P_2, P_3, P_4, P_5 \}$ where

- $P_1 = [-\infty, 0] \times [-\infty, +\infty]$
- $P_2 = [0, 10] \times [0, +\infty]$
- $P_3 = [0, 10] \times [-\infty, 0]$
- $P_4 = [10, +\infty] \times [0, +\infty]$
- $P_5 = [10, +\infty] \times [-\infty, 0]$

$X^\# = [P_1 \mapsto [-6, -5] \times [5, 6],$
- $P_2 \mapsto \bot,$
- $P_3 \mapsto [9, 10] \times [-\infty, -1],$
- $P_4 \mapsto \bot,$
- $P_5 \mapsto [10, 12] \times [-3, -1]]$

- $\tilde{\mathcal{E}}^\# \overset{\text{def}}{=} P^\# \rightarrow \mathcal{E}^\#$
- $\tilde{\gamma}(A^\#) \overset{\text{def}}{=} \bigcup \{ \gamma(A^\#(X^\#)) \cap \gamma(X^\#) \mid X^\# \in P^\# \}$
- $A^\# \preceq B^\# \overset{\text{def}}{\iff} \forall X^\# \in P^\#: A^\#(X^\#) \subseteq B^\#(X^\#)$ (point-wise order)
- $\tilde{\alpha}(S) \overset{\text{def}}{=} \lambda X^\# \in P^\#. \alpha(S \cap \gamma(X^\#))$

if $\mathcal{E}^\#$ enjoys a Galois connection, so does $\tilde{\mathcal{E}}^\#$
Abstract operators: point-wise extension from $\mathcal{E}^\#$ to $P^\# \rightarrow \mathcal{E}^\#$

- $A \uplus^\# B \overset{\text{def}}{=} \lambda X^\# \in P^\#.A(X^#) \cup^\# B(X^#)$
- $A \cap^\# B \overset{\text{def}}{=} \lambda X^\# \in P^\#.A(X^#) \cap^\# B(X^#)$
- $A \triangledown B \overset{\text{def}}{=} \lambda X^\# \in P^#.A(X^#) \triangledown B(X^#)$
- $\tilde{S}^\#[e \leq 0?] A^\# \overset{\text{def}}{=} \lambda X^\# \in P^#.S^\#[e \leq 0?] A(X^#)$
- $\tilde{S}^\#[V \leftarrow e] A^\#$ is more complex

any $S^\#[V \leftarrow e] A(X^#)$ may escape its partition $X^#$; we must cut them at partition borders and glue the pieces falling into the same partition

example: $X \leftarrow X + 2$

\[\begin{array}{c|c|c|c}
\text{Example} & X & X + 2 & X + 4 \\
\hline
\text{Partition 1} & \text{Red} & \text{Green} & \text{Red} \\
\text{Partition 2} & \text{Red} & \text{Green} & \text{Green} \\
\text{Partition 3} & \text{Red} & \text{Green} & \text{Green} \\
\end{array}\]

\[\tilde{S}^\#[V \leftarrow e] A^\# \overset{\text{def}}{=} \lambda X^#.\cup^\# \{X^# \cap^\# S^\#[V \leftarrow e] A(Y^#) \mid Y^# \in P^\# \}\]
Example analysis

Example

\[
\begin{align*}
X & \leftarrow \text{rand}(10, 20); \\
Y & \leftarrow \text{rand}(0, 1); \\
\text{if } Y > 0 \text{ then } X & \leftarrow -X; \\
\bullet \quad Z & \leftarrow 100/X
\end{align*}
\]

Analysis:

- \(\mathcal{E}^\# \) is the interval domain
- partition with respect to the sign of \(X \)

 \[
 P^\# \overset{\text{def}}{=} \{ X^+, X^- \} \text{ where} \\
 X^+ \overset{\text{def}}{=} [0, +\infty] \times \mathbb{Z} \times \mathbb{Z} \quad \text{and} \quad X^- \overset{\text{def}}{=} [-\infty, 0] \times \mathbb{Z} \times \mathbb{Z}
 \]
- at \(\bullet \) we find:

 \[
 \begin{align*}
 X^+ & \mapsto [X \in [10, 20], Y \mapsto [0, 0], Z \mapsto [0, 0]] \\
 X^- & \mapsto [X \in [-20, -10], Y \mapsto [1, 1], Z \mapsto [0, 0]]
 \end{align*}
 \]

\(\implies \text{no division by zero} \)
Binary decision trees
Disjunctive domains

Binary decision trees

Principle: data-structure to compactly represent partitions

Example: boolean partitions

- assume that variables have a type: $\forall \overset{\text{def}}{=} \forall_b \cup \forall_n$
 - each $\forall \in \forall_b$ has value in $\{0, 1\}$ (boolean variable)
 - each $\forall \in \forall_n$ has value in \mathbb{Z} (numeric variable)

- $\mathcal{E} \simeq \{0, 1\}^{\forall_b} \times \mathbb{Z}^{\forall_n}$

 $P^\# \overset{\text{def}}{=} \{ \langle b_1, \ldots, b_{|\forall_b|} \rangle \times \mathbb{Z}^{\forall_n} | b_1, \ldots, b_{|\forall_b|} \in \{0, 1\} \}$

 a partition corresponds to a precise valuation of all the boolean variables and no information on the numeric variables

- assume that $\mathcal{E}_n^\#$ abstracts $\mathcal{P}(\forall_n \rightarrow \mathbb{Z})$ (numeric domain)

 the boolean partitioning domain based on $\mathcal{E}_n^\#$ is:

 $\tilde{\mathcal{E}}^\# \overset{\text{def}}{=} \{0, 1\}^{\forall_b} \rightarrow \mathcal{E}_n^\#$
Representation:

For \(\mathcal{E}^\# \triangleq \{0, 1\}|\mathbb{V}_b| \rightarrow \mathcal{E}_n^\# \)

Binary trees:

- **nodes** are labelled with **boolean variables** \(B_i \in \mathbb{V}_b \)
- **two children**: \(B_i = 0 \) and \(B_i = 1 \)
- **leaves are abstract elements in** \(\mathcal{E}_n^\# \) (abstraction of \(\mathcal{P}(\mathbb{V}_n \rightarrow \mathbb{Z}) \))

![Diagram of a binary decision tree](image-url)
Optimization: similar to Reduced Ordered Binary Decision Diagrams

- **merge** identical sub-trees
- **remove** nodes if both children are identical

\[\Rightarrow \text{we get a directed acyclic graphs} \]

![Diagram showing reduced binary decision trees]

If \(\gamma_n : \mathcal{E}_n^\# \to \mathbb{Z}^{\mid V_n\mid} \) is injective and we use memoization, then \(\tilde{\gamma}(A^\#) = \tilde{\gamma}(B^\#) \iff A^\# \text{ and } B^\# \text{ occupy the same address in memory} \)

e.g., \(== \) in OCaml, which is faster to test than structural equality =
Abstract operations

- **numeric operations**: performed independently on each leaf
 - e.g., \(\tilde{S}^\#[V \leftarrow e] \) reverts to applying \(S^\#[V \leftarrow e] \) on each leaf

- **boolean operations**: manipulate trees
 - \(\tilde{S}^\#[B_i \leftarrow \text{rand}(0, 1)] \): merge \(B_i \)'s subtrees recursively
 - \(\tilde{S}^\#[B_i = 0?] \): set all \(B_i = 1 \) branches to \(\perp \)
 - \(\ldots \)

- **binary operations**: \(\tilde{\cup}^\#, \tilde{\cap}^\#, \tilde{\bowtie}, \tilde{\subseteq} \)
 - first, unify tree structures (unshare trees and add missing nodes)
 - then, apply the operation pair-wise on leaves

- optimization needs to be performed again after each operation
 - ensures that abstract elements do not grow too large
Example

\[X \leftarrow \text{rand}(0, 100); \]
\[\text{if } X = 0 \text{ then } B \leftarrow 0 \text{ else } B \leftarrow 1; \]
\[\ldots \]
\[\bullet \text{ if } B = 1 \text{ then } \bullet \ Y \leftarrow 100/X \]

Analysis: using the interval domain for \(\mathcal{E}^\#_n \)

at \(\bullet \), we can infer the invariant:
\[(B = 0 \implies X = 0) \land (B = 1 \implies X \in [1, 100]) \]

at \(\bullet \), we deduce that \(B = 1 \land X \in [1, 100] \)
\[\implies \text{there is no division by zero} \]
Other tree-based partitioning data-structure

we can extend partition trees in many ways

- allow n-array nodes
 partition wrt. abstract values in a non-relational domain

Example: partitioning integer variables in the interval domain

![Interval domain partition tree diagram]
partitioning with respect to predicates

Example: linear relations over $\forall \overset{\text{def}}{=} \{X, Y, Z\}$

$X \leq Y$

true

false

$2X \leq Z$

true

false

$2Y \leq Z$

true

false

the same variables may appear in predicates and in the leaves

$\implies S^\sharp[\text{stat}]$ must generally update both the nodes and the leaves

the set of node predicates may be fixed before the analysis or chosen dynamically during the analysis
Path partitioning
Path sensitivity

Principle: partition wrt. the **history of computation**

- keep different abstract elements for different execution **paths**
 - e.g., different branches taken, different loop iterations
- **avoid** merging with \cup elements at control-flow **joins**
 - at the end of if···then···else, or at loop head

Intuition: as a program transformation

\[
X \leftarrow \text{rand}(-50, 50);
\]

if $X \geq 0$ then
 \[
 Y \leftarrow X + 10;
 \]
else
 \[
 Y \leftarrow X - 10;
 \]
assert $Y \neq 0$

\[
X \leftarrow \text{rand}(-50, 50);
\]

if $X \geq 0$ then
 \[
 Y \leftarrow X + 10;
 \]
assert $Y \neq 0$
else
 \[
 Y \leftarrow X - 10;
 \]
assert $Y \neq 0$

the **assert** is tested in the context of each branch
instead of after the control-flow join
the interval domain can prove the assertion on the right, but not on the left
Abstract domain

Formalization: we consider here only \(\textbf{if} \cdots \textbf{then} \cdots \textbf{else} \)

- \(\mathcal{L} \) denote **syntactic labels** of \(\textbf{if} \cdots \textbf{then} \cdots \textbf{else} \) instructions

- **history abstraction** \(\mathcal{H} \overset{\text{def}}{=} \mathcal{L} \rightarrow \{ \text{true}, \text{false}, \bot \} \)

 \(H \in \mathcal{H} \) indicates the outcome of the last time we executed each test:
 - \(H(\ell) = \text{true} \): we took the \textbf{then} branch
 - \(H(\ell) = \text{false} \): we took the \textbf{else} branch
 - \(H(\ell) = \bot \): we never executed the test

Notes:
- \(\mathcal{H} \) can remember the outcome of several successive tests
 \(\ell_1 : \textbf{if} \cdots \textbf{then} \cdots \textbf{else}; \ell_2 : \textbf{if} \cdots \textbf{then} \cdots \textbf{else} \)

- for tests in loops, \(\mathcal{H} \) remembers only the last outcome
 \(\textbf{while} \cdots \textbf{do} \ell : \textbf{if} \cdots \textbf{then} \cdots \textbf{else} \)

- we could extend \(\mathcal{H} \) to longer histories with \(\mathcal{H} = (\mathcal{L} \rightarrow \{ \text{true}, \text{false}, \bot \})^* \)
- we could extend \(\mathcal{H} \) to track loop iterations with \(\mathcal{H} = \mathcal{L} \rightarrow \mathbb{N} \)

- \(\mathcal{E}^\# \overset{\text{def}}{=} \mathcal{H} \rightarrow \mathcal{E}^\# \)

 use a different abstract element for each abstract history
Abstract operators

- \(\mathcal{E}^\# \overset{\text{def}}{=} \mathcal{H} \rightarrow \mathcal{E}^\# \)
- \(\tilde{\gamma}(A^\#) = \bigcup \{ \gamma(A^\#(H)) \mid H \in \mathcal{H} \} \)
- \(\subseteq^\#, \cup^\#, \cap^\#, \vee^\# \) are point-wise
- \(\check{\check{S}}^\#[\mathcal{V} \leftarrow e] \) and \(\check{\check{S}}^\#[e \leq 0?] \) are point-wise
- \(\check{S}^\#[\ell : \text{if } c \text{ then } s_1 \text{ else } s_2] \) \(A^\# \) is more complex
 - we merge all information about \(\ell \)
 \(C^\# = \lambda H. A^\#(H[\ell \mapsto \text{true}]) \cup^\# A^\#(H[\ell \mapsto \text{false}]) \cup^\# A^\#(H[\ell \mapsto \bot]) \)
 - we compute the then branch, where \(H(\ell) = \text{true} \)
 \(T'^\# = \check{S}^\#[s_1] (\check{S}^\#[c?] T^\#) \) where
 \(T^\# = \lambda H. C^\#(H) \) if \(H(\ell) = \text{true} \), \(\bot \) otherwise
 - we compute the else branch, where \(H(\ell) = \text{false} \)
 \(F'^\# = \check{S}^\#[s_2] (\check{S}^\#[\neg c?] F^\#) \) where
 \(F^\# = \lambda H. C^\#(H) \) if \(H(\ell) = \text{false} \), \(\bot \) otherwise
 - we join both branches: \(T'^\# \cup^\# F'^\# \)
 the join is exact as \(\forall H \in \mathcal{H}: \) either \(T'^\#(H) = \bot \) or \(F'^\#(H) = \bot \)

\[\implies \text{we get a semantic by induction on the syntax of the original program} \]
Concrete semantics: table-based interpolation based on the value of X

- look-up index I in the interpolation table: $TX[I] \leq X \leq TX[I + 1]$
- interpolate from value $TY[I]$ when $X = TX[I]$ with slope $TS[I]$

Analysis: in the interval domain

- without partitioning:
 $$Y \in [\min TY, \max TY] + (X - [\min TX, \max TX]) \times [\min TS, \max TS]$$
- partitioning with respect to the number of loop iterations:
 $$Y \in \bigcup_{I \in [0, N]} TY[I] + ([0, TX[I + 1] - TX[I]] \times TS[I])$$
 more precise as it keeps the relation between table indices
Inter-procedural analyses
Overview

- **Analysis on the control-flow graph**
 - reduce function calls and returns to *gotos*
 - useful for the project!

- **Inlining**
 - simple and precise
 - but not efficient and may not terminate

- **Call-site and call-stack abstraction**
 - terminates even for recursive programs
 - parametric cost-precision trade-off

- **Tabulated abstraction**
 - optimal reuse of analysis partial results

- **Summary-based abstraction**
 - modular bottom-up analysis
 - leverage relational domains

In general, these different abstractions give incomparable results
(there is no clear winner)
Analysis on the control-flow graph
Inter-procedural control-flow graphs

Extend control-flow graphs:

- one subgraph for each function
- additional arcs to denote function calls and returns

we get one big graph without procedures nor calls, only gotos

⇒ reduced to a classic analysis based on equation systems

but difficult to use in a denotational-style analysis by induction on the syntax

Note: to simplify, we assume here no local variables and no function arguments:

- locals and arguments are transformed into locals
- only possible if there are no recursive calls

this will be fixed in the following
Example: Control-flow graph

Example

main:

\[
R \leftarrow -1; \\
X \leftarrow \text{rand}(5, 10); f(); \\
X \leftarrow 80; f()
\]

f:

\[
R \leftarrow 2 \times X; \\
\text{if } R > 100 \text{ then } R \leftarrow 0
\]

create one control-flow graph for each function
Example: Control-flow graph

Example

\textit{main}:
\begin{align*}
R & \leftarrow -1; \\
X & \leftarrow \text{rand}(5, 10); f(); \\
X & \leftarrow 80; f()
\end{align*}

\textit{f}:
\begin{align*}
R & \leftarrow 2 \times X; \\
\text{if } R > 100 \text{ then } R & \leftarrow 0
\end{align*}

replace call instructions with gotos
Inter-procedural analyses

Analysis on the control-flow graph

Example: Equation system

\[S_{\text{main,1}} = \top \]
\[S_{\text{main,2}} = S[R \leftarrow 1] S_{\text{main,1}} \]
\[S_{\text{main,3}} = S[X \leftarrow \text{rand}(5, 10)] S_{\text{main,2}} \]
\[S_{\text{main,4}} = S_{f,6} \]
\[S_{\text{main,5}} = S[X \leftarrow 80] S_{\text{main,4}} \]
\[S_{\text{main,6}} = S_{f,6} \]

\[S_{f,1} = S_{\text{main,3}} \cup S_{\text{main,5}} \]
\[S_{f,2} = S[R \leftarrow 2X] S_{f,1} \]
\[S_{f,3} = S[R > 100] S_{f,2} \]
\[S_{f,4} = S[R \leftarrow 0] S_{f,3} \]
\[S_{f,5} = S[R \leq 100] S_{f,2} \]
\[S_{f,6} = S_{f,4} \cup S_{f,5} \]

- each variable \(S_i \) denotes a set of environments at a control location \(i \)
- we can derive an abstract version of the system
 e.g.: \(S_{f,2}^\# = S_{f,1}^\# \), \(S_{f,6}^\# = S_{f,4}^\# \cup S_{f,5}^\# \), etc.
- we can solve the abstract system, using widenings to terminate
 c.f. project
Example: Equation system

using intervals we get the following solution:

\[S_{\text{main},1} = \top \]
\[S_{\text{main},2} = S[R \leftarrow 1] S_{\text{main},1} \]
\[S_{\text{main},3} = S[X \leftarrow \text{rand}(5, 10)] S_{\text{main},2} \]
\[S_{\text{main},4} = S_{f,6} \]
\[S_{\text{main},5} = S[X \leftarrow 80] S_{\text{main},4} \]
\[S_{\text{main},6} = S_{f,6} \]

\[S_{f,1} = S_{\text{main},3} \cup S_{\text{main},5} \]
\[S_{f,2} = S[R \leftarrow 2X] S_{f,1} \]
\[S_{f,3} = S[R > 100] S_{f,2} \]
\[S_{f,4} = S[R \leftarrow 0] S_{f,3} \]
\[S_{f,5} = S[R \leq 100] S_{f,2} \]
\[S_{f,6} = S_{f,4} \cup S_{f,5} \]

\[S_{\text{main},1} : X, R \in \mathbb{Z} \]
\[S_{\text{main},2} : X \in \mathbb{Z}, R = -1 \]
\[S_{\text{main},3} : X \in [5, 10], R = -1 \]
\[S_{\text{main},4} : X \in [5, 80], R \in [0, 100] \]
\[S_{\text{main},5} : X = 80, R \in [0, 100] \]
\[S_{\text{main},6} : X \in [5, 80], R \in [0, 100] \]

\[S_{f,1} : X \in [5, 80], R \in [-1, 100] \]
\[S_{f,2} : X \in [5, 80], R \in [10, 160] \]
\[S_{f,3} : X \in [5, 80], R \in [101, 160] \]
\[S_{f,4} : X \in [5, 80], R = 0 \]
\[S_{f,5} : X \in [5, 80], R \in [10, 100] \]
\[S_{f,6} : X \in [5, 80], R \in [0, 100] \]
Imprecision

In fact, in our example, $R = 0$ holds at the end of the program! \Longrightarrow the analysis is imprecise

Explanation: the control-flow graph adds impossible executions paths
General case: concrete semantics
Procedures

Syntax:

- \mathcal{F} finite set of procedure names
- $body : \mathcal{F} \rightarrow stat$: procedure bodies
- $main \in stat$: entry point body
- V_G: set of global variables
- V_f: set of local variables for procedure $f \in \mathcal{F}$
 - procedure f can only access $V_f \cup V_G$
 - $main$ has no local variable and can only access V_G
- $stat ::= f(expr_1, \ldots, expr_{|V_f|}) | \cdots$

 procedure call, $f \in \mathcal{F}$, setting all its local variables
 - local variables double as procedure arguments
 - no special mechanism to return a value (a global variable can be used)
Concrete environments

Notes:

- when f calls g, we must remember the value of f’s locals \forall_f in the semantics of g and restore them when returning
- several copies of each $V \in \forall_f$ may exist at a given time due to recursive calls, i.e.: cycles in the call graph

\implies concrete environments use per-variable stacks

Stacks: $\mathcal{S} \overset{\text{def}}{=} \mathbb{Z}^*$ (finite sequences of integers)

- $\text{push}(v, s) \overset{\text{def}}{=} v \cdot s$ ($v, v' \in \mathbb{Z}, s, s' \in \mathcal{S}$)
- $\text{pop}(s) \overset{\text{def}}{=} s'$ when $\exists v: s = v \cdot s'$, undefined otherwise
- $\text{peek}(s) \overset{\text{def}}{=} v$ when $\exists s': s = v \cdot s'$, undefined otherwise
- $\text{set}(v, s) \overset{\text{def}}{=} v \cdot s'$ when $\exists v': s = v' \cdot s'$, undefined otherwise

Environments: $\mathcal{E} \overset{\text{def}}{=} (\bigcup_{f \in \mathcal{F}} \forall_f \cup \forall_G) \rightarrow \mathcal{S}$

for \forall_G, stacks are not necessary but simplify the presentation

traditionally, there is a single global stack for all local variables using per-variable stacks instead also makes the presentation simpler
Concrete semantics: on $E \defeq (\bigcup_{f \in F} V_f \cup V_G) \rightarrow S$

variable read and update only consider the top of the stack
procedure calls push and pop local variables

- $E[V] \rho \defeq \text{peek}(\rho(V))$
- $S[V \leftarrow e] R \defeq \{ \rho[V \mapsto \text{set}(x, \rho(V))] | \rho \in R, x \in E[e] \rho \}$
- $S[f(e_{V_1}, \ldots, e_{V_n})] R = R_3$, where:
 - $R_1 \defeq \{ \rho[\forall V \in V_f : V \mapsto \text{push}(x_V, \rho(V))] | \rho \in R, \forall V \in V_f : x_V \in E[e_V] \rho \}$ (evaluate each argument e_V and push its value x_V on the stack $\rho(V)$)
 - $R_2 \defeq S[\text{body}(f)] R_1$ (evaluate the procedure body)
 - $R_3 \defeq \{ \rho[\forall V \in V_f : V \mapsto \text{pop}(\rho(V))] | \rho \in R_2 \}$ (pop local variables)

- initial environment: $\rho_0 \defeq \lambda V \in V_G.0$

other statements are unchanged
Semantic inlining
Naïve abstract procedure call: mimic the concrete semantics

- assign abstract variables to stack positions:
 \[\mathbb{V}^\# \overset{\text{def}}{=} \mathbb{V}_G \cup (\bigcup_{f \in \mathcal{F}} \mathbb{V}_f \times \mathbb{N}) \]
 \(\mathbb{V}^\# \) is infinite, but each abstract environment uses finitely many variables

- \(\mathcal{E}^\#_\mathbb{V} \) abstracts \(\mathcal{P}(\mathbb{V} \to \mathbb{Z}) \), for any finite \(\mathbb{V} \subseteq \mathbb{V}^\# \)

 - \(\mathbb{V} \in \mathcal{V}_f \) denotes \((\mathbb{V}, 0)\) in \(\mathbb{V}^\# \)
 - push \(\mathbb{V} \): shift variables, replacing \((\mathbb{V}, i)\) with \((\mathbb{V}, i + 1)\), then add \((\mathbb{V}, 0)\)
 - pop \(\mathbb{V} \): remove \((\mathbb{V}, 0)\) and shift each \((\mathbb{V}, i)\) to \((\mathbb{V}, i - 1)\)

- \(S^\#[f(e_1, \ldots, e_n)] X^\# \) is then reduced to:
 \[X^\#_1 = S^\#[\text{push } \mathbb{V}_1; \ldots; \text{push } \mathbb{V}_n] X^\# \]
 \(\) (add fresh variables for \(\mathbb{V}_f \))
 \[X^\#_2 = S^\#[\mathbb{V}_1 \leftarrow e_1; \ldots; \mathbb{V}_n \leftarrow e_n] X^\#_1 \]
 \(\) (bind arguments to locals)
 \[X^\#_3 = S^\#[\text{body}(f)] X^\#_2 \]
 \(\) (execute the procedure body)
 \[X^\#_4 = S^\#[\text{pop } \mathbb{V}_1; \ldots; \text{pop } \mathbb{V}_n] X^\#_3 \]
 \(\) (delete local variables)

Limitations:
- does not terminate in case of unbounded recursivity
- requires many abstract variables to represent the stacks
- procedures must be re-analyzed for every call
 full context-sensitivity: precise but costly
Inter-procedural analyses

Semantic inlining

Example

\[
\text{main :} \\
R \leftarrow -1; \\
f(\text{rand}(5, 10)); \\
f(80) \\
\]

\[
f(X) : \\
R \leftarrow 2 \times X; \\
\text{if } R > 100 \text{ then } R \leftarrow 0 \\
\]

Analysis using intervals

- after the first call to \(f \), we get \(R \in [10, 20] \)
- after the second call to \(f \), we get \(R = 0 \)
Call-site abstraction
Abstracting stacks: into a fixed, bounded set $\mathbb{V}^\#$ of variables

- $\mathbb{V}^\# \overset{\text{def}}{=} \bigcup_{f \in F} \{ V, \hat{V} \mid V \in \mathbb{V}_f \} \cup \mathbb{V}_G$
 - two copies of each local variable
 - V abstracts the value at the top of the stack (current call)
 - \hat{V} abstracts the rest of the stack

- $S^\#[\text{push } V] X^\# \overset{\text{def}}{=} X^\# \cup^\# S^\#[\hat{V} \leftarrow V] X^#$
- $S^\#[\text{pop } V] X^\# \overset{\text{def}}{=} X^\# \cup^\# S^\#[V \leftarrow \hat{V }] X^#$
 - weak updates, similar to array manipulation
 - no need to create and delete variables dynamically

- assignments and tests always access V, not \hat{V}
 \implies strong update (precise)

Note: when there is no recursivity, \hat{V}, \texttt{push} and \texttt{pop} can be omitted
Principle: merge all the contexts in which each function is called

- we maintain two global maps $\mathcal{F} \rightarrow \mathcal{E}^\#$:
 - $C^\#(f)$: abstracts the environments when calling f
 - $R^\#(f)$: abstracts the environments when returning from f
- gather environments from all possible calls to f, disregarding the call sites

- during the analysis, when encountering a call $S^\#[body(f)] X^\#$:
 - we return $R^\#(f)$
 - but we also replace $C^\#$ with $C^\#[f \mapsto C^\#(f) \cup^\# X^\#]$

- $R^\#(f)$ is computed from $C^\#(f)$ as
 $$R^\#(f) = S^\#[body(f)](C^\#(f))$$
Fixpoint:

there may be circular dependencies between \(C^\# \) and \(R^\# \)

e.g., in \(f(2); f(3) \), the input for \(f(3) \) depends on the output from \(f(2) \)

\[\implies \] we compute a fixpoint for \(C^\# \) by iteration:

- initially, \(\forall f: C^\#(f) = R^\#(f) = \perp \)
- analyze main
- while \(\exists f: C^\#(f) \) not stable

 apply widening \(\nabla \) to the iterates of \(C^\#(f) \)

 update \(R^\#(f) = S^\#[body(f) \parallel C^\#(f)] \)

 analyze main and all the procedures again

 (this may modify some \(C^\#(g) \))

\[\implies \] using \(\nabla \), the analysis always terminates in finite time

we can be more efficient and avoid re-analyzing procedures when not needed

e.g., use a workset algorithm, track procedure dependencies, etc.
Example

\[\text{main} : \]
\[R \leftarrow -1;\]
\[f(\text{rand}(5, 10));\]
\[f(80)\]

\[f(X) :\]
\[R \leftarrow 2 \times X;\]
\[\text{if } R > 100 \text{ then } R \leftarrow 0\]

Analysis: using intervals (without widening as there is no dependency)

- first analysis of \textit{main}: we get \(\bot\) (as \(\mathcal{R}(f) = \bot\))
 but \(\mathcal{C}(f) = [R \mapsto [-1, -1], X \mapsto [5, 10]]\)
- first analysis of \(f\): \(\mathcal{R}(f) = [R \mapsto [10, 20], X \mapsto [5, 10]]\)
- second analysis of \textit{main}: we get
 \(\mathcal{C}(f) = [R \mapsto [-1, 20], X \mapsto [5, 80]]\)
- second analysis of \(f\): \(\mathcal{R}(f) = [R \mapsto [0, 100], X \mapsto [5, 80]]\)
- final analysis of \textit{main}, we find \(R \in [0, 100]\) at the program end
 less precise than \(R = 0\) found by semantic inlining
Partial context-sensitivity

Variants: k—limiting, k is a constant

- **stack:**
 assign a distinct variable for the k highest levels of V
 abstract the lower (unbounded) stack part with \hat{V}
 more precise than keeping only the top of the stack separately

- **context-sensitivity:**
 each syntactic call has a unique call-site $\ell \in \mathcal{L}$
 a call stack is a sequence of nested call sites: $c \in \mathcal{L}^*$
 an abstract call stack remembers the last k call sites: $c^\# \in \mathcal{L}^k$
 the $C^\#$ and $R^\#$ maps now distinguish abstract call stacks
 $C^\#, R^\# : \mathcal{L}^k \to \mathcal{E}^\#$
 more precise than a partitioning by function only

larger k give more precision but less efficiency
Example: context-sensitivity

Example

\begin{align*}
main & : \\
R & \leftarrow -1; \\
& \ell_1 : f(\text{rand}(5, 10)); \\
& \ell_2 : f(80)
\end{align*}

\begin{align*}
f(X) & : \\
R & \leftarrow 2 \times X; \\
& \text{if } R > 100 \text{ then } R \leftarrow 0
\end{align*}

Analysis: using intervals and \(k = 1 \)

- \(C^\#(\ell_1) = [R \mapsto [-1, 1], X \mapsto [5, 10]] \)
 \implies R^\#(\ell_1) = [R \mapsto [10, 20], X \mapsto [5, 10]]

- \(C^\#(\ell_2) = [R \mapsto [10, 20], X \mapsto [80, 80]] \)
 \implies R^\#(\ell_2) = [R \mapsto [0, 0], X \mapsto [80, 80]]

at the end of the analysis, we get \(R = 0 \)
more precise than \(R \in [0, 100] \) found without context-sensitivity
Tabulation abstraction
Cardinal power

Principle:
the semantic of a function is $S \llbracket \text{body}(f) \rrbracket : \mathcal{P}(E) \rightarrow \mathcal{P}(E)$

\implies abstract it as an abstract function in $\mathcal{E}^\# \rightarrow \mathcal{E}^\#$

we use a partial function as the image of most abstract elements is not useful

Analysis: tabulated analysis

- Use a global partial map $F^\# : \mathcal{F} \times \mathcal{E}^\# \rightarrow \mathcal{E}^\#$
- $F^\#$ is initially empty, and is filled on-demand
- When encountering $S^\llbracket \text{body}(f) \rrbracket \ X^\#$
 - return $F^\#(f, X^\#)$ if defined
 - else, compute $S^\llbracket \text{body}(f) \rrbracket \ X^\#$, store it in $F^\#(f, X^\#)$ and return it

Optimizations: trade precision for efficiency

- If $X^\# \sqsubseteq Y^\#$ and $F^\#(f, X^\#)$ is not defined, we can use $F^\#(f, Y^\#)$ instead
- If the size of $F^\#$ grows too large, use $F^\#(f, \top)$ instead
 - Sound, and ensures that the analysis terminates in finite time
Example

Example

```plaintext
main :
R ← -1;
f(rand(5, 10));
f(80)
```

```plaintext
f(X) :
R ← 2 × X;
if R > 100 then R ← 0
```

Analysis using intervals

- \(F^\# = \)
 - \([(f, [R \mapsto [-1, -1], X \mapsto [5, 10]]) \mapsto [R \mapsto [10, 20], X \mapsto [5, 10]], (f, [R \mapsto [10, 20], X \mapsto [80, 80]]) \mapsto [R \mapsto [0, 0], X \mapsto [80, 80]]]\)

- at the end of the analysis, we get again \(R = 0 \)

here, the function partitioning gives the same result as the call-site partitioning
Dynamic partitioning: complex example

Example: McCarthy’s 91 function

```plaintext
main:
  Mc(rand(0, +∞))

Mc(n):
  if \( n > 100 \) then \( r \leftarrow n - 10 \)
  else \( Mc(n + 11); Mc(r) \)
```

- In the concrete, when terminating:
 \(r = n - 10 \) when \(n > 101 \), and \(r = 91 \) wen \(n \in [0, 101] \)

- Using a widening \(\triangledown \) to choose tabulated abstract values \(F^\#(f, X^\#) \)
 we find:\\
 \(n \in [0, 72] \) \(\Rightarrow \) \(r = 91 \)
 \(n \in [73, 90] \) \(\Rightarrow \) \(r \in [91, 101] \)
 \(n \in [91, 101] \) \(\Rightarrow \) \(r = 91 \)
 \(n \in [102, 111] \) \(\Rightarrow \) \(r \in [91, 101] \)
 \(n \in [112, +∞] \) \(\Rightarrow \) \(r \in [91, +∞] \)

(source: Bourdoncle, JFP 1992)
Summary-based abstraction
Inter-procedural analyses

Summary-based analyses

Principle:
- abstract the input-output relation using a relational domain
- analyze each procedure out of context
 - no information about its possible arguments
- analyze a procedure given the analysis of the procedures it calls
 - bottom-up analysis, from leaf functions to main
 - \Rightarrow completely modular analysis
 - for recursive calls, we still need to iterate the analysis of call cycles, with ∇

Analysis:
- analyze f with abstract variables $\forall f^# \overset{\text{def}}{=} \{ V, V' \mid V \in \forall_G \cup \forall_f \}$
 - V' denotes the current value of the variable
 - V denotes the value of the variable at the function entry
- at the beginning of the procedure, start with $\forall V \in \forall_G \cup \forall_f: V = V'$
 - the analysis updates only V', never V
- at the end of the procedure, the invariant gives an input-output relation
 - it summarizes the effect of the procedure, store it as $T^#(f)$
- $S^#[\text{body}(f)] X^#$ can be computed using $T^#(f)$ and variable substitution
 - $S^#[\forall i: \text{del } V_i''] (X^#[\forall i: V_i'' / V_i'] \cap^# T^#(f)[\forall i: V_i'' / V_i])$
Example

\[
\text{max}(a, b) : \\
\text{if } a > b \text{ then } r \leftarrow a; \\
\text{else } r \leftarrow b; c \leftarrow c + 1; \\
\]

\[
\text{main} : \\
x \leftarrow [0, 10]; y \leftarrow [0, 10]; \\
c \leftarrow 0; \text{max}(x, y); \\
r \leftarrow r - x \\
\]

Analysis using polyhedra

- the analysis of \text{max} gives:
 \[r' \geq a \land r' \geq b \land c' \geq c \land c' \leq c + 1 \land a = a' \land b = b' \land x = x' \land y = y'\]

- at \text{main}'s call to \text{max}
 before \text{max}: c' = 0 \land x' \in [0, 10] \land y' \in [0, 10]
 applying the summary: \[c' \in [0, 1] \land x' \in [0, 10] \land y' \in [0, 10] \land r' \geq x' \land r' \geq y'\]
 at the end of the program, \[x \in [0, 10], y \in [0, 10], r \in [0, 10], c \in [0, 1]\]

the method requires a \textbf{relational domain} to infer interesting input-output relations
it compensates for the lack of information about the entry point
Abstracting arrays
Example: increasing subsequence

\[
p[0] \leftarrow 0; B[0] \leftarrow A[0]; \\
i \leftarrow 1; k \leftarrow 1; \\
\textbf{while} \ i < N \ \textbf{do} \\
\quad \textbf{if} \ A[i] > B[k-1] \ \textbf{then} \\
\qquad B[k] \leftarrow A[i]; \\
\qquad p[k] \leftarrow i; \\
\qquad k \leftarrow k + 1; \\
\qquad i \leftarrow i + 1
\]

Given an array \(A[0], \ldots, A[N-1] \)
the program computes an increasing sub-array \(B[0], \ldots, B[k-1] \)
and the index sequence \(p[0], \ldots, p[k-1] \)

Invariants:
\[
1 \leq k \leq i \leq N \\
\forall x: 0 \leq p[x] < N \\
\forall x < k: B[x] = A[p[x]] \\
\forall x < k-1: B[x+1] > B[x]
\]
Overview

- Syntax and concrete semantics

Non-relational abstract semantics
 e.g., $\forall i: A[i] \leq \text{constant}$
 - application to interval analysis

Relational (uniform) abstract semantics
 e.g., $\forall i: A[i] \leq V$
 - expand and fold operations
 - application to polyhedral analysis

Non-uniform abstraction
 e.g., $\forall i: A[i] \leq i$
Syntax extension

Modified expressions and statements

\[\begin{align*}
\text{expr} & ::= V & \text{(scalar access, } V \in V) \\
& | A[\text{expr}] & \text{(array access, } A \in A) \\
& | \cdots
\end{align*}\]

\[\begin{align*}
\text{stat} & ::= V \leftarrow \text{expr} & \text{(scalar update, } V \in V) \\
& | A[\text{expr}] \leftarrow \text{expr} & \text{(array update, } A \in A) \\
& | \cdots
\end{align*}\]

Our language now has two ways to access the memory

- \(V\): scalar integer variables (as before)
- \(A\): arrays of integer values (new)
 - arrays are indiced by positive integers
 - arrays are unbounded (to simplify, we ignore overflows)

\[\implies\text{ an array } A \text{ is similar to a map } A : \mathbb{N} \rightarrow \mathbb{Z}\]
Concrete environments: \[E \overset{\text{def}}{=} (\mathbb{V} \cup (\mathbb{A} \times \mathbb{N})) \rightarrow \mathbb{Z} \]

\(\rho \in E \) assigns an integer value to “memory cells” as follows:

- \(\rho(V) \) for every scalar variable \(V \in \mathbb{V} \)
- \(\rho(A, i) \) for every array position \(A \in \mathbb{A}, \, i \geq 0 \)

Concrete semantics:

\[
\begin{align*}
E[V] \rho & \overset{\text{def}}{=} \{ \rho(V) \} \\
E[A[e]] \rho & \overset{\text{def}}{=} \{ \rho(A, i) \mid i \in E[e] \rho \} \\
S[V \leftarrow e] R & \overset{\text{def}}{=} \{ \rho[V \mapsto v] \mid \rho \in R, \, v \in E[e] \rho \} \\
S[A[f] \leftarrow e] R & \overset{\text{def}}{=} \{ \rho[(A, i) \mapsto v] \mid \rho \in R, \, v \in E[e] \rho, \, i \in E[f] \rho, \, i \geq 0 \}
\end{align*}
\]…
Non-relational abstractions
Abstracting arrays

Summarization abstraction

Goal: reuse existing numeric abstract domains

issue: numeric domains only abstract subsets of \(\mathbb{Z}^n \), for finite \(n \)

solution: reduce \(\mathcal{E} \) to maps on finite set of abstract variables

Abstract variables: \(\mathbb{V}^\# \overset{\text{def}}{=} \mathbb{V} \cup \mathbb{A} \)

- scalar variables in \(\mathbb{V} \) are exactly represented in \(\mathbb{V}^\# \)
- the contents of an array \(A \in \mathbb{A} \) is abstracted with
 - a single summary variable \(A \) (modeling the contents of the whole array)
- \(\mathbb{V}^\# \) is finite

Summarization Galois Connection:

\[
(\mathcal{P}(\mathcal{E}), \subseteq) \xleftarrow{\gamma_s} \xrightarrow{\alpha_s} (\mathcal{P}(\mathbb{V}^\# \to \mathbb{Z}), \subseteq)
\]

- \(\alpha_s(R) \overset{\text{def}}{=} \{ [V \mapsto \rho(V), A \mapsto \rho(A, \iota(A))] \mid \rho \in R, \iota \in \mathbb{A} \to \mathbb{N} \} \)
 (folds all array elements \((A, i)\) into the abstract variable \(A \))
- \(\gamma_s(S) \overset{\text{def}}{=} \{ \rho \mid \forall \iota \in \mathbb{A} \to \mathbb{N}: [V \mapsto \rho(V), A \mapsto \rho(A, \iota(A))] \in S \} \)
 (indeed, \(\gamma_s(S) = \{ \rho \mid \alpha_s(\{\rho\}) \subseteq S \} = \bigcup \{ R \mid \alpha_s(R) \subseteq S \} \})
Non-relational abstraction

Reminder: Interval abstraction

- $\mathcal{P}(\forall \# \to \mathbb{Z})$ is abstracted into $\forall \# \to \mathcal{P}(\mathbb{Z})$ (Cartesian abstraction)
- $\mathcal{P}(\mathbb{Z})$ is abstracted as an interval in $\llbracket \cdot \rrbracket$

(Note: the Cartesian and summarization abstractions commute)

Abstract semantics: in $\mathcal{E} \# \overset{\text{def}}{=} \forall \# \to \llbracket \cdot \rrbracket$

- $E \#[V] X \# \overset{\text{def}}{=} X \#(V)$
 $E \#[A[e]] X \# \overset{\text{def}}{=} X \#(A)$ (e is ignored)

- $S \#[V \leftarrow e] X \# \overset{\text{def}}{=} X \#[V \mapsto E \#[e] X \#]$
 $S \#[A[f] \leftarrow e] X \# \overset{\text{def}}{=} X \#[A \mapsto X \#(A) \cup \# E \#[e] X \#]$
 f is ignored, we perform a weak update that accumulates values

assuming $X \#(V) = X \#(A) = [a, b]$:

- $S \#[V \leq c] X \# \overset{\text{def}}{=} X \#[V \mapsto [a, \min(b, c)]]$ if $a \leq c$, \bot otherwise
- $S \#[A[e] \leq c] X \# \overset{\text{def}}{=} X \#$ if $a \leq c$, \bot otherwise
 we test for satisfiability but do not refine $X \#(A)$; the case $A[e] \leq A[f]$ is similar

- other operations are unchanged, including $\cap \#$, $\cup \#$, \ldots
Interval analysis example

Example: increasing subsequence

\[
\begin{align*}
p[0] & \leftarrow 0; B[0] \leftarrow A[0]; \\
 i & \leftarrow 1; k \leftarrow 1; \\
 \textbf{while } i < N \textbf{ do} \\
 & \quad \textbf{if } A[i] > B[k - 1] \textbf{ then} \\
 & \quad \quad B[k] \leftarrow A[i]; \\
 & \quad \quad p[k] \leftarrow i; \\
 & \quad \quad k \leftarrow k + 1; \\
 & \quad i \leftarrow i + 1
\end{align*}
\]

Analysis result:
Assuming that \(N \in [N_\ell, N_h] \), \(\forall x : A[x] \in [A_\ell, A_h] \), we get:

- \(\forall x : p[x] \in [0, N_h - 1] \)
- \(\forall x : B[x] \in [\min(0, A_\ell), \max(0, A_h)] \)
Relational abstractions
Variable addition and removal

Concrete semantics:

The set \mathcal{V} of variables is not always fixed during program execution:
e.g., local variables

now $\mathcal{E} \stackrel{\text{def}}{=} \bigcup_{\mathcal{V}\,\text{finite}} \mathcal{V} \rightarrow \mathbb{Z}$

- $S[\text{add } \mathcal{V}] \mathcal{R} \stackrel{\text{def}}{=} \{ \rho[\mathcal{V} \mapsto v] \mid \rho \in \mathcal{R}, v \in \mathbb{Z} \}$
 add an uninitialized variable

- $S[\text{del } \mathcal{V}] \mathcal{R} \stackrel{\text{def}}{=} \{ \rho|_{\text{dom}(\rho) \setminus \{\mathcal{V}\}} \mid \rho \in \mathcal{R} \}$
 remove a variable

Abstract semantics:

$\mathcal{E}^\# \stackrel{\text{def}}{=} \bigcup_{\mathcal{V}\,\text{finite}} \mathcal{E}^\#_\mathcal{V}$

one abstract $|\mathcal{V}|$-dimensional abstract domain for each \mathcal{V}, e.g.: $\mathcal{E}^\#_\mathcal{V} = \text{polyhedra of } \mathbb{R}^{|\mathcal{V}|}$

Example, in the interval domain:

- $S^\#[\text{add } \mathcal{V}] X^\# \stackrel{\text{def}}{=} X^\#[\mathcal{V} \mapsto [-\infty, +\infty]]$

- $S^\#[\text{del } \mathcal{V}] X^\# \stackrel{\text{def}}{=} X^\#|_{\text{dom}(X^\#) \setminus \{\mathcal{V}\}}$
Variable duplication and fold

Expanding and folding: model dynamic summarization

\[S[\text{expand } V \rightarrow V'] R \overset{\text{def}}{=} \{ \rho[V' \mapsto v] \mid \rho \in R \land \rho[V \mapsto v] \in R \} \]

\[S[\text{fold } V \leftarrow V'] R \overset{\text{def}}{=} \{ \rho \mid \exists v : \rho[V' \mapsto v] \in R \lor \rho[V' \mapsto \rho(V), V \mapsto v] \in R \} \]

- expand duplicates a variable and its constraints
 \((1 \leq V \leq X \implies 1 \leq V \leq X \land 1 \leq V' \leq X; \text{ but } V = V' \text{ does not hold!})\)

- fold summarizes \(V\) and \(V'\) into \(V\)
 \((1 \leq V \leq X \land 2 \leq V' \leq Y \implies 1 \leq V \leq X \lor 2 \leq V \leq Y)\)

- fold is an abstraction, expand is its associated concretization:

 \[
 \mathcal{P}(V \rightarrow \mathbb{Z}) \xleftarrow{S[\text{expand } V \rightarrow V']} \xrightarrow{S[\text{fold } V \leftarrow V']} \mathcal{P}((V \setminus \{V'\}) \rightarrow \mathbb{Z})
 \]

we have a Galois insertion
Relational expand and join

Polyhedral abstraction:

- **expand** can be exactly modeled by copying constraints:
 \[
 S^\#[\text{expand } V_a \rightarrow V_b] \{ \sum_i \alpha_{ij} V_i \geq \beta_j \} \text{ def } = \{ \sum_i \alpha_{ij} V_i \geq \beta_j \} \cup \{ \sum_{i \neq a} \alpha_{ij} V_i + \alpha_{aj} V_b \geq \beta_j \}
 \]

- **join** can be approximated using a weak copy:
 \[
 S^\#[\text{fold } V \leftarrow V'] X^\# \text{ def } = S^\#[\text{del } V'] (X^\# \cup^\# S^\#[V \leftarrow V'] X^\#)
 \]
 (assignment that keeps new and old values, instead of replacing old by new)

 example:
 \[
 0 \leq V \leq 3 \land 10 \leq V' \leq 13 \implies 0 \leq V \leq 13
 \]
 which over-approximates \[
 0 \leq V \leq 3 \lor 10 \leq V \leq 13
 \]

- **S^\#[\text{add } V]** keeps the constraint set unchanged
- **S^\#[\text{del } V]** projects out \(V \)
Relational array abstraction

Goal: abstract $P(E)$ using polyhedra over $V^\# \overset{\text{def}}{=} V \cup A$

Principle: use temporary variables, join and expand

Abstract assignment: $S^\#[A[f] \leftarrow e] X^\#$

- replace each array expression $A[expr]$ in e with a fresh copy of A,
 we get a new expression e' and environment $X_1^\#$
 e.g., replace $B[expr]$ in $X^\#$, with B' in $X_1^\# \overset{\text{def}}{=} S^\#[\text{expand } B \rightarrow B'] X^\#$

- create a new copy A' of A to hold the result
 $X_2^\# \overset{\text{def}}{=} S^\#[\text{expand } A \rightarrow A'] X_1^\#$

- assign e' into A'
 $X_3^\# \overset{\text{def}}{=} S^\#[A' \leftarrow e'] X_2^\#$

- fold A' back into A
 $X_4^\# \overset{\text{def}}{=} S^\#[\text{fold } A \leftrightarrow A'] X_3^\#$

- remove all fresh copies of arrays:
 $S^\#[\text{del } B'] X_4^#$

The cases for $S^\#[V \leftarrow e]$ and $S^\#[c?]$ are similar, and a bit simpler
Abstracting arrays

Relational abstractions

Polyhedral analysis example

Example: increasing subsequence

\[
p[0] \leftarrow 0; B[0] \leftarrow A[0];
i \leftarrow 1; k \leftarrow 1;
\]

while \(i < N\) do

\[
\text{if } A[i] > B[k - 1] \text{ then}
\]

\[
B[k] \leftarrow A[i];
p[k] \leftarrow i;
k \leftarrow k + 1;
\]

\(i \leftarrow i + 1\)

Analysis result:

Assuming that \(\forall x: A[x] \in [A_\ell, A_h]\), we get:

\[\forall x: 0 \leq p[x] < N\]

which is stronger than \(\forall k: 0 \leq p[k] < N_h\)

\[\forall x: B[x] \in [\min(0, A_\ell), \max(0, A_h)]\]

\(B \leq A\) would mean \(\forall i, j: B[i] \leq A[j]\), which does not hold
Non-uniform abstractions
Beyond uniform abstractions

The summarization $\alpha_s : \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\forall \# \rightarrow \mathbb{Z})$ is uniform: it forgets relations between array element indices and element values

Non-uniform abstraction example: array segmentation

Initialization loop

\[
I \leftarrow 0; \\
\textbf{while } I < 1000 \textbf{ do} \\
\qquad T[I] \leftarrow 1; \\
\qquad I \leftarrow I + 1
\]

we wish to analyze the loop without unrolling

at \bullet we need to express the loop invariant:

$\forall i < I : T[i] = 1$

\implies at loop exit, T is initialized until 1000

abstract domain: partition the array contents into uniform segments

segments have constant or symbolic bounds (0, I, 1000, ...)

segments have a contents in an abstract domain (intervals, ...)

\[\begin{array}{c|c|c}
\text{I} & \text{0} & \text{1000} \\
\hline
\text{T[I]} & 1 & [-\infty, +\infty] & [-\infty, +\infty] \\
\end{array} \]