Abstract Interpretation III

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris

year 2014–2015

Course 12

13 May 2015
Overview

- Last week: non-relational abstract domains (intervals)
 - abstract each variable independently from the others
 - can express important properties (e.g., absence of overflow)
 - unable to represent relations between variables

- This week: relational abstract domains
 - more precise, but more costly
 - the need for relational domains
 - linear equality domain
 \[\sum_i \alpha_i V_i = \beta_i \]
 - polyhedra domain
 \[\sum_i \alpha_i V_i \geq \beta_i \]
 - practical exercises: relational analysis with the Apron library

- Next week: selected advanced topics on abstract domains
Motivation
Relational assignments and tests

Example

\[
X \leftarrow \text{rand}(0, 10); \ Y \leftarrow \text{rand}(0, 10); \
\text{if } X \geq Y \text{ then } X \leftarrow Y \text{ else skip;}
\]

\[
D \leftarrow Y - X; \quad \text{assert } D \geq 0
\]

Interval analysis:

- \(S^\#[X \geq Y?]\) is abstracted as the identity

 \[
 \text{given } R^\# \overset{\text{def}}{=} [X \mapsto [0, 10], Y \mapsto [0, 10]]
 \]

 \[
 S^\#[\text{if } X \geq Y \text{ then } \cdots] R^\# = R^\#
 \]

- \(D \leftarrow Y - X \) gives \(D \in [0, 10] \)

 \[
 -^\# [0, 10] = [-10, 10]
 \]

- the assertion \(D \geq 0 \) fails
Relational assignments and tests

Example

\[\begin{align*}
X & \leftarrow \text{rand}(0, 10); \\
Y & \leftarrow \text{rand}(0, 10); \\
\text{if } X & \geq Y \text{ then } X \leftarrow Y \text{ else skip;} \\
D & \leftarrow Y - X; \\
\text{assert } D & \geq 0
\end{align*} \]

Solution: relational domain

- represent explicitly the information \(X \leq Y \)
- infer that \(X \leq Y \) holds after the if \(\cdots \) then \(\cdots \) else \(\cdots \)
 - \(X \leq Y \) both after \(X \leftarrow Y \) when \(X \geq Y \), and after skip when \(X \leq Y \)
- use \(X \leq Y \) to deduce that \(Y - X \in [0, 10] \)

Note:

the invariant we seek, \(D \geq 0 \), can be exactly represented in the interval domain but inferring \(D \geq 0 \) requires a more expressive domain locally
Relational loop invariants

Example

```plaintext
I ← 1; X ← 0;
while I ≤ 1000 do
    I ← I + 1;
    X ← X + 1;
assert X ≤ 1000
```

Interval analysis:

- after iterations with widening, we get in 2 iterations:
 as loop invariant: \(I \in [1, +\infty) \) and \(X \in [0, +\infty) \)
 after the loop: \(I \in [1001, +\infty) \) and \(X \in [0, +\infty) \) \(\implies\) assert fails

- using a decreasing iteration after widening, we get:
 as loop invariant: \(I \in [1, 1001] \) and \(X \in [0, +\infty) \)
 after the loop: \(I = 1001 \) and \(X \in [0, +\infty) \) \(\implies\) assert fails
 (the test \(I \leq 1000 \) only refines \(I \), but gives no information on \(X \))

- without widening, we get \(I = 1001 \) and \(X = 1000 \) \(\implies\) assert passes
 but we need 1000 iterations! (≃ concrete fixpoint computation)
Relational loop invariants

Example

```
I ← 1; X ← 0;
while I ≤ 1000 do
    I ← I + 1;
    X ← X + 1;
assert X ≤ 1000
```

Solution: relational domain

- infer a **relational loop invariant**: \(I = X + 1 \land 1 \leq I \leq 1001 \)
 - \(I = X + 1 \) holds before entering the loop as \(1 = 0 + 1 \)
 - \(I = X + 1 \) is invariant by the loop body \(I ← I + 1; X ← X + 1 \)

 (can be inferred in 2 iterations with widening in the polyhedra domain)

- propagate the loop exit condition \(I > 1000 \) to get:
 - \(I = 1001 \)
 - \(X = I - 1 = 1000 \) \(\implies \) **assert** passes

Note:

the invariant we seek after the loop exit has an interval form: \(X \leq 1000 \)
but we need to infer a more **expressive loop invariant to deduce it**
Affine Equalities
The affine equality domain

We look for invariants of the form:

\[\wedge_j \left(\sum_{i=1}^n \alpha_{ij} V_i = \beta_j \right), \; \alpha_{ij}, \beta_j \in \mathbb{Q} \]

where all the \(\alpha_{ij} \) and \(\beta_j \) are inferred automatically.

We use a domain of affine spaces proposed by Karr in 1976

\[\mathcal{E}^\# \simeq \{ \text{affine subspaces of } \mathbb{V} \to \mathbb{R} \} \]

(with a suitable machine representation)
Affine equality representation

Machine representation:

\[\mathcal{E}^\# \overset{\text{def}}{=} \cup_m \{ \langle M, \vec{C} \rangle | M \in \mathbb{Q}^{m \times n}, \vec{C} \in \mathbb{Q}^m \} \cup \{ \bot \} \]

- either the constant \(\bot \)
- or a pair \(\langle M, \vec{C} \rangle \) where
 - \(M \in \mathbb{Q}^{m \times n} \) is a \(m \times n \) matrix, \(n = |\mathbb{V}| \) and \(m \leq n \),
 - \(\vec{C} \in \mathbb{Q}^m \) is a row-vector with \(m \) rows

\(\langle M, \vec{C} \rangle \) represents an equation system, with solutions:

\[
\gamma(\langle M, \vec{C} \rangle) \overset{\text{def}}{=} \{ \vec{V} \in \mathbb{R}^n | M \times \vec{V} = \vec{C} \}
\]

\(M \) should be in row echelon form:

- \(\forall i \leq m: \exists k_i: M_{ik_i} = 1 \) and
 \(\forall c < k_i: M_{ic} = 0, \forall l \neq i: M_{lk_i} = 0, \)
- if \(i < i' \) then \(k_i < k_{i'} \) (leading index)

Example:

\[
\begin{bmatrix}
1 & 0 & 0 & 5 & 0 \\
0 & 1 & 0 & 6 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Remarks:

- the representation is unique
- as \(m \leq n = |\mathbb{V}| \), the memory cost is in \(\mathcal{O}(n^2) \) at worst
- \(\bot \) is represented as the empty equation system: \(m = 0 \)
Galois connection

between arbitrary subsets and affine subsets

\[(\mathcal{P}(\mathbb{R}^{|\mathbb{V}|}), \subseteq) \leftrightarrow (\text{Aff}(\mathbb{R}^{|\mathbb{V}|}), \subseteq)\]

- \(\gamma(X) \overset{\text{def}}{=} X\) (identity)
- \(\alpha(X) \overset{\text{def}}{=} \) smallest affine subset containing \(X\)

\(\text{Aff}(\mathbb{R}^{|\mathbb{V}|})\) is closed under arbitrary intersections, so we have:

\[\alpha(X) = \cap \{Y \in \text{Aff}(\mathbb{R}^{|\mathbb{V}|}) | X \subseteq Y\}\]

\(\text{Aff}(\mathbb{R}^{|\mathbb{V}|})\) contains every point in \(\mathbb{R}^{|\mathbb{V}|}\)

we can also construct \(\alpha(X)\) by (abstract) union:

\[\alpha(X) = \bigcup \# \{\{x\} | x \in X\}\]

Notes:

- we have assimilated \(\mathbb{V} \rightarrow \mathbb{R}\) to \(\mathbb{R}^{|\mathbb{V}|}\)
- we have used \(\text{Aff}(\mathbb{R}^{|\mathbb{V}|})\) instead of the matrix representation \(\mathcal{E}\) for simplicity; a Galois connection also exists between \(\mathcal{P}(\mathbb{R}^{|\mathbb{V}|})\) and \(\mathcal{E}\)
Normalisation and emptiness testing

Let $\mathbf{M} \times \mathbf{V} = \mathbf{C}$ be a system, not necessarily in normal form.

The Gaussian reduction tells in $O(n^3)$ time:
- whether the system is satisfiable, and in that case
- gives an equivalent system in normal form

i.e.: it returns an element in $\mathcal{E}^\#$

Example:

\[
\begin{align*}
2X + Y + Z &= 19 \\
2X + Y - Z &= 9 \\
3Z &= 15 \quad \downarrow \\
\{ X + 0.5Y &= 7 \\
Z &= 5 \}
\end{align*}
\]
Gaussian reduction algorithm: \(\text{Gauss}(\langle M, \vec{C} \rangle) \)

\[
\begin{align*}
 r &\leftarrow 0 \quad \text{(rank } r) \\
 \text{for } c \text{ from 1 to } n \quad \text{(column } c) \\
 &\quad \text{if } \exists \ell > r: M_{\ell c} \neq 0 \quad \text{(pivot } \ell) \\
 &\quad \quad r \leftarrow r + 1 \\
 &\quad \quad \text{swap } \langle \vec{M}_\ell, C_\ell \rangle \text{ and } \langle \vec{M}_r, C_r \rangle \\
 &\quad \quad \text{divide } \langle \vec{M}_r, C_r \rangle \text{ by } M_{rc} \\
 &\quad \quad \text{for } j \text{ from 1 to } n, j \neq r \\
 &\quad \quad \quad \text{replace } \langle \vec{M}_j, C_j \rangle \text{ with } \langle \vec{M}_j, C_j \rangle - M_{jc} \langle \vec{M}_r, C_r \rangle \\
 &\quad \text{if } \exists \ell: \langle \vec{M}_\ell, C_\ell \rangle = \langle 0, \ldots, 0, c \rangle, c \neq 0 \\
 &\quad \quad \text{then return } \bot \\
 &\text{remove all rows } \langle \vec{M}_\ell, C_\ell \rangle \text{ that equal } \langle 0, \ldots, 0, 0 \rangle
\end{align*}
\]
Affine equality operators

Abstract operators:

If $X^\#$, $Y^\# \neq \perp$, we define:

- $X^\# \cap^\# Y^\# \equiv \text{Gauss} \left(\langle \left[\begin{array}{c} M_{X^\#} \end{array} \right] , \left[\begin{array}{c} \vec{C}_{X^\#} \end{array} \right] \rangle \right)$
 (join equations)
- $X^\# = ^\# Y^\# \iff M_{X^\#} = M_{Y^\#}$ and $\vec{C}_{X^\#} = \vec{C}_{Y^\#}$
 (uniqueness)
- $X^\# \subseteq^\# Y^\# \iff X^\# \cap^\# Y^\# = ^\# X^\#$

Add equation:

- $S^\# [[\sum_j \alpha_j V_j = \beta ?]] X^\# \equiv \text{Gauss} \left(\langle \left[\begin{array}{c} M_{X^\#} \end{array} \right] , \left[\begin{array}{c} \vec{C}_{X^\#} \end{array} \right] \rangle \right)$

For other tests:

- $S^\# [[e \triangleright e' ?]] X^\# \equiv X^\#$

Remark:

- $\subseteq^\#, =^\#, \cap^\#, =^\#$ and $S^\# [[\sum_j \alpha_j V_j - \beta = 0 ?]]$ are exact:

 - $(X^\# \subseteq^\# Y^\# \iff \gamma(X^\#) \subseteq \gamma(Y^\#), \quad \gamma(X^\# \cap^\# Y^\#) = \gamma(X^\#) \cap \gamma(Y^\#), \ldots)$
Affine equality assignment

Non-deterministic assignment: \(S^\#[V_j \leftarrow [-\infty, +\infty]] \)

Principle: remove all the occurrences of \(V_j \)
but reduce the number of equations by only one
(add a single degree of freedom)

Algorithm: assuming \(V_j \) occurs in \(M \)

- Pick the row \(\langle \vec{M}_i, C_i \rangle \) such that \(M_{ij} \neq 0 \) and \(i \) maximal
- Use it to eliminate all the occurrences of \(V_j \) in lines before \(i \)
 \((i \) maximal \(\implies M \) stays in row echelon form)\)
- Remove the row \(\langle \vec{M}_i, C_i \rangle \)

Example: forgetting \(Z \)

\[
\begin{align*}
\{ & X + Z = 10 \\
& Y + Z = 7 \} \quad \implies \quad \{ & X - Y = 3
\end{align*}
\]

The operator is **exact**
Affine equality assignment

Affine assignments: \(S^J[V_j \leftarrow \sum_i \alpha_i V_i + \beta] \)

\[
S^J[V_j \leftarrow \sum_i \alpha_i V_i + \beta] X^J \overset{\text{def}}{=} \\
\text{if } \alpha_j = 0, (S^J[V_j = \sum_i \alpha_i V_i + \beta?]) \circ S^J[V_j \leftarrow [-\infty, +\infty]] X^J \\
\text{if } \alpha_j \neq 0, \langle \mathbf{M}, \mathbf{\bar{C}} \rangle \text{ where } V_j \text{ is replaced with } \frac{1}{\alpha_j} (V_j - \sum_{i \neq j} \alpha_i V_i - \beta)
\]

(variable substitution)

Proof sketch: based on properties in the concrete

non-invertible assignment: \(\alpha_j = 0 \)

\[
S[V_j \leftarrow e] = S[V_j \leftarrow e] \circ S[V_j \leftarrow [-\infty, +\infty]] \text{ as the value of } V \text{ is not used in } e \\
\text{so } S[V_j \leftarrow e] = S[V_j = e?] \circ S[V_j \leftarrow [-\infty, +\infty]]
\]

invertible assignment: \(\alpha_j \neq 0 \)

\[
S[V_j \leftarrow e] \varsubsetneq S[V_j \leftarrow e] \circ S[V_j \leftarrow [-\infty, +\infty]] \text{ as } e \text{ depends on } V \\
\rho \in S[V_j \leftarrow e] R \iff \exists \rho' \in R: \rho = \rho'[V_j \mapsto \sum_i \alpha_i \rho'(V_i) + \beta] \\
\iff \exists \rho' \in R: \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho'(V_i) - \beta)/\alpha_j] = \rho' \\
\iff \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho'(V_i) - \beta)/\alpha_j] \in R
\]

Non-affine assignments: revert to non-deterministic case

\[
S^J[V_j \leftarrow e] X^J \overset{\text{def}}{=} S^J[V_j \leftarrow [-\infty, +\infty]] X^J \\
\text{ (imprecise but sound)}
\]
Affine equalities

Affine equality join

Join: \(\langle M, \vec{C} \rangle \cup^\# \langle N, \vec{D} \rangle \)

Idea: unify columns 1 to \(n \) of \(\langle M, \vec{C} \rangle \) and \(\langle N, \vec{D} \rangle \) using row operations

Example:
Assume that we have unified columns 1 to \(k \) to get \(\left(\begin{array}{c} R \\ 0 \end{array} \right) \), arguments are in row echelon form, and we have to unify at column \(k + 1 \): \(t(\vec{0} 1 \vec{0}) \) with \(t(\vec{\beta} 0 \vec{0}) \)

\[
\left(\begin{array}{ccc}
R & \vec{0} & M_1 \\
\vec{0} & 1 & M_2 \\
0 & \vec{0} & M_3
\end{array} \right), \quad \left(\begin{array}{ccc}
R & \vec{\beta} & N_1 \\
\vec{0} & 0 & N_2 \\
0 & \vec{0} & N_3
\end{array} \right) \quad \Rightarrow \quad \left(\begin{array}{ccc}
R & \vec{\beta} & M'_1 \\
\vec{0} & 0 & \vec{0} \\
0 & \vec{0} & M_3
\end{array} \right), \quad \left(\begin{array}{ccc}
R & \vec{\beta} & N_1 \\
\vec{0} & 0 & N_2 \\
0 & \vec{0} & N_3
\end{array} \right)
\]

Use the row \((\vec{0} 1 M_2)\) to create \(\vec{\beta}\) in the left argument
Then remove the row \((\vec{0} 1 M_2)\)
The right argument is unchanged
\(\Rightarrow\) we have now unified columns 1 to \(k + 1 \)

Unifying \(t(\vec{\alpha} 0 \vec{0}) \) and \(t(\vec{0} 1 \vec{0}) \) is similar
Unifying \(t(\vec{\alpha} 0 \vec{0}) \) and \(t(\vec{\beta} 0 \vec{0}) \) is a bit more complicated...
No other case possible as we are in row echelon form
Analysis example

No infinite increasing chain: we can iterate without widening!

Example

\[
X \leftarrow 10; \ Y \leftarrow 100;
\]
\[
while \ X \neq 0 \ do
\]
\[
\begin{align*}
X & \leftarrow X - 1; \\
Y & \leftarrow Y + 10
\end{align*}
\]

Abstract loop iterations: \[\lim \lambda X^\# . I^\# \cup^\# S^\# \left[\text{body} \right] (S^\# \left[X \neq 0? \right] X^\#) \]

- loop entry: \[I^\# = (X = 10 \land Y = 100) \]
- after one loop body iteration: \[F^\#(I^\#) = (X = 9 \land Y = 110) \]
- \[X^\# \overset{\text{def}}{=} I^\# \cup^\# F^\#(I^\#) = (10X + Y = 200) \]
- \[X^\# \] is stable

at loop exit, we get \[S^\# \left[X = 0? \right] (10X + Y = 200) = (X = 0 \land Y = 200) \]
The polyhedron domain

We look for invariants of the form: \(\bigwedge_j \left(\sum_{i=1}^{n} \alpha_{ij} V_i \geq \beta_j \right) \)

We use the polyhedron domain by Cousot and Halbwachs (1978)

\[\mathcal{E}^\# \simeq \{ \text{closed convex polyhedra of } \mathbb{V} \to \mathbb{R} \} \]

Note: polyhedra need not be bounded \((\neq \text{polytopes})\)
Polyhedra have dual representations (Weyl–Minkowski Theorem)

Constraint representation

\[\langle M, \tilde{C} \rangle \text{ with } M \in \mathbb{Q}^{m \times n} \text{ and } \tilde{C} \in \mathbb{Q}^m \]

represents:

\[\gamma(\langle M, \tilde{C} \rangle) \overset{\text{def}}{=} \{ \vec{V} \mid M \times \vec{V} \geq \tilde{C} \} \]

We will also often use a constraint set notation \(\{ \sum_i \alpha_{ij} V_i \geq \beta_j \} \)

Generator representation

\([P, R]\) where

- \(P \in \mathbb{Q}^{n \times p} \) is a set of \(p \) points: \(\vec{P}_1, \ldots, \vec{P}_p \)
- \(R \in \mathbb{Q}^{n \times r} \) is a set of \(r \) rays: \(\vec{R}_1, \ldots, \vec{R}_r \)

\[\gamma([P, R]) \overset{\text{def}}{=} \{ (\sum_{j=1}^p \alpha_j \vec{P}_j) + (\sum_{j=1}^r \beta_j \vec{R}_j) \mid \forall j, \alpha_j, \beta_j \geq 0: \sum_{j=1}^p \alpha_j = 1 \} \]
Generator representation examples:

\[\gamma([P, R]) \overset{\text{def}}{=} \{ (\sum_{j=1}^{p} \alpha_j \vec{P}_j) + (\sum_{j=1}^{r} \beta_j \vec{R}_j) \mid \forall j, \alpha_j, \beta_j \geq 0: \sum_{j=1}^{p} \alpha_j = 1 \} \]
Duality in polyhedra

Duality: \(P^* \) is the dual of \(P \), so that:
- the generators of \(P^* \) are the constraints of \(P \)
- the constraints of \(P^* \) are the generators of \(P \)
- \(P^{**} = P \)

\[0x + 0y + 1z \leq 1 \iff (0, 0, 1) \]
Minimal representations

- A constraint / generator system is **minimal** if no constraint /
generator can be omitted without changing the concretization.

- Minimal representations are **not unique**

Example: three different constraint representations for a point

(a) \(y + x \geq 0, y - x \geq 0, y \leq 0, y \geq -5 \) (non minimal)

(b) \(y + x \geq 0, y - x \geq 0, y \leq 0 \) (minimal)

(c) \(x \leq 0, x \geq 0, y \leq 0, y \geq 0 \) (minimal)
No bound on the size of representations (even minimal ones)

No best abstraction α

Example: a disc has infinitely many polyhedral over-approximations, but no best one
Chernikova’s algorithm

Algorithm by Chernikova (1968), improved by LeVerge (1992) to switch from a constraint system to an equivalent generator system

Motivation: most operators are easier on one representation

- By duality, we can use the same algorithm to switch from generators to constraints
- The minimal generator system can be exponential in the original constraint system (e.g., hypercube: $2n$ constraints, 2^n vertices)
- **Equality** constraints and lines (pairs of opposed rays) may be handled separately and more efficiently
- Chernikova’s algorithm minimizes the representation on-the-fly (not presented here)

Algorithm: incrementally add constraints one by one

Start with:

- $P_0 = \{(0, \ldots, 0)\}$ (origin)
- $R_0 = \{\vec{x}_i, -\vec{x}_i | 1 \leq i \leq n\}$ (axes)
Chernikova’s algorithm (cont.)

Update $[\mathbf{P}_{k-1}, \mathbf{R}_{k-1}]$ to $[\mathbf{P}_k, \mathbf{R}_k]$ by adding one constraint $\vec{M}_k \cdot \vec{V} \geq C_k \in \langle \mathbf{M}, \vec{C} \rangle$:

start with $\mathbf{P}_k = \mathbf{R}_k = \emptyset$,

- for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} \geq C_k$, add \vec{P} to \mathbf{P}_k
- for any $\vec{R} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} \geq 0$, add \vec{R} to \mathbf{R}_k
- for any $\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{Q} < C_k$, add to \mathbf{P}_k:

$$\vec{O} \overset{\text{def}}{=} \frac{C_k - \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{P} - \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{Q}$$
Chernikova’s algorithm (cont.)

for any \(\vec{R}, \vec{S} \in \mathbb{R}_{k-1} \) s.t. \(\vec{M}_k \cdot \vec{R} > 0 \) and \(\vec{M}_k \cdot \vec{S} < 0 \), add to \(\mathbb{R}_k \):

\[
\vec{O} \overset{\text{def}}{=} (\vec{M}_k \cdot \vec{S}) \vec{R} - (\vec{M}_k \cdot \vec{R}) \vec{S}
\]

for any \(\vec{P} \in \mathbb{P}_{k-1}, \vec{R} \in \mathbb{R}_{k-1} \) s.t. either \(\vec{M}_k \cdot \vec{P} > C_k \) and \(\vec{M}_k \cdot \vec{R} < 0 \), or \(\vec{M}_k \cdot \vec{P} < C_k \) and \(\vec{M}_k \cdot \vec{R} > 0 \), add to \(\mathbb{P}_k \):

\[
\vec{O} \overset{\text{def}}{=} \vec{P} + \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{R}} \vec{R}
\]
Example:

\[P_0 = \{(0, 0)\} \quad R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]
Example:

\[Y \geq 1 \]

\[P_0 = \{(0, 0)\} \]

\[R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]

\[P_1 = \{(0, 1)\} \]

\[R_1 = \{(1, 0), (-1, 0), (0, 1)\} \]
Chernikova’s algorithm example

Example:

\[P_0 = \{(0, 0)\} \]
\[R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]
\[Y \geq 1 \]
\[P_1 = \{(0, 1)\} \]
\[R_1 = \{(1, 0), (-1, 0), (0, 1)\} \]
\[X + Y \geq 3 \]
\[P_2 = \{(2, 1)\} \]
\[R_2 = \{(1, 0), (-1, 1), (0, 1)\} \]
Example:

\[
P_0 = \{(0, 0)\}
\]
\[
R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\}
\]
\[
Y \geq 1
\]
\[
P_1 = \{(0, 1)\}
\]
\[
R_1 = \{(1, 0), (-1, 0), (0, 1)\}
\]
\[
X + Y \geq 3
\]
\[
P_2 = \{(2, 1)\}
\]
\[
R_2 = \{(1, 0), (-1, 1), (0, 1)\}
\]
\[
X - Y \leq 1
\]
\[
P_3 = \{(2, 1), (1, 2)\}
\]
\[
R_3 = \{(0, 1), (1, 1)\}
\]
Abstract operators:

Given $X^\#$, $Y^\# \neq \perp$, we define:

$$X^\# \subseteq^\# Y^\# \iff \forall \vec{P} \in P_{X^\#} : M_{Y^\#} \times \vec{P} \geq \vec{C}_{Y^\#}$$

$$\forall \vec{R} \in R_{X^\#} : M_{Y^\#} \times \vec{R} \geq \vec{0}$$

$$X^\# =^\# Y^\# \iff X^\# \subseteq^\# Y^\# \text{ and } Y^\# \subseteq^\# X^\#$$

$$X^\# \cap^\# Y^\# \overset{\text{def}}{=} \langle \begin{bmatrix} M_{X^\#} \\ M_{Y^\#} \end{bmatrix} , \begin{bmatrix} \vec{C}_{X^\#} \\ \vec{C}_{Y^\#} \end{bmatrix} \rangle \quad (\text{join constraint sets})$$

$\subseteq^\#$, $\equiv^\#$ and $\cap^\#$ are exact (in $\mathcal{P}(\forall \rightarrow \mathbb{R})$)
Operators on polyhedra (cont.)

Join: \(X^\# \cup^\# Y^\# \overset{\text{def}}{=} \left[\left[P_{X^\#} P_{Y^\#} \right], \left[R_{X^\#} R_{Y^\#} \right] \right] \) (join generator sets)

Examples:

- **two polytopes**
- **a point and a line**

\(\cup^\# \) is optimal (in \(\mathcal{P}(V \rightarrow \mathbb{R}) \)):

we get the **topological closure of the convex hull** of \(\gamma(X^\#) \cup \gamma(Y^\#) \)
Operators on polyhedra (cont.)

Affine tests:

\[S^\#[\sum_i \alpha_i V_i \geq \beta?] \ X^\# \overset{\text{def}}{=} \left\langle \left[\begin{array}{c} M_{X^\#} \\ \alpha_1 \cdots \alpha_n \end{array} \right], \left[\begin{array}{c} \vec{C}_{X^\#} \\ \beta \end{array} \right] \right\rangle \]

Non-deterministic assignment:

\[S^\#[V_j \leftarrow [-\infty, +\infty]] \ X^\# \overset{\text{def}}{=} [P_{X^\#}, [R_{X^\#} \bar{x}_j (-\bar{x}_j)]] \]

- these operators are **exact** (in \(P(V \to \mathbb{R}) \))
- other tests can be abstracted as \(S^\#[c?] \ X^\# \overset{\text{def}}{=} X^\# \)
 (sound but not optimal)
Affine assignment:

\[S^#\left[V_j \leftarrow \sum_i \alpha_i V_i + \beta \right] X^# \overset{\text{def}}{=} \]

if \(\alpha_j = 0 \), \((S^#\left[\sum_i \alpha_i V_i = V_j - \beta \right] \circ S^#\left[V_j \leftarrow [-\infty, +\infty] \right]) X^# \)

if \(\alpha_j \neq 0 \), \(\langle M, \vec{C} \rangle \) where \(V_j \) is replaced with \(\frac{1}{\alpha_j}(V_j - \sum_{i \neq j} \alpha_i V_i - \beta) \)

- similar to the assignment in the equality domain
- the assignment is exact (in \(P(\mathbb{V} \rightarrow \mathbb{R}) \))
- assignments can also be defined on the generator system
- for non-affine assignments: \(S^#\left[V \leftarrow e \right] \overset{\text{def}}{=} S^#\left[V \leftarrow [-\infty, +\infty] \right] \)
 (sound but not optimal)
Polyhedra widening

\[\mathcal{E}^\# \text{ has strictly increasing infinite chains} \implies \text{we need a widening} \]

Definition:

Take \(X^\# \) and \(Y^\# \) in minimal constraint-set form

\[
X^\# \nabla Y^\# \quad \overset{\text{def}}{=} \quad \{ \, c \in X^\# \mid Y^\# \subseteq^\# \{ c \} \, \}
\]

We suppress any unstable constraint \(c \in X^\# \), i.e., \(Y^\# \not\subseteq^\# \{ c \} \)

Example:

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{example1.png} \\
\includegraphics[width=0.3\textwidth]{example2.png} \\
\includegraphics[width=0.3\textwidth]{example3.png}
\end{array}
\end{align*}
\]
Polyhedra widening

\(\mathcal{E}^\# \) has strictly increasing infinite chains \(\implies \) we need a widening

Definition:

Take \(X^\# \) and \(Y^\# \) in minimal constraint-set form

\[
X^\# \uparrow Y^\# \overset{\text{def}}{=} \{ c \in X^\# \mid Y^\# \subseteq^\# \{ c \} \} \\
\cup \{ c \in Y^\# \mid \exists c' \in X^\#: X^\# =^\# (X^\# \setminus c') \cup \{ c \} \}
\]

We suppress any unstable constraint \(c \in X^\# \), i.e., \(Y^\# \nsubseteq^\# \{ c \} \)

We also keep constraints \(c \in Y^\# \) equivalent to those in \(X^\# \), i.e., when \(\exists c' \in X^\#: X^\# =^\# (X^\# \setminus c') \cup \{ c \} \)

Example:

![Diagram showing the widening process](image)
Example analysis

Example

\[X \leftarrow 2; I \leftarrow 0;\]
\[\textbf{while } I < 10 \textbf{ do}\]
\[\quad \textbf{if } \text{rand}(0, 1) = 0 \textbf{ then } X \leftarrow X + 2 \textbf{ else } X \leftarrow X - 3;\]
\[I \leftarrow I + 1\]

Loop invariant:

Increasing iterations with widening:

\[X_1^\# = \{X = 2, I = 0\}\]
\[X_2^\# = \{X = 2, I = 0\} \triangledown (\{X = 2, I = 0\} \cup^\# \{X \in [-1, 4], I = 1\})\]
\[= \{X = 2, I = 0\} \triangledown \{I \in [0, 1], 2 - 3I \leq X \leq 2I + 2\}\]
\[= \{I \geq 0, 2 - 3I \leq X \leq 2I + 2\}\]

Decreasing iteration: (recover \(I \leq 10\))

\[X_3^\# = \{X = 2, I = 0\} \cup^\# \{I \in [1, 10], 2 - 3I \leq X \leq 2I + 2\}\]
\[= \{I \in [0, 10], 2 - 3I \leq X \leq 2I + 2\}\]

At the loop exit, we find eventually: \(I = 10 \land X \in [-28, 22]\)
Partial conclusion

Cost vs. precision:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Invariants</th>
<th>Memory cost</th>
<th>Time cost (per op.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>intervals</td>
<td>$V \in [\ell, h]$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>affine equalities</td>
<td>$\sum_i \alpha_i V_i = \beta_i$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>polyhedra</td>
<td>$\sum_i \alpha_i V_i \geq \beta_i$</td>
<td>unbounded, exponential in practice</td>
<td></td>
</tr>
</tbody>
</table>

- domains provide a tradeoff between precision and cost
- relational invariants are sometimes necessary
 even to prove non-relational properties

an abstract domain is defined by
- a choice of **abstract properties and operators** (semantic aspect)
- data-structures and algorithms (algorithmic aspect)

an abstract domain mixes two kinds of approximations:
- **static** approximations (choice of abstract properties)
- **dynamic** approximations (widening)
Weakly relational domains

Principle: restrict the expressiveness of polyhedra to be more efficient at the cost of precision

Example domains:

- Based on constraint propagation: (closure algorithms)
 - **Octagons:** \(\pm X \pm Y \leq c \)
 - shortest path closure: \(x + y \leq c \land -y + z \leq d \implies x + z \leq c + d \)
 - quadratic memory cost, cubic time cost
 - **Two-variables per inequality:** \(\alpha x + \beta y \leq c \)
 - slightly more complex closure algorithm, by Nelson
 - **Octahedra:** \(\sum \alpha_i V_i \leq c, \quad \alpha_i \in \{-1, 0, 1\} \)
 - incomplete propagation, to avoid exponential cost
 - **Pentagons:** \(X - Y \leq 0 \)
 - restriction of octagons
 - incomplete propagation, aims at linear cost

- Based on linear programming:
 - **Template polyhedra:** \(M \times \vec{V} \geq \vec{C} \) for a fixed \(M \)
Issue:

In relational domains we used implicitly **real-valued** environments $\forall \rightarrow \mathbb{R}$
our concrete semantics is based on **integer-valued** environments $\forall \rightarrow \mathbb{Z}$

In fact, an abstract element $X^\#$ does not represent $\gamma(X^\#) \subseteq \mathbb{R}^{\mathbb{V}}$, but:

\[
\gamma_{\mathbb{Z}}(X^\#) \overset{\text{def}}{=} \gamma(X^\#) \cap \mathbb{Z}^{\mathbb{V}}
\]

(keep only integer points)

Soundness and exactness for $\gamma_{\mathbb{Z}}$

- $\subseteq^\#$ and $\equiv^\#$ are is no longer exact
 - e.g., $\gamma(2X = 1) \neq \gamma(\bot)$, but $\gamma_{\mathbb{Z}}(2X = 1) = \gamma(\bot) = \emptyset$

- $\cap^\#$ and affine tests are still exact

- affine and non-deterministic assignments are no longer exact
 - e.g., $R^\# = (Y = 2X)$, $S^\#[X \leftarrow [-\infty, +\infty]] R^\# = \top$, but $S[[X \leftarrow [-\infty, +\infty]]] (\gamma_{\mathbb{Z}}(R^\#)) = \mathbb{Z} \times (2\mathbb{Z})$

- all the operators are **still sound**
 - $\mathbb{Z}^{\mathbb{V}} \subseteq \mathbb{R}^{\mathbb{V}}$, so $\forall X^\#: \gamma_{\mathbb{Z}}(X^\#) \subseteq \gamma(X^\#)$

(in general, soundness, exactness, optimality depend on the definition of γ)
Polyhedra

Integers (cont.)

Possible solutions:

- **enrich** the domain (add exact representations for operation results)
 - congruence equalities: $\bigwedge_i \sum_j \alpha_{ij} V_j \equiv \beta_i \lbrack \gamma_i \rbrack$ (Granger 1991)
- Pressburger arithmetic (first order logic with 0, 1, +)
 - decidable, but with very costly algorithms

- **design optimal** (non-exact) operators

 also based on costly algorithms, e.g.:

 - normalization: integer hull
 smallest polyhedra containing $\gamma_{\mathbb{Z}}(X^\sharp)$

 - emptiness testing: integer programming
 NP-hard, while linear programming is P

- **pragmatic solution** (efficient, non-optimal)

 use regular operators for $\mathbb{R}^{|V|}$, then tighten each constraint to remove as many non-integer points as possible

 e.g.: $2X + 6Y \geq 3 \rightarrow X + 3Y \geq 2$

Note: we abstract integers as reals!
Using the Apron Library
Using the Apron Library

Apron library

Underlying libraries & abstract domains
- box
- intervals
- octagons
- NewPolka
- convex polyhedra
- linear equalities
- PPL + Wrapper
- convex polyhedra
- linear congruences

Abstraction toolbox
- scalar & interval arithmetic
- linearization of expressions
- fall-back implementations

Data-types
- Coefficients
- Expressions
- Constraints
- Generators
- Abs. values

Semantics: $A \xrightarrow{\gamma} \wp(\mathbb{Z}^n \times \mathbb{R}^m)$
dimensions and space dimensionality

Variables and Environments
Semantics: $A \xrightarrow{\gamma} \wp(\mathbb{V} \rightarrow \mathbb{Z} \cup \mathbb{R})$

Developer interface

User interface
- C API
- OCaml binding
- C++ binding

http://apron.cri.ensmp.fr/library
Apron modules

The Apron module contains sub-modules:

- **Abstract1**
 abstract elements

- **Manager**
 abstract domains (arguments to all Abstract1 operations)

- **Polka**
 creates a manager for polyhedra abstract elements

- **Var**
 integer or real program variables (denoted as a string)

- **Environment**
 sets of integer and real program variables

- **Texpr1**
 arithmetic expression trees

- **Tcons1**
 arithmetic constraints (based on Texpr1)

- **Coeff**
 numeric coefficients (appear in Texpr1, Tcons1)
Variables and environments

Variables: type `Var.t`

Variables are denoted by their name, as a string:
(assumes implicitly that no two program variables have the same name)

- `Var.of_string`: `string -> Var.t`

Environments: type `Environment.t`

An abstract element abstracts a set of mappings in $\mathbb{V} \rightarrow \mathbb{R}$
\mathbb{V} is the environment; it contains integer-valued and real-valued variables

- `Environment.make`: `Var.t array -> Var.t array -> t`
 make ivars rvars creates an environment with ivars integer variables and
 rvars real variables;
 make [||] [||] is the empty environment

- `Environment.add`: `Environment.t -> Var.t array -> Var.t array -> t`
 add env ivars rvars adds some integer or real variables to env

- `Environment.remove`: `t -> Var.t array -> t`

Internally, an abstract element abstracts a set of points in \mathbb{R}^n;
the environment maintains the mapping from variable names to dimensions in $[1, n]$
Using the Apron Library

Expressions

Concrete expression trees: type Texpr1.expr

- type expr = | Cst of Coeff.t (constants)
 | Var of Var.t (variables)
 | Unop of unop * expr * typ * round (unary op.)
 | Binop of binop * expr * expr * typ * round (binary op.)

- unary operators
 type Texpr1.unop = Neg | ...

- binary operators
 type Texpr1.binop = Add | Sub | Mul | Div | ...

- numeric type:
 (we only use integers, but reals and floats are also possible)
 type Texpr1.typ = Int | ...

- rounding direction:
 (only useful for the division on integers; we use rounding to zero, i.e., truncation)
 type Texpr1.round = Zero | ...
Internal expression form: type Texpr1.t

crrect concrete expression trees must be converted to an internal form
to be used in abstract operations

- Texpr1.of_expr: Environment.t -> Texpr1.expr -> Texpr1.t
 (the environment is used to convert variable names to dimensions in \mathbb{R}^n)

Coefficients: type Coeff.t

can be either a scalar $\{c\}$ or an interval $[a, b]$

we can use the Mpqf module to convert from strings to arbitrary precision integers, before converting them into Coeff.t:

- for scalars $\{c\}$:
 Coeff.s_of_mpqf (Mpqf.of_string c)

- for intervals $[a, b]$
 Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)
Constraints:

Type: `Tcons1.t`

Constructor `expr ⩾ 0`:

- `Tcons1.make: Texpr1.t -> TCons1.typ -> Tcons1.t`

Where:

Type: `Tcons1.typ`

<table>
<thead>
<tr>
<th><code>SUPEQ</code></th>
<th><code>SUP</code></th>
<th><code>EQ</code></th>
<th><code>DISEQ</code></th>
<th>…</th>
<th><code>≥</code></th>
<th><code>></code></th>
<th><code>=</code></th>
<th><code>≠</code></th>
</tr>
</thead>
</table>

Note: Avoid using `DISEQ` directly, which is not very precise; but use a disjunction of two `SUP` constraints instead.

Constraint arrays:

Type: `Tcons1.earray`

Abstract operators do not use constraints, but constraint arrays instead.

Example: Constructing an array `ar` containing a single constraint:

```plaintext
gle c = Tcons1.make texpr1 typ in  
let ar = Tcons1.array_make env 1 in  
Tcons1.array_set ar 0 c
```
Abstract operators

Abstract elements:

- `type Abstract1.t`

- `Abstract1.top: Manager.t -> Environment.t -> t`
 - create an abstract element where variables have any value

- `Abstract1.env: t -> Environment.t`
 - recover the environment on which the abstract element is defined

- `Abstract1.change_environment: Manager.t -> t -> Environment.t -> bool -> t`
 - set the new environment, adding or removing variables if necessary
 - the bool argument should be set to `false`: variables are not initialized

- `Abstract1.assign_texpr: Manager.t -> t -> Var.t -> Texpr1.t -> t option -> t`
 - abstract assignment; the option argument should be set to `None`

- `Abstract1.forget_array: Manager.t -> t -> Var.t array -> bool -> t`
 - non-deterministic assignment: forget the value of variables (when bool is `false`)

- `Abstract1.meet_tcons_array: Manager.t -> t -> Tcons1.earray -> t`
 - abstract test: add one or several constraint(s)
Abstract operators (cont.)

- **Abstract1.join**: \(\text{Manager.t} \rightarrow \text{t} \rightarrow \text{t} \rightarrow \text{t} \)
 abstract union \(\bigcup \)

- **Abstract1.meet**: \(\text{Manager.t} \rightarrow \text{t} \rightarrow \text{t} \rightarrow \text{t} \)
 abstract intersection \(\bigcap \)

- **Abstract1.widen**: \(\text{Manager.t} \rightarrow \text{t} \rightarrow \text{t} \rightarrow \text{t} \)
 widening \(\nabla \)

- **Abstract1.is_leq**: \(\text{Manager.t} \rightarrow \text{t} \rightarrow \text{t} \rightarrow \text{bool} \)
 \(\subseteq \): return true if the first argument is included in the second

- **Abstract1.is_bottom**: \(\text{Manager.t} \rightarrow \text{t} \rightarrow \text{t} \rightarrow \text{bool} \)
 whether the abstract element represents \(\emptyset \)

- **Abstract1.print**: \(\text{Format.formatter} \rightarrow \text{t} \rightarrow \text{unit} \)
 print the abstract element

Contract:
- operators return a new, immutable abstract element (functional style)
- operators return over-approximations
 (not always optimal; e.g.: for non-linear expressions)
- predicates return true (definitely true) or false (don’t know)
Managers: type `Manager.t`

The manager denotes a choice of abstract domain. To use the polyhedra domain, construct the manager with:

```ocaml
let manager = Polka.manager_alloc_loose ()
```

the same `manager` variable is passed to all `Abstract1` function.

to choose another domain, you only need to change the line defining `manager`.

Other libraries:

- `Polka.manager_alloc_equalities` (affine equalities)
- `Polka.manager_allocStrict` (\geq and $>$ affine inequalities over \mathbb{R})
- `Box.manager_alloc` (intervals)
- `Oct.manager_alloc` (octagons)
- `Ppl.manager_alloc_grid` (affine congruences)
- `PolkaGrid.manager_alloc` (affine inequalities and congruences)
Errors

Argument compatibility: ensure that:

- the **same manager** is used when creating and using an abstract element
 - the type system checks for the compatibility between `'a Manager.t` and `'a Abstract1.t`

- expressions and abstract elements have the **same environment**

- assigned **variables exist** in the environment of the abstract element

- both abstract elements of binary operators (`∪`, `∩`, `▽`, `⊆`) are defined on the **same environment**

Failure to ensure this results in a `Manager.Error` exception
open Apron

module RelationalDomain = (struct
 (* manager *)
 type man = Polka.loose Polka.t
 let manager = Polka.manager_alloc_loose ()

 (* abstract elements *)
 type t = man Abstract1.t

 (* utilities *)
 val expr_to_texpr: expr -> Texpr1.expr

 (* implementation *)
 ...

end: ENVIRONMENT_DOMAIN)

To compile: add to the Makefile:

OCAMLINC = ... -I +zarith -I +apron -I +gmp
CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma
let rec expr_to_texpr = function
| AST_binary (op, e1, e2) ->
 match op with
 | AST_PLUS -> Texpr1.Binop ⋯
 | ⋯
 | _ -> raise Top

let assign env var expr =
 try
 let e = expr_to_texpr expr in
 Abstract1.assign_texpr ⋯
 with Top -> Abstract1.forget_array ⋯

let compare abs e1 e2 =
 try
 ⋯
 Abstract1.meet_tcons_array ⋯
 with Top -> abs

Idea:
raise Top to abort a computation
catch it to fall-back to sound coarse assignments and tests