Abstract Interpretation
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 15th, 2015
Program of this lecture

Studied so far:

- **semantics**: behaviors of programs
- **properties**: safety, liveness, security...
- **approaches to verification**: typing, use of proof assistants, model checking

Today’s lecture: introduction to abstract interpretation

A general framework for comparing semantics introduced by Patrick Cousot and Radhia Cousot (1977)

- **abstraction**: use of a lattice of predicates
- **computing abstract over-approximations**, while preserving soundness
- **computing abstract over-approximations for loops**
Outline

1 Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion
Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:
- objects under study: sets of mathematical integers
- abstract elements: signs

Lattice of signs

\[\begin{align*}
\bot & \quad \text{denotes only } \emptyset \\
\pm & \quad \text{denotes any set of positive integers} \\
0 & \quad \text{denotes any subset of } \{0\} \\
\neg & \quad \text{denotes any set of negative integers} \\
\top & \quad \text{denotes any set of integers}
\end{align*} \]

Note: the order in the abstract lattice corresponds to inclusion...
Abstraction example 1: signs

Definition: abstraction relation

- **concrete elements**: elements of the original lattice \((c \in \mathcal{P}(\mathbb{Z}))\)
- **abstract elements**: predicate \((a: "\cdot \in \{\pm, 0, \ldots\}"")\)
- **abstraction relation**: \(c \vdash_S a\) when \(a\) describes \(c\)

Examples:

- \(\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_S \pm\)
- \(\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_S \top\)

We use abstract elements to reason about operations:

- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S \pm\), then \(\{x_0 + x_1 \mid x_i \in c_i\} \vdash_S \pm\)
- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S \pm\), then \(\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S \pm\)
- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S 0\), then \(\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S 0\)
- if \(c_0 \vdash_S \pm\) and \(c_1 \vdash_S \bot\), then \(\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S \bot\)
Abstraction example 1: signs

We can also consider the **union operation**:
- if \(c_0 \vdash_S \pm \) and \(c_1 \vdash_S \pm \), then \(c_0 \cup c_1 \vdash_S \pm \)
- if \(c_0 \vdash_S \pm \) and \(c_1 \vdash_S \bot \), then \(c_0 \cup c_1 \vdash_S \pm \)

But, what can we say about \(c_0 \cup c_1 \), when \(c_0 \vdash_S 0 \) and \(c_1 \vdash_S \pm \)?
- clearly, \(c_0 \cup c_1 \vdash_S \top \)...
- but no other relation holds
- in the abstract, we do not rule out negative values

We can **extend the initial lattice**:
- \(\geq 0 \) denotes any set of positive or null integers
- \(\leq 0 \) denotes any set of negative or null integers
- \(\neq 0 \) denotes any set of non null integers
- if \(c_0 \vdash_S \pm \) and \(c_1 \vdash_S 0 \), then \(c_0 \cup c_1 \vdash_S \geq 0 \)
Abstraction example 2: constants

Definition: abstraction based on constants

- **Concrete elements:** $\mathcal{P}(\mathbb{Z})$
- **Abstract elements:** \bot, \top, n where $n \in \mathbb{Z}$

 $$D^C = \{ \bot, \top \} \cup \{ n \mid n \in \mathbb{Z} \}$$
- **Abstraction relation:** $c \vdash c \ n \iff c \subseteq \{ n \}$

We obtain a flat lattice:

```
⋯    −2    −1    0    1    2    ⋯
```

Abstract reasoning:

- if $c_0 \vdash c \ n_0$ and $c_1 \vdash c \ n_1$, then $\{ k_0 + k_1 \mid k_i \in c_i \} \vdash c \ n_0 + n_1$
Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- **concrete elements**: $\mathcal{P}(\mathcal{A}^*)$ (sets of words over alphabet \mathcal{A})
- **abstract elements**: $\{\bot, \top\} \cup (\mathcal{A} \rightarrow \mathbb{N})$
- **abstraction relation**: $c \vdash \varphi : \mathcal{A} \rightarrow \mathbb{N}$ if and only if:

$$\forall w \in c, \forall a \in \mathcal{A}, \text{ } a \text{ appears } \varphi(a) \text{ times in } w$$

Abstract reasoning:

- **concatenation**:

 if $\varphi_0, \varphi_1 : \mathcal{A} \rightarrow \mathbb{N}$ and c_0, c_1 are such that $c_i \vdash \varphi_i$, then:

 $$\{ w_0 \cdot w_1 \mid w_i \in c_i \} \vdash \varphi \varphi_0 + \varphi_1$$

Information preserved, information deleted:

- **very precise** information about the number of occurrences
- the order of letters is **totally abstracted away (lost)**
Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- **Concrete elements:** $\mathcal{P}(\mathbb{Z})$
- **Abstract elements:** $\bot, \top, (a, b)$ where $a \in \{-\infty\} \cup \mathbb{Z}$, $b \in \mathbb{Z} \cup \{+\infty\}$ and $a \leq b$
- **Abstraction relation:**

 \[\emptyset \vdash_I \bot \]
 \[S \vdash_I (a, b) \iff \forall x \in S, \ a \leq x \leq b \]
 \[S \vdash_I \top \]

Operations: TD
Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- **Concrete elements:** $\mathcal{P}(X \to Y)$, inclusion ordering
- **Abstract elements:** $X \to \mathcal{P}(Y)$, pointwise inclusion ordering
- **Abstraction relation:** $c \vdash_{NR} a \iff \forall \phi \in c, \forall x \in X, \phi(x) \in a(x)$

Information preserved, information deleted:

- **Very precise** information about the *image* of the functions in c
- **Relations** such as (for given $x_0, x_1 \in X, y_0, y_1 \in Y$) the following are lost:
 \[
 \forall \phi \in c, \phi(x_0) = \phi(x_1) \]
 \[
 \forall \phi \in c, \forall x, x' \in X, \phi(x) \neq y_0 \lor \phi(x') \neq y_1
 \]
Notion of abstraction relation

Concrete order: so far, always inclusion
- the tighter the concrete set, the fewer behaviors
- **smaller concrete** sets correspond to **more precise** properties

Abstraction relation: $c \vdash a$ when c satisfies a
- if $c_0 \subseteq c_1$ and c_1 satisfies a, in all our examples, c_0 **also** satisfies a

Abstract order: in all our examples,
- it matches the abstraction relation as well:
 - if $a_0 \sqsubseteq a_1$ and c satisfies a_0, then c **also** satisfies a_1
- **great advantage:** we can reason about implication in the abstract, without looking back at the concrete properties

We will now formalize this in detail...
Outline

1. Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2. Abstract interpretation

3. Application of abstract interpretation

4. Conclusion
We consider a **concrete lattice** \((C, \subseteq)\) and an **abstract lattice** \((A, \sqsubseteq)\).

So far, we used **abstraction relations**, that are consistent with orderings:

- \(\forall c_0, c_1 \in C, \forall a \in A, c_0 \subseteq c_1 \land c_1 \vdash a \implies c_0 \vdash a\)
- \(\forall c \in C, \forall a_0, a_1 \in A, c \vdash a_0 \land a_0 \sqsubseteq a_1 \implies c \vdash a_1\)

When we have a \(c\) (resp., \(a\)) and try to map it into a compatible \(a\) (resp. \(a\) \(c\)), the abstraction relation is not a convenient tool.

Hence, we shall use **adjoint functions** between \(C\) and \(A\).

- from concrete to abstract: **abstraction**
- from abstract to concrete: **concretization**
Concretization function

Our **first adjoint function:**

Definition: concretization function

Concretization function $\gamma : A \rightarrow C$ (if it exists) maps abstract a into the weakest (i.e., most general) concrete c that satisfies a (i.e., $c \vdash a$).

Note: in common cases, there exists a γ.

- $c \vdash a$ if and only if $c \subseteq \gamma(a)$
Concretization function: a few examples

Signs abstraction:

\[\gamma_S : \begin{array}{ll}
\top & \mapsto \mathbb{Z} \\
\pm & \mapsto \mathbb{Z}_+ \\
0 & \mapsto \{0\} \\
- & \mapsto \mathbb{Z}_- \\
\bot & \mapsto \emptyset
\end{array} \]

Constants abstraction:

\[\gamma_C : \begin{array}{ll}
\top & \mapsto \mathbb{Z} \\
n & \mapsto \{n\} \\
\bot & \mapsto \emptyset
\end{array} \]

Non relational abstraction:

\[\gamma_{NR} : \begin{array}{ll}
\phi & \mapsto \{\phi : X \to Y \mid \forall x \in X, \phi(x) \in \Phi(x)\}
\end{array} \]

Parikh vector abstraction: exercise!
Abstraction function

Our **second adjoint function:**

Definition: abstraction function

Abstraction function $\alpha : C \rightarrow A$ (if it exists) maps concrete c into the most precise abstract a that soundly describes c (i.e., $c \vdash a$).

Note: in quite a few cases (including some in this course), there is no α.

Summary on adjoint functions:

- α returns the **most precise abstract predicate** that holds true for its argument
 this is called the **best abstraction**
- γ returns the **most general concrete meaning** of its argument
 hence, is called the **concretization**
Abstraction: a few examples

Constants abstraction:

\[\alpha_C : \ (c \subseteq \mathbb{Z}) \mapsto \begin{cases} \bot & \text{if } c = \emptyset \\ n & \text{if } c = \{n\} \\ \top & \text{otherwise} \end{cases} \]

Non relational abstraction:

\[\alpha_{\mathcal{N}^R} : \ (c \subseteq (X \to Y)) \mapsto (x \in X) \mapsto \{\phi(x) | \phi \in c\} \]

Signs abstraction and Parikh vector abstraction: exercises
Outline

1. Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

2. Abstract interpretation

3. Application of abstract interpretation

4. Conclusion
Definition

So far, we have:

- abstraction $\alpha : C \rightarrow A$
- concretization $\gamma : A \rightarrow C$

How to tie them together?

They should agree on a same abstraction relation \vdash !

Definition: Galois connection

A **Galois connection** is defined by a concrete lattice (C, \subseteq), an abstract lattice (A, \sqsubseteq), an abstraction function $\alpha : C \rightarrow A$ and a concretization function $\gamma : A \rightarrow C$ such that:

$$\forall c \in C, \forall a \in A, \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \quad (\iff c \vdash a)$$

Notation:

$$\left(\begin{array}{c} C, \subseteq \end{array} \right) \xrightarrow{\gamma} \left(\begin{array}{c} A, \sqsubseteq \end{array} \right)$$

Note: in practice, we never use \vdash; we use α, γ instead
Example: constants abstraction and Galois connection

Constants lattice \(D^\#_C = \{ \bot, \top \} \uplus \{ n \mid n \in \mathbb{Z} \} \)

\[
\begin{align*}
\alpha_C(c) &= \bot \quad \text{if } c = \emptyset \\
\alpha_C(c) &= n \quad \text{if } c = \{ n \} \\
\alpha_C(c) &= \top \quad \text{otherwise}
\end{align*}
\]

\[
\begin{align*}
\gamma_C(\top) &\mapsto \mathbb{Z} \\
\gamma_C(n) &\mapsto \{ n \} \\
\gamma_C(\bot) &\mapsto \emptyset
\end{align*}
\]

Thus:

- if \(c = \emptyset \), \(\forall a, c \subseteq \gamma_C(a) \), i.e., \(c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \subseteq a \)
- if \(c = \{ n \} \),
 \[
 \alpha_C(\{ n \}) = n \subseteq c \iff c = n \lor c = \top \iff c = \{ n \} \subseteq \gamma_C(a)
 \]
- if \(c \) has at least two distinct elements \(n_0, n_1 \), \(\alpha_C(c) = \top \) and \(c \subseteq \gamma_C(a) \Rightarrow a = \top \), i.e., \(c \subseteq \gamma_C(a) \iff \alpha_C(c) = \bot \subseteq a \)

Constant abstraction: Galois connection

\(c \subseteq \gamma_C(a) \iff \alpha_C(c) \subseteq a \), therefore,
\[
(P(\mathbb{Z}), \subseteq) \xleftarrow{\alpha_C} (D^\#_C, \subseteq)
\]
Example: non relational abstraction Galois connection

We have defined:

\[\alpha_{NR} : (c \subseteq (X \rightarrow Y)) \mapsto (x \in X) \mapsto \{f(x) \mid f \in c\}\]

\[\gamma_{NR} : (\Phi \in (X \rightarrow \mathcal{P}(Y))) \mapsto \{f : X \rightarrow Y \mid \forall x \in X, f(x) \in \Phi(x)\}\]

Let \(c \in \mathcal{P}(X \rightarrow Y)\) and \(\Phi \in (X \rightarrow \mathcal{P}(Y))\); then:

\[\alpha_{NR}(c) \subseteq \Phi \iff \forall x \in X, \alpha_{NR}(c)(x) \subseteq \Phi(x)\]

\[\iff \forall x \in X, \{f(x) \mid f \in c\} \subseteq \Phi(x)\]

\[\iff \forall f \in c, \forall x \in X, f(x) \in \Phi(x)\]

\[\iff \forall f \in c, f \in \gamma_{NR}(\Phi)\]

\[\iff c \subseteq \gamma_{NR}(\Phi)\]

Non relational abstraction: Galois connection

\[c \subseteq \gamma_{NR}(a) \iff \alpha_{NR}(c) \subseteq a, \text{ therefore,}\]

\[(\mathcal{P}(X \rightarrow Y), \subseteq) \xrightarrow{\alpha_{NR}} (X \rightarrow \mathcal{P}(Y), \subseteq) \xrightarrow{\gamma_{NR}} (\mathcal{P}(X \rightarrow Y), \subseteq)\]
Galois connection properties

Galois connections have **many useful properties**.

In the next few slides, we consider a Galois connection \((C, \subseteq) \xleftrightarrow{\gamma} (A, \subseteq)\) and establish a few interesting properties.

Extensivity, contractivity

- \(\alpha \circ \gamma\) is contractive: \(\forall a \in A, \alpha \circ \gamma(a) \sqsubseteq a\)
- \(\gamma \circ \alpha\) is extensive: \(\forall c \in C, c \subseteq \gamma \circ \alpha(c)\)

Proof:

- let \(a \in A\); then, \(\gamma(a) \subseteq \gamma(a)\), thus \(\alpha(\gamma(a)) \sqsubseteq a\)
- let \(c \in C\); then, \(\alpha(c) \sqsubseteq \alpha(c)\), thus \(c \subseteq \gamma(\alpha(a))\)
Galois connection properties

Monotonicity of adjoints

- \(\alpha \) is monotone
- \(\gamma \) is monotone

Proof:

- **monotonicity of \(\alpha \):** let \(c_0, c_1 \in C \) such that \(c_0 \subseteq c_1 \);
 by extensivity of \(\gamma \circ \alpha \), \(c_1 \subseteq \gamma(\alpha(c_1)) \), so by transitivity, \(c_0 \subseteq \gamma(\alpha(c_1)) \)
 by definition of the Galois connection, \(\alpha(c_0) \subseteq \alpha(c_1) \)

- **monotonicity of \(\gamma \):** same principle

Note: many proofs can be derived by duality

If \((C, \subseteq) \overset{\gamma}{\leftrightarrow} (A, \sqsubseteq) \), then \((A, \sqsupseteq) \overset{\alpha}{\leftrightarrow} (C, \supseteq) \)
Galois connection properties

Iteration of adjoints

- $\alpha \circ \gamma \circ \alpha = \alpha$
- $\gamma \circ \alpha \circ \gamma = \gamma$
- $\alpha \circ \gamma$ (resp., $\gamma \circ \alpha$) is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha = \alpha$:

 let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$

 hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \subseteq \alpha(c)$

 moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \subseteq \alpha \circ \gamma \circ \alpha(c)$

 thus, $\alpha \circ \gamma \circ \alpha(c) = \alpha(c)$

- the second point can be proved similarly (duality); the others follow
Galois connection properties

\(\alpha \) preserves least upper bounds

\[\forall c_0, c_1 \in C, \ \alpha(c_0 \cup c_1) = \alpha(c_0) \sqcup \alpha(c_1) \]

By duality:

\[\forall a_0, a_1 \in A, \ \gamma(c_0 \cap c_1) = \gamma(c_0) \sqcap \gamma(c_1) \]

Proof:
For all \(a \in A \):

\[
\alpha(c_0 \cup c_1) \sqsubseteq a \iff c_0 \cup c_1 \subseteq \gamma(a) \\
\iff c_0 \subseteq \gamma(a) \land c_1 \subseteq \gamma(a) \\
\iff \alpha(c_0) \sqsubseteq a \land \alpha(c_1) \sqsubseteq a \\
\iff \alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq a
\]

Note: when \(C, A \) are complete lattices, this extends to any family of elements
Galois connection properties

Uniqueness of adjoints

- Given $\gamma : C \to A$, there exists at most one $\alpha : A \to C$ such that $(C, \subseteq) \xrightarrow{\alpha} (A, \subseteq)$, and, if it exists, $\alpha(c) = \bigcap\{a \in A \mid c \subseteq \gamma(a)\}$
- Similarly, given $\alpha : A \to C$, there exists at most one $\gamma : C \to A$ such that $(C, \subseteq) \xleftarrow{\gamma} (A, \subseteq)$, and it is defined dually.

Proof of the first point (the other follows by duality):

We assume that there exist α so that we have a Galois connection and prove that, $\alpha(c) = \bigcap\{a \in A \mid c \subseteq \gamma(a)\}$ for a given $c \in C$.

- If $a \in A$ is such that $c \subseteq \gamma(a)$, then $\alpha(a) \sqsubseteq c$ thus, $\alpha(a)$ is a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
- Let $a_0 \in A$ be a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
 - Since $\gamma \circ \alpha$ is extensive, $c \subseteq \gamma(\alpha(c))$ and $\alpha(c) \in \{a \in A \mid c \subseteq \gamma(a)\}$.
 - Hence, $a_0 \sqsubseteq \alpha(c)$

Thus, $\alpha(c)$ is the least upper bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let \((C, \subseteq)\) and \((A, \sqsubseteq)\) be two lattices, such that any subset of \(A\) has a greatest lower bound and let \(\gamma : (A, \sqsubseteq) \rightarrow (C, \subseteq)\) be a monotone function. Then, the function below defines a Galois connection:

\[
\alpha(c) = \sqcap \{ a \in A \mid c \subseteq \gamma(a) \}
\]

Example of abstraction with no \(\alpha\): when \(\sqcap\) is not defined on all families, e.g., lattice of convex polyhedra, abstracting sets of points in \(\mathbb{R}^2\).

Exercise: state the dual property and apply the same principle to the concretization
Abstraction | Galois connections

Galois connection characterization

A characterization of Galois connections

Let \((C, \subseteq)\) and \((A, \sqsubseteq)\) be two lattices, and \(\alpha : C \rightarrow A\) and \(\gamma : A \rightarrow C\) be two monotone functions, such that:

- \(\alpha \circ \gamma\) is contractive
- \(\gamma \circ \alpha\) is extensive

Then, we have a Galois connection

\[
(C, \subseteq) \xrightarrow{\gamma} (A, \sqsubseteq) \xleftarrow{\alpha}
\]

Proof:

- Let \(c \in C\) and \(a \in A\) such that \(\alpha(c) \sqsubseteq a\).
 - Then: \(\gamma(\alpha(c)) \subseteq \gamma(a)\) (as \(\gamma\) is monotone)
 - \(c \subseteq \gamma(\alpha(c))\) (as \(\gamma \circ \alpha\) is extensive)
 - Thus, \(c \subseteq \gamma(a)\), by transitivity
- The other implication can be proved by duality
Outline

1. Abstraction

2. Abstract interpretation
 - Abstract computation
 - Fixpoint transfer

3. Application of abstract interpretation

4. Conclusion
Constructing a static analysis

We have set up a notion of **abstraction**:

- it describes **sound** approximation of **concrete properties** with **abstract predicates**
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to **compute sound abstract predicates**

In the following, we assume

- a **Galois connection**

\[(C, \subseteq) \xleftarrow{\gamma} (A, \sqsubseteq)\]

- a **concrete semantics \([.]\)**, with a **constructive definition**
 i.e., \([P]\) is defined by constructive equations (\([P] = f(\ldots)\)), least fixpoint formula (\([P] = \text{lfp}_0 f\))...
Abstract transformer

A fixed concrete element c_0 can be abstracted by $\alpha(c_0)$.

We now consider a monotone concrete function $f : C \rightarrow C$

- given $c \in C$, $\alpha \circ f(c)$ abstracts the image of c by f
- if $c \in C$ is abstracted by $a \in A$, then $f(c)$ is abstracted by $\alpha \circ f \circ \gamma(a)$:

 \[
 \begin{align*}
 c & \subseteq \gamma(a) & \text{by assumption} \\
 f(c) & \subseteq f(\gamma(a)) & \text{by monotonicity of } f \\
 \alpha(f(c)) & \subseteq \alpha(f(\gamma(a))) & \text{by monotonicity of } \alpha
 \end{align*}
 \]

Definition: best and sound abstract transformers

- the best abstract transformer approximating f is $f^\# = \alpha \circ f \circ \gamma$
- a sound abstract transformer approximating f is any operator $f^\# : A \rightarrow A$, such that $\alpha \circ f \circ \gamma \subseteq f^\#$ (or equivalently, $f \circ \gamma \subseteq \gamma \circ f^\#$)
Example: lattice of signs

- \(f : D^*_C \rightarrow D^*_C \), \(c \mapsto \{-n \mid n \in c\} \)
- \(f^* = \alpha \circ f \circ \gamma \)

Lattice of signs:

Abstract negation operator:

\[
\begin{array}{c|c}
 a & \ominus^*(a) \\
 \bot & \bot \\
 - & \pm \\
 0 & 0 \\
 \pm & - \\
 \top & \top \\
\end{array}
\]

- here, the best abstract transformer is very easy to compute
- no need to use an approximate one
Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators and arithmetic operators.

Definition: sound and exact abstract operators

Let $g : C^n \rightarrow C$ be a monotone n-ary operator. Then:

- the **best abstract operator** approximating g is defined by:
 $$g^\# : A^n \rightarrow A \quad (a_0, \ldots, a_{n-1}) \mapsto \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1}))$$

- a **sound abstract transformer** approximating g is any operator $g^\# : A^n \rightarrow A$, such that
 $$\forall (a_0, \ldots, a_{n-1}) \in A^n, \quad \alpha \circ g(\gamma(a_0), \ldots, \gamma(a_{n-1})) \sqsubseteq g^\#(a_0, \ldots, a_{n-1})$$
Example: lattice of signs arithmetic operators

Application:

\[\oplus : C^2 \rightarrow C, (c_0, c_1) \mapsto \{ n_0 + n_1 \mid n_i \in c_i \} \]

\[\otimes : C^2 \rightarrow C, (c_0, c_1) \mapsto \{ n_0 \cdot n_1 \mid n_i \in c_i \} \]

Best abstract operators:

\[
\begin{array}{c|cccc}
\oplus & \bot & - & 0 & + \\
\hline
\bot & - & - & 0 & + \\
\bot & - & - & 0 & + \\
\bot & - & - & 0 & + \\
0 & 0 & 0 & 0 & 0 \\
+ & + & + & + & + \\
T & T & T & T & T \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\otimes & \bot & - & 0 & + \\
\hline
\bot & - & - & 0 & + \\
\bot & - & - & 0 & + \\
\bot & - & - & 0 & + \\
0 & 0 & 0 & 0 & 0 \\
+ & + & + & + & + \\
T & T & T & T & T \\
\end{array}
\]

Example of loss in precision:

\{8\} \in \gamma_S(+) and \{-2\} \in \gamma_S(-)

\[\oplus^\#(+, -) = T \text{ is a lot worse than } \alpha_S(\oplus(\{8\}, \{-2\})) = + \]
Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap:

$$
\begin{array}{|c|c|c|c|c|c|}
\hline
\cup & \bot & - & 0 & + & T \\
\hline
\bot & \bot & - & 0 & + & T \\
\hline
- & - & - & T & T & T \\
\hline
0 & 0 & T & 0 & T & T \\
\hline
+ & + & T & T & + & T \\
\hline
T & T & T & T & T & T \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|c|}
\hline
\cap & \bot & - & 0 & + & T \\
\hline
\bot & \bot & \bot & \bot & \bot & \bot \\
\hline
- & - & - & \bot & \bot & \bot \\
\hline
0 & \bot & \bot & 0 & \bot & 0 \\
\hline
+ & \bot & \bot & \bot & + & + \\
\hline
T & \bot & - & 0 & + & T \\
\hline
\end{array}
$$

Example of loss in precision:

- $\gamma(-) \cup \gamma(\pm) = \{n \in \mathbb{Z} | n \neq 0\} \subset \gamma(T)$
Outline

1. Abstraction

2. Abstract interpretation
 - Abstract computation
 - Fixpoint transfer

3. Application of abstract interpretation

4. Conclusion
Fixpoint transfer

What about loops? Semantic functions defined by fixpoints?

Theorem: exact fixpoint transfer

We consider a Galois connection $(C, \subseteq) \xleftarrow{\gamma} (A, \sqsubseteq)$, two functions $f : C \to C$ and $f^\# : A \to A$ and two elements $c_0 \in C, a_0 \in A$ such that:

- f is continuous
- $f^\#$ is monotone
- $\alpha \circ f = f^\# \circ \alpha$
- $\alpha(c_0) = a_0$

Then:

- both f and $f^\#$ have a least-fixpoint (Tarski’s fixpoint theorem)
- $\alpha(\text{lfp}_{c_0} f) = \text{lfp}_{a_0} f^\#$
Fixpoint transfer: proof

- $\alpha(lfp_{c_0} f)$ is a fixpoint of $f^\#$ since:

$$
\begin{align*}
 f^\#(\alpha(lfp_{c_0} f)) &= \alpha(f(lfp_{c_0} f)) & \text{since } \alpha \circ f = f^\# \circ \alpha \\
 &= \alpha(lfp_{c_0} f) & \text{by definition of the fixpoints}
\end{align*}
$$

- To show that $\alpha(lfp_{c_0} f)$ is the least-fixpoint of $f^\#$, we assume that X is another fixpoint of $f^\#$ greater than a_0 and we show that $\alpha(lfp_{c_0} f) \sqsubseteq X$, i.e., that $lfp_{c_0} f \sqsubseteq \gamma(X)$.

As $lfp_{c_0} f = \bigcup_{n \in \mathbb{N}} f_n^0(c_0)$, it amounts to proving that $\forall n \in \mathbb{N}, f_n^0(c_0) \sqsubseteq \gamma(X)$.

By induction over n:

- $f^0(c_0) = c_0$, thus $\alpha(f^0(c_0)) = a_0 \sqsubseteq X$; thus, $f^0(c_0) \sqsubseteq \gamma(X)$.
- let us assume that $f^n(c_0) \sqsubseteq \gamma(X)$, and let us show that $f^{n+1}(c_0) \sqsubseteq \gamma(X)$, i.e. that $\alpha(f^{n+1}(c_0)) \sqsubseteq X$:

$$
\alpha(f^{n+1}(c_0)) = \alpha \circ f(f^n(c_0)) = f^1 \circ \alpha(f^n(c_0)) \sqsubseteq f^1(X) = X
$$

as $\alpha(f^n(c_0)) \sqsubseteq X$ and f^1 is monotone.
Constructive analysis of loops

How to get a constructive version of fixpoint transfer?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

- lattice \(A \) is of finite height

We compute the sequence \((a_n)_{n \in \mathbb{N}}\) defined by\(a_{n+1} = a_n \sqcup f^\#(a_n) \).

Then, \((a_n)_{n \in \mathbb{N}}\) **converges and its limit** \(a_\infty \) **is such that** \(\alpha(\text{lfp}_{c_0} f) = a_\infty \).

Proof: exercise.

Note:

- the assumptions we have made are **too restrictive** in practice
- more general fixpoint abstraction methods in the next lectures
Outline

1. Abstraction
2. Abstract interpretation
3. Application of abstract interpretation
4. Conclusion
Comparing existing semantics

1. A concrete semantics $\llbracket P \rrbracket$ is given: e.g., big steps operational semantics
2. An abstract semantics $\llbracket P \rrbracket^\#$ is given: e.g., denotational semantics
3. Search for an abstraction relation between them
 e.g., $\llbracket P \rrbracket^\# = \alpha(\llbracket P \rrbracket)$, or $\llbracket P \rrbracket \subseteq \gamma(\llbracket P \rrbracket^\#)$

Examples:
- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics
- ...

Payoff:
- better understanding of ties across semantics
- chance to generalize existing definitions
Derivation of a static analysis

1. Start from a **concrete semantics** $[P]$
2. **Choose an abstraction** defined by a Galois connection or a concretization function (usually)
3. **Derive an abstract semantics** $[P]^\#$ such that $[P] \subseteq \gamma([P]^\#)$

Examples:
- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language

Payoff:
- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.
A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis step by step, from a concrete semantics and an abstraction.

- we assume a fixed set of n integer variables x_0, \ldots, x_{n-1}
- we consider the language defined by the grammar below:

$$
P ::= x_i = n \quad \text{where } n \in \mathbb{Z} \\
| x_i = x_j + x_k \\
| x_i = x_j - x_k \\
| x_i = x_j \cdot x_k \\
| \text{input}(x_i) \quad \text{reading of a positive input} \\
| \text{if}(x_i > 0) P \text{ else } P \\
| \text{while}(x_i > 0) P
$$

- a state is a vector $\sigma = (\sigma_0, \ldots, \sigma_{n-1}) \in \mathbb{Z}^n$
- a single initial state $\sigma_{\text{init}} = (0, \ldots, 0)$
Concrete semantics

We let \([P] : \mathcal{P}(\mathbb{Z}^n) \rightarrow \mathcal{P}(\mathbb{Z}^n)\) be defined by:

\[
\begin{align*}
[x_i = n](S) &= \{ \sigma[i \leftarrow n] \mid \sigma \in S \} \\
[x_i = x_j + x_k](S) &= \{ \sigma[i \leftarrow \sigma_j + \sigma_k] \mid \sigma \in S \} \\
[x_i = x_j - x_k](S) &= \{ \sigma[i \leftarrow \sigma_j - \sigma_k] \mid \sigma \in S \} \\
[x_i = x_j \cdot x_k](S) &= \{ \sigma[i \leftarrow \sigma_j \cdot \sigma_k] \mid \sigma \in S \} \\
\text{input}(x_i)(S) &= \{ \sigma[i \leftarrow n] \mid \sigma \in S \land n > 0 \} \\
\text{if}(x_i > 0) P_0 \text{ else } P_1)(S) &= [P_0](\{ \sigma \in S \mid \sigma_i > 0 \}) \\
&\quad \cup [P_1](\{ \sigma \in S \mid \sigma_i \leq 0 \}) \\
\text{while}(x_i > 0) P)(S) &= \{ \sigma \in \text{lfp}_S f \mid \sigma_i \leq 0 \} \\
&\text{where } f : S' \mapsto [P](\{ \sigma \in S' \mid \sigma_i > 0 \})
\end{align*}
\]

- given a complete program \(P\), the **reachable states** are defined by \([P](\{ \sigma_{\text{init}} \})\)
Abstraction

We compose two abstractions:

- **non relational abstraction**: the values a variable may take is abstracted separately from the other variables.

- **sign abstraction**: the set of values observed for each variable is abstracted into the lattice of signs.

Abstraction

- **concrete domain**: \((\mathcal{P}(\mathbb{Z}^n), \subseteq)\)

- **abstract domain**: \((D^\#, \sqsubseteq)\), where \(D^\# = (D^\#_S)^n\) and \(\sqsubseteq\) is the pointwise ordering.

- **Galois connection** \((\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\gamma} (D^\#, \sqsubseteq)\), defined by

 \[
 \alpha : S \mapsto (\alpha_S(\{\sigma_0 | \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} | \sigma \in S\}))
 \]

 \[
 \gamma : S^\# \mapsto \{\sigma \in \mathbb{Z}^n | \forall i, \sigma_i \in \gamma_c(S_i^\#)\}
 \]
We search for an abstract semantics $[[P]]^\# : D^\# \rightarrow D^\#$ such that:

$$\alpha \circ [[P]] = [[[P]]^\#] \circ \alpha$$

We observe that:

$$\alpha(S) = (\alpha_S(\{\sigma_0 | \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} | \sigma \in S\}))$$

$$\alpha \circ [[P]](S) = (\alpha_S(\{\sigma_0 | \sigma \in [[P]](S)\}), \ldots, \alpha_S(\{\sigma_{n-1} | \sigma \in [[P]](S)\}))$$

We start with $x_i = n$:

$$\alpha \circ [[x_i = n]](S)$$

$$= (\alpha_S(\{\sigma_0 | \sigma \in [[P]](\{\sigma[i \leftarrow n] | \sigma \in S\})\}), \ldots,$$

$$\alpha_S(\{\sigma_{n-1} | \sigma \in [[P]](\{\sigma[i \leftarrow n] | \sigma \in S\})\}))$$

$$= (\alpha_S(\{\sigma_0 | \sigma \in S\}), \ldots, \alpha_S(\{\sigma_{n-1} | \sigma \in S\}))[i \leftarrow \alpha_S(n)]$$

$$= \alpha(S)[i \leftarrow \alpha_S(n)]$$

$$= [[x_i = n]]^\#(\alpha(S))$$

where $[[x_i = n]]^\#(S^\#) = S^\#[i \leftarrow \alpha_S(n)]$
Computation of the abstract semantics

Other assignments are treated in a similar manner:

\[
\begin{align*}
[x_i = x_j + x_k]\#(S\#) &= \quad S\#[i \leftarrow S_j\# \oplus\# S_k]\# \\
[x_i = x_j - x_k](S) &= \quad S\#[i \leftarrow S_j\# \ominus\# S_k]\#
\end{align*}
\]

Proofs are left as exercises
Computation of the abstract semantics

We now consider the case of **tests:**

\[
\begin{align*}
\alpha \circ \llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket (S) \\
= \alpha(\llbracket P_0 \rrbracket (\{\sigma \in S \mid \sigma_i > 0\}) \cup \llbracket P_1 \rrbracket (\{\sigma \in S \mid \sigma_i \leq 0\})) \\
= \alpha(\llbracket P_0 \rrbracket (\{\sigma \in S \mid \sigma_i > 0\})) \sqcup \alpha(\llbracket P_1 \rrbracket (\{\sigma \in S \mid \sigma_i \leq 0\}))
\end{align*}
\]

as \(\alpha \) preserves least upper bounds

\[
\begin{align*}
= \llbracket P_0 \rrbracket^\#(\alpha(\{\sigma \in S \mid \sigma_i > 0\})) \cup \llbracket P_1 \rrbracket^\#(\alpha(\{\sigma \in S \mid \sigma_i \leq 0\})) \\
= \llbracket P_0 \rrbracket^\#(\alpha(S) \cap \top[i \leftarrow \pm]) \cup \llbracket P_1 \rrbracket^\#(\alpha(S)) \\
= \llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket^\#(\alpha(S))
\end{align*}
\]

where
\[
\llbracket \text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1 \rrbracket^\#(S^\#) = \llbracket P_0 \rrbracket^\#(S^\# \cap \top[i \leftarrow \pm]) \cup \llbracket P_1 \rrbracket^\#(S^\#)
\]

In the case of **loops:**

\[
\llbracket \text{while}(x_i > 0) \ P \rrbracket^\#(S^\#) = \text{lfp}_{S^\#} f^\#
\]

where
\[
f^\#: S^\# \mapsto S^\# \sqcup \llbracket P \rrbracket^\#(S^\# \cap \top[i \leftarrow \pm])
\]

Proof: exercise
Abstract semantics and soundness

We have derived the following definition of $[P]^\#$:

$$
[x_i = n]^\#(S^\#) = S^\#[i \leftarrow \alpha_S(n)]
$$

$$
[x_i = x_j + x_k]^\#(S^\#) = S^#[i \leftarrow S_j^\# \oplus^\# S_k^\#]
$$

$$
[x_i = x_j - x_k](S) = S^#[i \leftarrow S_j^\# \ominus^\# S_k^\#]
$$

$$
[x_i = x_j \cdot x_k](S) = S^#[i \leftarrow S_j^\# \otimes^\# S_k^\#]
$$

$$
[\text{input}(x_i)](S) = S^#[i \leftarrow \top]
$$

$$
[\text{if}(x_i > 0) \ P_0 \ \text{else} \ P_1]^\#(S^\#) = [P_0]^\#(S^\# \sqcap \top[i \leftarrow \top]) \cup [P_1]^\#(S^\#)
$$

$$
[\text{while}(x_i > 0) \ P]^\#(S^\#) = \text{lfp}_{S^\#} f^\# \text{ where } f^\# : S^\# \mapsto S^\# \sqcup [P]^\#(S^\# \sqcap \top[i \leftarrow \top])
$$

Furthermore, for all program P: $\alpha \circ [P] = [P]^\# \circ \alpha$

An over-approximation of the final states is computed by $[P]^\#(\top)$.
Example

Factorial function:

```
input(x₀);
x₁ = 1;
x₂ = 1;
while(x₀ > 0){
    x₁ = x₀ ⋅ x₁;
    x₀ = x₀ − x₂;
}
```

Abstract state before the loop:

\((\pm, \pm, \pm)\)

Iterates on the loop:

<table>
<thead>
<tr>
<th>iterate</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀</td>
<td>(\pm)</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
<tr>
<td>x₁</td>
<td>(\pm)</td>
<td>(\pm)</td>
<td>(\pm)</td>
</tr>
<tr>
<td>x₂</td>
<td>(\pm)</td>
<td>(\pm)</td>
<td>(\pm)</td>
</tr>
</tbody>
</table>

Abstract state after the loop: \((\top, \pm, \pm)\)
Outline

1. Abstraction
2. Abstract interpretation
3. Application of abstract interpretation
4. Conclusion
Summary

This lecture:
- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:
- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties

The project will also allow to practice these notions