Satisfiability Modulo Theories
(SMT)

Sylvain Conchon

Cours 9 / 8 avril 2015

v

The SMT problem
Modern efficient SAT solvers
CDCL(T)

Examples of decision procedures: equality (CC) and difference
logic (NCCD)

(Combining decision procedures)

v

v

v

v

What is the SMT problem ?

Satisfiability Modulo Theories

SAT solver + Decision Procedures

Checking satisfiability of formulas in a decidable combination of
first-order theories (e.g. arithmetic, uninterpreted functions, etc.)

SMT Solving

Input: a (quantifier-free) first-order formula F'

Output: the status of F' (sat or unsat), and optionally a model
(when sat) or a proof (when unsat)

Basic SMT Solving

Given a quantifier-free formula F

R A G T e A OAW-RIA satisfiable 7

Convert F to CNF form
Replace every literal by a Boolean variable
Ask a SAT solver for a Boolean model M

Convert back M and call a decision procedure for the union of
theories

Sl .

if M is satisfiable modulo theories, then so is F

otherwise, add =M to F' and go to step 2

Basic SMT Solving : Example

T+y>0AN(z=2=>y+2z=-1)Az>3t

Basic SMT Solving : Example

T+y>0AN(z=2=>y+2z=-1)Az>3t

1. CNF conversion

Basic SMT Solving : Example

1. CNF conversion

Basic SMT Solving : Example

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

Basic SMT Solving : Example

1A (P2 V p3) A pa

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

Basic SMT Solving : Example

1A (P2 V p3) A pa

1. CNF conversion
2. Replace arithmetic constraints by Boolean variables
3. Ask the SAT solver for a model

Basic SMT Solving : Example

M = {p1 = true, ps = false, p3 = true, py = true}

1. CNF conversion
2. Replace arithmetic constraints by Boolean variables
3. Ask the SAT solver for a model

Basic SMT Solving : Example

M = {p1 = true, ps = false, p3 = true, py = true}

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables
3. Ask the SAT solver for a model
4

. Convert the model back to arithmetic

Basic SMT Solving : Example

M={zx4+y>0,z=z,y+2=—1, 2> 3t}

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables
3. Ask the SAT solver for a model
4

. Convert the model back to arithmetic

Basic SMT Solving : Example

M={zx4+y>0,z=z,y+2=—1, 2> 3t}

CNF conversion
Replace arithmetic constraints by Boolean variables
Ask the SAT solver for a model

Convert the model back to arithmetic

oA b

Check its consistency with the appropriate decision procedure
for arithmetic

Basic SMT Solving : Example

M is modulo arithmetic!

CNF conversion
Replace arithmetic constraints by Boolean variables
Ask the SAT solver for a model

Convert the model back to arithmetic

oA b

Check its consistency with the appropriate decision procedure
for arithmetic

Basic SMT Solving : Example

M is modulo arithmetic!

CNF conversion
Replace arithmetic constraints by Boolean variables
Ask the SAT solver for a model

Convert the model back to arithmetic

oA b

Check its consistency with the appropriate decision procedure
for arithmetic

6. Add =M to F' and go back to step 2

Basic SMT Solving : Example

r+y>0AN(x#2zVy+z=—1)Az>3tA

CNF conversion
Replace arithmetic constraints by Boolean variables
Ask the SAT solver for a model

Convert the model back to arithmetic

o b=

Check its consistency with the appropriate decision procedure
for arithmetic

6. Add =M to F' and go back to step 2

Main Issues

Size of formulas

v

v

Complex Boolean structure

v

Combination of theories

v

Efficient decision procedures
(Quantifiers)

v

SMT-Lib

The Satisfiability Modulo Theory Library
http://www.smtlib.org/

International initiative:

» Rigorous description of background theories
» Common input and output languages for SMT solvers

» Large benchmarks

The SMT Revolution

70's: Stanford Pascal Verifier (Nelson-Oppen combination)
1984: Shostak algorithm

1992: Simplify
1995: SVC
2001: ICS

2002: CVC, haRVey

2004: CVC Lite

2005: Barcelogic, MathSAT
2005: Yices

2006: CVC3, Alt-Ergo

2007: Z3, MathSAT4

2008: Boolector, OpenSMT, Beaver,Yices2
2009: STP, VeriT

2010: MathSAT5, SONOLAR
2011: STP2, SMTInterpol
2012: CVC4

10

SMT : Building Blocks

Three main blocks:

» SAT Solver
» Decision Procedures

» Combining Decision Procedures framework (CDP)

11

Modern SAT solvers

12

SAT Solvers

Is N AR AWANCAYARIAN satisfiable?

» Truth tables

» Resolution-based procedure (DP [1960])

» Backtracking-based procedure (DPLL [1962])

» 80’s - 90's: focus on variable selection heuristics

» Search-pruning techniques: Non-chronological backtracking,
Learning clauses (Grasp [1996]) CDCL

» Indexing: two-watched literals (Zchaff, 2001)

» Scoring: deletion of bad learning clauses (Glucose, 2009)

13

Propositional Logic : Notations

P, q,T, s are propositional variables or atoms

Lis a literal (p or —p)

= -p ifliSp
p iflis —p

A disjunction of literals Iy V...V [, is a clause
The empty clause is written L

A conjunction of clauses is a CNF

To improve readability, we sometime

> denote atoms by natural numbers and negation by overlining
> write CNF as sets of clauses

e.g. (—l1V Ly V =l3) A(ly vV —2) is simply written {1V 2V 3,4V 2}

14

Propositional Logic : Assignments

An assignment M is a set of literals such that if [€ M then
-l¢g M

A literal [is true in M if l € M, and false if =l €¢ M
A literal [is defined in M if it is either true or false in M

A clause is true in M if at least one of its literal is true in M, it is
false if all its literals are false in M, it is undefined otherwise

The empty clause L is not satisfiable

A clause C' V[is a unit clause in M if C'is false in M and [is
undefined in M

15

Propositional Logic : Satisfiability

A CNF F is satisfied by M (or M is a model of F'), written
M = F, if all clauses of F are true in M

If F has no model then it is unsatisfiable
F’ is entailed by F', written F' = F’, if F' is true in all models of F’
F and F’ are equivalent when F' = F" and F' = F

F and F” are equisatisfiable when
F is satisfiable if and only if F” is satisfiable

Fis valid if and only if —=F is unsatisfiable

16

Resolution

» Proof-finder procedure

» Works by saturation until the empty clause is derived

Exhaustive resolution is not practical:

exponential amount of memory

17

Resolution : State of the Procedure

The state of the procedure is represented by a variable (imperative
style) F containing a set of clauses (CNF)

18

Resolution : Algorithm

CVvileF DVv-leF CVvD¢gF

RESOLVE
F:=Fu{CvV D}
le F -l e F
EmMPTY
F=FULl

F=Fuw{CvIv-l}

TAUTO

F:=F
F=Fw{CvVv D} CeF
SUBSUME ;
F:=F
1l eF
FAIL

returnUNSAT

19

Resolution : Example

F={1v2v3,1Vv2 1Vv3, 3}

20

Resolution : Example

1v2Vv3eF 1v3eF

RESOLVE =
F:=FU {2 vV 3}

F={1v2v3,1Vv2,1Vv3,3}

20

Resolution : Example

1v2Vv3eF 1v3eF

RESOLVE =
F:=FU {2 vV 3}

F={1v2v3,1Vv2 1Vv3, 3, 2V3}

20

Resolution : Example

F=Fw{lv2v3} 2v3ecF
F:.=F

SUBSUME

F={1v2v3,1Vv2 1Vv3, 3, 2V3}

20

Resolution : Example

F=Fw{lv2v3} 2v3eF’

SUBSUME ;
F:=F

F={1v21v3, 3,2V3}

20

Resolution : Example

1V2€eF l1v3eF

RESOLVE
F:=FU {2 vV 3}

F={1v21v3, 3,2V3}

20

Resolution : Example

1V2€eF l1v3eF

RESOLVE
F:=FU {2 vV 3}

F={1v21Vv3, 3,2Vv3,2V3}

20

Resolution : Example

2V3eF 2V3eF

RESOLVE
F.=FU {3}

F={1v2,1Vv3, 3,2Vv3,2V3}

20

Resolution : Example

2V3eF 2V3eF

RESOLVE
F.=FU {3}

F={1v2,1Vv3, 3,2V3,2V3,3}

20

Resolution : Example

3eF 3eF
F:=FuU{l}

EMPTY

F={1v2,1vVv3, 3,2V3,2V3,3}

20

Resolution : Example

3eF 3eF
F:=FuU{l}

EMPTY

F={1v2,1Vv3, 3,2Vv32Vv33, 1}

20

Resolution : Example

leF

Fal, ——M8M ——
return UNSAT

F={1v2,1Vv3, 3,2Vv32Vv33, 1}

20

DPLL

DPLL is a model-finder procedure that builds incrementally a
model M for a CNF formula F' by

» deducing the truth value of a literal [from M and F' by
Boolean Constraint Propagations (BCP)

If CVvIeFand M = —C then [must be true

» guessing the truth value of an unassigned literal

If M U{l} leads to a model for which F' is unsatisfiable
then backtrack and try M U {—l}

21

DPLL : State of the Procedure

The state of the procedure is represented by

» a variable F containing a set of clauses (CNF)

» a variable M containing a list of literals

22

DPLL : Algorithm

MEF

SUCCESS ———
return SAT

CvlieF M E -C [is undefined in M
M:=1:M

UNIT

lis undefined in M [(or —l) € F
M:=1°:M

DECIDE

CeF MpE-C M=DM:1%:M
M contains no decision literals
M ==l :: My

BACKTRACK

CeF M = -C M contains no decision literals
return UNSAT

FAIL

23

DPLL : Example

M =]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

1 is undefined in M 1eF
M:=19: M

DECIDE

M =]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

1 is undefined in M 1eF
M:=19: M

DECIDE

M = 1%
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

1v2eF ME1 2 is undefined in M
M:=2:M

UNIT

M =[19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

1v2eF ME1 2 is undefined in M
M:=2:M

UNIT

M = [2;1°]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [2;1°]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [39;2;19]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

3V4EF ME3 4 is undefined in M
M:=4:M

UNIT

M = [39;2;19]
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

24

DPLL : Example

3V4EF ME3 4 is undefined in M
M:=4:M

UNIT

M =[4;39;2;19)
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

24

DPLL : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [4;39;2;19)
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [5%;4;3%;2;1]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5V6e€F MES is undefined in M
M -

UNIT —
=6:M

M =[5%;4;3%;,2;19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5V6e€F MES is undefined in M
M -

UNIT —
=6:M

M =[6;5%;4;39;2;19]
F={1v23Vv45Vv6,6V5V25V75VTV2}

24

DPLL : Example

6V5V2eF
MEGASA2 M:[G]::5@::[4;3@;2;1@]
M:=5: [4;3@;2; 1@]

BACKTRACK

M = [6;5%;4;3%;2;19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

6V5V2eF
MEGASA2 M:[G]::5@::[4;3@;2;1@]
M:=5: [4;3@;2; 1@]

BACKTRACK

M = [5;4;3%2;1°]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M = [5;4;3%2;19
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M = [7;5;4;39;2;19]
F={1v23Vv45Vv6,6V5V25V75VTV2}

24

DPLL : Example

7
MEBANTA2 M =|T7;5;
BACKTRACK 5

M = [7;5;4;3%;2;1°]
F={1v23Vv4,5Vv6,6V5V25VT75VTV2}

24

DPLL : Example

7
MEBANTA2 M =|T7;5;
BACKTRACK 5

M =[3;2;1]
F={1v23Vv4,5Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [3;2;19]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [5%;3;2;19)
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5V6e€F MES is undefined in M
M -

UNIT —
=6:M

M = [5%;3;2;1°
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5V6e€F MES is undefined in M
M -

UNIT —
=6:M

M = [6:5%3;2;19
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

6V5Vv2eF
MEGASA2 M:[G]::5@::[g;2;1@]
M :=5:3;2;19

BACKTRACK

M =[6;53;2;1°
F={1v23Vv4,5Vv6,6V5V25VT75VTV2}

24

DPLL : Example

6V5V2eF
MEGASA2 M:[G]::5@::[g;2;1@]
BACKTRACK — a
M :=5:[3;2;1"]
M = [5;3;2;19]

F={1v23Vv4,5Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[5;3;2;19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[7;5;3;2;19]
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

24

DPLL : Example

BACKTRACK

7V 2
MEbSANTA2 M=
=1

M =[7;5;3;2;19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

BACKTRACK

7V 2
MEbSANTA2 M=
=1

M = 1]
F={1v23Vv4,5Vv6,6V5V25VT75VTV2}

24

DPLL : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [1]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [391]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [391]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [5%;39;1]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[59;391]
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

24

DPLL : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[7;59;3%1]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

24

DPLL : Example

5VTIV2eF MEBSAT 2isundefined in M
2

F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

5VTIV2eF MEBSAT 2isundefined in M
2

M = [2;7;5%;39;1]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

24

DPLL : Example

MEF

SUCCESS —————
return SAT

M =[2;7;5%;39:1]
F={1v23Vv45Vv6,6V5V25VT75VT7TV2}

24

Backjumping

» The clause 6 V5V 2 is false in [6;5%;4;39;2;19]
» It is also false in [6;5%; ;2;19]

» Instead of backtracking to M = [5;4;3%;2;1°], we would
prefer to backjump directly to M = [5;2;1¢]

25

Backjump Clauses

Conflict are reflected by backjump clauses

For instance, we have the following backjump clauses in the
previous example:

Cu Cu

V
V

DOl

FE
F

Given a backjump clause C'V [, backjumping can undo several
decisions at once: it goes back to the assignment M where
M = —C and add [to M

26

DPLL + Backjumping

We just replace Backtrack by

CeF ME-C M=DM:1%:M
FeC' VI M= —C'
I"is undefined in My 1" (or =l') € F

BAcKJUMP ;
M =1 : M

where C” \/ I’ is a backjump clause

27

Backjumping : Example

M =]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

1 is undefined in M 1eF
M:=19: M

DECIDE

M =]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

1 is undefined in M 1eF
M:=19: M

DECIDE

M = 1%
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

1v2eF ME1 2 is undefined in M
M:=2:M

UNIT

M =[19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

1v2eF ME1 2 is undefined in M
M:=2:M

UNIT

M = [2;1°]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [2;1°]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [39;2;19]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

3V4EF ME3 4 is undefined in M
M:=4:M

UNIT

M = [39;2;19]
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

28

Backjumping : Example

3V4EF ME3 4 is undefined in M
M:=4:M

UNIT

M =[4;39;2;19)
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

28

Backjumping : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [4;39;2;19)
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [5%;4;3%;2;1]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5V6e€F MES is undefined in M
M -

UNIT —
=6:M

M =[5%;4;3%;,2;19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

5V6e€F MES is undefined in M
M -

UNIT —
=6:M

M =[6;5%;4;39;2;19]
F={1v23Vv45Vv6,6V5V25V75VTV2}

28

Backjumping : Example

6V5V2eF MEG6ASA2
M =1[6;5%;4] : 3% :: [2;19] FE2V5
(2,1°] =2 5 is undefined in [2;19]

BAckjump -
M :=5:[2;19

M =[6;5%;4;39;2;19]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

6V5V2eF MEG6ASA2
M =1[6;5%;4] : 3% :: [2;19] FE2V5
(2,1°] =2 5 is undefined in [2;19]

BAckjump -
M :=5:[2;19

M = [5;2;19]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}

28

Backjumping : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M = [5;2;19]
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

28

Backjumping : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[7;5;2;19]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

5VTV2€eF
MESATA2 M =[7;5:2] :: 19 =2]
FE1 [| & true 1 is undefined in |]
BAckjumP =
M:=1:]
M =[7;5;2;19]

F={1v23v45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5VTV2€F
MEHANTA2 M =[7;5:2] :: 19 =2]
FE1 [Etrue 1 is undefined in []
Backiump =
M:=1:]
M = 1]

F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [1]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

3 is undefined in M 3eF
M:=3%: M

DECIDE

M = [391]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [391]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5 is undefined in M 5¢F
M =59 M

DECIDE

M = [5%;39;1]
F={1v23Vv45Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[59;391]
F={1v23Vv45Vv6,6V5V25V75VT7TV2}

28

Backjumping : Example

5V7eF MEDS 7isundefined in M
M:=7:M

UNIT

M =[7;59;3%1]
F={1v23Vv45Vv6,6V5V25VT75VTV2}

28

Backjumping : Example

5VTIV2eF MEBSAT 2isundefined in M
2

F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

5VTIV2eF MEBSAT 2isundefined in M
2

M = [2;7;5%;39;1]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}

28

Backjumping : Example

MEF

SUCCESS —————
return SAT

M =[2;7;5%;39:1]
F={1v23Vv45Vv6,6V5V25VT75VT7TV2}

28

CDCL

Conflict-Driven Clause Learning SAT solvers (CDCL) add
backjump clauses to M as learned clauses (or lemmas) to prevent
future similar conflicts.

F = C each atom of C occurs in F or M

LEARN
F:=FuU{C}

Lemmas can also be removed from M

F=FwC FEC

FORGET S
F:=F

29

How to Find Backjump Clauses?

1. Build an implication graph that captures the way propagation
literals have been derived from decision literals

2. Use the implication graph to explain a conflict (by a specific
cutting technique) and extract backjump clauses

30

Implication Graph

An implication graph G is a DAG that can be built during the run
of DPLL as follows:

1. Create a node for each decision literal

2. For each clause I; V...V [, VI such that —ly,...,—l, are
nodes in G, add a node for [(if not already present in the
graph), and add edges —l; — [, for 1 < i < n (if not already
present)

31

Implication Graph : Example

(Partial) implication graph for the following state of DPLL
F={9v6v7Vv88VT7V56V8V44V1,4V5V25VT7V3 1V2V3}
M = [3;2;1;4;5;8;,99...;7;...;6;...]

32

Cutting the Implication Graph

To extract backjump clauses, we first cut the implication graph in
two parts:

» the first part must contains (at least) all the nodes with no
incoming arrows

» the second part must contains (at least) all the nodes with no
outgoing arrows

The literals whose outgoing edges are cut form a backjump clause
provided that exactly one of these literals belongs to the current
decision level.

33

Cutting the Implication Graph: Example

F={9v6Vv7Vv88VTV56V8V44V1,4V5V25VTV3 1V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

34

Cutting the Implication Graph: Example

F={9v6Vv7Vv88VTV56V8V44V1,4V5V25VTV3 1V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

e
=%

Cutting the Implication Graph: Example

F={9v6Vv7Vv88VTV56V8V44V1,4V5V25VTV3 1V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

©

“

Cutting the Implication Graph: Example

F={9v6Vv7Vv88VTV56V8V44V1,4V5V25VTV3 1V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

“6v8v7 e

©

“

Cutting the Implication Graph : Other Example

In the first example, Backjump is applied for the first time when

F={1v23Vv45Vv6,6V5V25V75VT7TV2}
M = [6;5%4;3%;2;19]

o

Cutting the Implication Graph : Other Example

In the first example, Backjump is applied for the first time when

F={1v23Vv45Vv6,6V5V25V75VT7TV2}
M = [6;5%4;3%;2;19]

=2v =5

g@

Cutting the Implication Graph : Other Example

In the first example, Backjump is applied for the first time when

F={1v23Vv45Vv6,6V5V25V75VT7TV2}
M = [6;5°;4;3%;2; 1

35

Cutting the Implication Graph : Other Example

When Backjump is applied for the second time, we have

F={1v23Vv45Vv6,6V5V25VT75VTV2}
M =[7;5;2;19]

O

36

Cutting the Implication Graph : Other Example

When Backjump is applied for the second time, we have

F={1v23Vv45Vv6,6V5V25VT75VTV2}
M =[7;5;2;19]

=2

O

36

Cutting the Implication Graph : Other Example

When Backjump is applied for the second time, we have

F={1v23Vv45Vv6,6V5V25VT75VTV2}
M =[7;5;2;19]

=1 =2

@ Oy

36

Backward Conflict Resolution

Backjump clauses can also be obtained by successive application of
resolution steps

Starting from the conflict clause, the (negation of) propagation
literals are resolved away in the reverse order with the respective
clauses that caused their propagations

We stop when the resolvent contains only one literal in the current
decision level

37

Backward Conflict Resolution: Example

F={9v6Vv7V88VTV56V8V44V1,4V5V25VTV3 1Vv2V3}
M = [3;2;1;4;5;8;,99 ...;7;...;6;...]

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}

M =[3;2;1;4;5;8,9%...;7;...;6;...]
R=1v2v3 5VT7V3eF

RESOLVE —
R:=5Vv7Vv1vVv?2

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}

M =[3;2;1;4;5;8,9%...;7;...;6;...]
R=1v2v3 5VT7V3eF

RESOLVE —
R:=5Vv7Vv1vVv?2

R=5V7VvV1Vv2

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

R=5V7V1V2 4V5V2€eF
R:=4Vv5VvT7V1

RESOLVE

R=5V7TV1V2

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

R=5V7V1V2 4V5V2€eF
R:=4Vv5VvT7V1

RESOLVE

R=4Vv5VvT7Vv1

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}

M =[3;2;1;4;5;8,9%...;7;...;6;...]

R=4V5Vv7V1 4V1eF
RESOLVE 7

R:=5V7V

R=4Vv5VvT7Vv1

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}

M =[3;2;1;4;5;8,9%...;7;...;6;...]

R=4V5Vv7V1 4V1eF
RESOLVE 7

R:=5V7V

R=5VvTv4

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

7 6V8Vv4eF

R=5VvT7Vv4
R:=6V8VT7V5H

RESOLVE

R=5VvTv4

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}
M =[3;2;1;4;5;8,9%...;7;...;6;...]

7 6V8Vv4eF

R=5VvT7Vv4
R:=6V8VT7V5H

RESOLVE

R=6V8VTV5

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}

]W:[3;2;1;4;5;8;9@;...;7;...;6;...]
R=6V8VT7V5 8VT7V5€eF

RESOLVE —
R:=8V7V6

R=6V8VTV5

38

Backward Conflict Resolution: Example

F={9v6Vv7Vv88VTV56V8V4,4V1,4V5V25VTV31V2V3}

]W:[3;2;1;4;5;8;9@;...;7;...;6;...]
R=6V8VT7V5 8VT7V5€eF

RESOLVE —
R:=8V7V6

R=8VTV6

38

CDCL + Resolution + Learning + Restart

When M ode = search

MEF

SUCCESS ————
return SAT

CvleF M E=-C [is undefined in M

UNIT

M:=lcy = M
[is undefined in M [(or—l)eF
DECIDE
M:=1:M
CeF M -C
CONFLICT

:= C'; Mode := resolution

39

CDCL + Resolution + Learning + Restart

When M ode = resolution

R=_1

Fal, —m8M8 ——
return UNSAT

R=CV-l lpyie M

RESOLVE
R:=CVD
R=CVI M=DM =1l : M,
My = -C [is undefined in Mo
BACKJUMP

M = lcy; :: Ma; Mode := search

40

CDCL + Resolution + Learning + Restart

When M ode = resolution

R&F
LEARN ———————
F:= FU{R}

When M ode = search

C'is a learned clause

F
ORGET F=F\{C}

RESTART

M =10

41

CDCL + Resolution : Example

Mode = search

M =]
F={1v23Vv45Vv6,6Vv5V25V75VTV2}
R:

42

CDCL + Resolution : Example

1 is undefined in M leF
M:=1:M

DECIDE

Mode = search

M =]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

1 is undefined in M leF
M:=1:M

DECIDE

Mode = search

M =[1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

1v2eF ME1 2 is undefined in M
M = 27y9 = M

UNIT

Mode = search

M =[1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

1v2eF ME1 2 is undefined in M
M = 27y9 = M

UNIT

Mode = search

M = [21y9;1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

3 is undefined in M 3¢ F
M:=3:M

DECIDE

Mode = search

M = [21y9;1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

3 is undefined in M 3¢ F
M:=3:M

DECIDE

Mode = search

M = [3;21y9; 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

3V4EF ME3 4 is undefined in M
M =45y = M

UNIT

Mode = search

M = [3;21y9; 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

3V4EF ME3 4 is undefined in M
M =45y = M

UNIT

Mode = search

M = [43y4; 3; 2195 1]
F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}
R =

42

CDCL + Resolution : Example

5 is undefined in M 5¢F
M:=5:M

DECIDE

Mode = search

M = [43y4; 3; 2195 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

5 is undefined in M 5¢F
M:=5:M

DECIDE

Mode = search

M = [5;43v4; 3; 21v23 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

5v6eF MEDS 6isundefined in M
UNIT I,

Mode = search

M = [5;43v4; 3; 21v23 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

(2]
<
(@]
m
T

=5 6 is undefined in M
=65y = M

M
UNIT
M

Mode = search
M = [656; 5; 4345 35 21v2; 1]

F={1v23Vv4,5Vv6,6Vv5V25VT75VTV2}
R =

42

CDCL + Resolution : Example

6V5V2eF MEG6AHA2

CONFLICT — -
R:=6V5V2; Mode := resolution

Mode = search
M = [658; 5; 4345 35 21v2; 1]

F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R =

42

CDCL + Resolution : Example

6V5V2eF MEG6AHA2
R :=6V5V2; Mode := resolution

CONFLICT

Mode = resolution

M = [65v6: 5; 43v45 33 2125 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R=6VvV5Vv2

42

CDCL + Resolution : Example

R=6V5V2 65,5 € M
RESOLVE =

=
I
ol
<
o

Mode = resolution

M = [65v6: 5; 43v45 33 2125 1]
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R=6VvV5Vv2

42

CDCL + Resolution : Example

R=6V5V2 65,5 € M
RESOLVE =

Mode = resolution
= [65v5; 53 43v4; 35 2123 1]

M
F={1 23\/45V66\/5\/25\/75\/7v2}
R=2vV

42

CDCL + Resolution : Example

R=2V5
M = [65y5;5;43v4] =2 3 22 [27y9: 1]
[2iv2;1] |: 2

5 undefined in [27y9; 1]

Backjump =
M := b33 :: [21y9; 1]; Mode := search

Mode = resolution

M = (656 5 43v45 33 2125 1]
F={1v23Vv45Vv6,6V5V25VT75VTV2}
R=2V5

42

CDCL + Resolution : Example

R=2V5
M = [65y5;5;43v4] =2 3 22 [27y9: 1]
[2iv2;1] |: 2

5 undefined in [27y9; 1]

Backjump =
M := b33 :: [21y9; 1]; Mode := search

Mode = search

M = [53y5; 21y9; 1]
F={1v23Vv45Vv6,6V5V25VT75VTV2}
R =

42

CDCL + Resolution : Example

etc.

Mode = search

M = [52v5§21\/231}
F={1v23Vv4,5Vv6,6Vv5V25V75VTV2}
R:

42

Strategies

The inference rules given for DPLL and CDCL are flexible

Basic strategy :

» apply DECIDE only if UNIT or FAIL cannot be applied

Conflict resolution :

» Learn only one clause per conflict (the clause used in
BACKJUMP)

» Use BACKJUMP as soon as possible (FUIP)

» When applying RESOLVE, use the literals in M in the reverse
order they have been added

43

Decision heuristic : VSIDS

The Variable State Independent Decaying Sum (VSIDS) heuristic
associates a score to each literal in order to select the literal with
the highest score when DECIDE is used

» Each literal has a counter, initialized to 0
» Increase the counters of

» the literal [when RESOLVE is used
» the literals of the clause in R when BACKJUMP is used

» Counters are divided by a constant, periodically

44

Scoring Learned Clauses

CDCL performances are tightly related to their learning clause
management

» Keeping too many clauses decrease the BCP efficiency

» Cleaning out too many clauses break the overall learning
benefit

Quality measures for learning clauses are based on scores
associated with learned clauses

» VSIDS (dynamic): increase the score of clauses involved in
RESOLVE

» LBD (static): number of different decision levels in a learned
clause

45

BCP = 80% of SAT-solver runtime
How to implement efficiently A = C (in UNIT and CONFLICT) ?

Two watched literals technique:

> assign two non-false watched literals per clause
» only if one of the two watched literal becomes false, the
clause is inspected :
» if the other watched literal is assigned to true, then do nothing
» otherwise, try to find another watched literal
» if no such literal exists, then apply Backjump
» if the only possible literal is the other watched literal of the
clause, then apply UNIT

Main advantages :

> clauses are inspected only when watched literal are assigned

» no updating when backjumping
46

CDCL(T)

47

First-Order Logic : Signature and Terms

» A signature X is a finite set of function and predicate symbols

with an arity

Constants are just function symbols of arity 0

We assume that > contains the binary predicate =
We assume a set V of variables, distinct from X

T(X,V) is the set of terms, i.e. the smallest set which
contains V and such that f(t1,...,t,) € T(X,V) whenever
ti,...,tn, €T(X,V) and f € X

T(%,0) is the set of ground terms

Terms are just trees. Given a term t and a position 7 in a
tree, we write t; for the sub-term of ¢ at position 7. We also
write t[m — t'] for the replacement of the sub-term of ¢ at
position w by the term ¢/

48

First-Order Logic : Formulas

» An atomic formula is P(t1,...,t,), where t1,... t, are terms
in T(X,V) and P is a predicate symbol of ¥

» Literals are atomic formulas or their negation

» Formulas are inductively constructed from atomic formulas
with the help of Boolean connectives and quantifiers V and 3

» Ground formulas contain only ground terms

v

A variable is free if it is not bound by a quantifier

A sentence is a formula with no free variables

v

49

First-Order Logic : Models

A model M for a signature X is defined by

v

a domain Dy

» an interpretation f™ for each function symbol f € &

v

a subset PM of D', for each predicate P € ¥ of arity n

» an assignment M(x) for each variable z € V

The cardinality of model M is the the cardinality of D,

50

First-Order Logic : Semantics

Interpretation of terms:

Mz]
M(f(t1,. ..

s tn)]

Interpretation of formulas:

M):tlztg

M Pt t)
M —F
M):Fl/\FQ
MEFVEF,

M = Vx.F

M = 3Jx F

Mlt1] = Mts]
(M(t1],..., Mt,]) € PM
MEF

M':FlandM):FQ
MEF o MEF,

M{z — v} | F forall v € Dy
M{z — v} = F for some v € Dy

51

First-Order Logic : Validity

» A formula F' is satisfiable if there a model M such that
M [= F, otherwise F' is unsatisfiable

» A formula F' is valid if —=F is unsatisfiable

52

First-Order Logic : Theories

A first-order theory T" over a signature 3 is a set of sentences
A theory is consistent if it has (at least) a model

A formula F is satisfiable in T" (or T-satisfiable) if there exists a
model M for T'A F, written M =1 F

A formula F is T-validity, denoted =1 F, if —=F is T-unsatisfiable

53

Decision Procedures

A decision procedure is an algorithm used to determine whether a
formula F in a theory T is satisfiable

Many decision procedures work on conjunctions of (ground) literals

54

We assume a fix theory T'

The state of the procedure is similar to CDCL

» [contains quantifier-free clauses in T'

» M is a list of literals in T’

55

CDCL(T) : Rules

CDCL(T) has the same rules than CDCL, augmented with

M ode = search
liy,....,ln, e M ll,...,ln):TJ_

==l V...V l,; Mode = resolution

T-CONFLICT

Mode = search
l(or—l) € F [is undefined in M
liy....l,b €M ll,...,ln‘:Tl

M = lﬁllvm\/_\ln\/l o M

T-PROPAGATE

56

CDCL(T) : Example

Mode = search

M=
F={3<z,z<0Vz<y,y<O0Vz>y)}
R:

57

CDCL(T) : Example

3<x€eF 3 < x is undefined in M
M:=3<z30 2 M

UNIT

Mode = search

M=)
F=3<z,z<0Vz<y,y<0Vz>y)}
R=

57

CDCL(T) : Example

3<x€eF 3 < x is undefined in M
M:=3<z30 2 M

UNIT

Mode = search

M = [3 < 23<4]
F=3<z,z<0Vz<y,y<0Vz>y)}
R =

57

CDCL(T) : Example

x < 0 € F is undefined in M
3<zeM 3<xlErx>0

M=z 2 0(32IV3§20) s M

T-PROPAGATE

Mode = search

M = [3 < x3<4]
F={3<z,z<0Vz<y,y<O0Vz>y)}
R:

57

CDCL(T) : Example

x < 0 € F is undefined in M
3<zeM 3<xlErx>0

M=z 2 0(32IV3§20) s M

T-PROPAGATE

Mode = search

M = [z > 0(352ve>0); 3 < T3<z]
F={3<z,z<0Vz<y,y<0OVz>y)}
R:

57

CDCL(T) : Example

r<0Vr<yekF
MErz>0 x < y is undefined in M

M:=z< Y(z<ovz<y) M

UNIT

Mode = search

M = [z > 0352ve>0); 3 < T3<z]
F={3<z,z<0Vz<y,y<0OVz>y)}
R:

57

CDCL(T) : Example

r<0Vr<yekF
MErz>0 x < y is undefined in M

M:=z< Y(z<ovz<y) M

UNIT

Mode = search

M = [z < Yzcovacy); T > 03>0va>0); 3 < T3<q]
F={3<z,z<0Vz<y,y<0OVz>y)}
R:

57

CDCL(T) : Example

y<0Vax>yeF
MErz<y y < 0 is undefined in M

M=y <Ocovesy) = M

UNIT

Mode = search

M = [z < Yzcovacy); T > 03>0va>0); 3 < T3<q]
F={3<z,z<0Vz<y,y<0OVz>y)}
R:

57

CDCL(T) : Example

y<0Vzx>yekF
MErz<y y < 0 is undefined in M

M =y <Ocovasy) = M

UNIT

Mode = search

M = [y < 0(y<0\/acZy); T < Yz<Ova<y)s T > 0(32,1\/.1520); 3< $3<$]
F=83<z,z<0Vz<y,y<0Vz>y)}
R pr—

57

CDCL(T) : Example

<, e<y,y<0eM
<z, z<y,y<0fFr L
R:=3>xVzxz>yVy>0; Mode := resolution

T-CONFLICT

Mode = search

M = [y < O(y<0\/x2y); T < Y@<ova<y)r > 0(32xVa:20); 3< $3<!E]
F=8<z,2<0Vze<y y<0Vz>y)}
R =

57

CDCL(T) : Example

<, e<y,y<0eM
<z, z<y,y<0fFr L
R:=3>xVzxz>yVy>0; Mode := resolution

T-CONFLICT

Mode = resolution

M = [y < O(y<0\/x2y); T < Y@<ova<y)r > 0(32xVa:20); 3< $3<!E]
F=8<z,2<0Vze<y y<0Vz>y)}
R=3>xzVvxz>yVy>0

57

CDCL(T) : Example

R=3>xzVvVax>yVvVy>0 Y < Oy<ovasy) €M
R:=3>xVz>y

RESOLVE

Mode = resolution

M = [y < Oycovazy); T < Ya<ova<y); T = 0@>ave>0); 3 < Ta<al
F=8<z,z<0Va<y, y<O0Vz>y)}
R=3>xVvVax>yVy>0

57

CDCL(T) : Example

R=3>xzVvVax>yVvVy>0 Y < Oy<ovasy) €M
R:=3>xVz>y

RESOLVE

Mode = resolution

M = [y < O(y<0\/w2y); T < Yx<ova<y)> T > 0(32:}0\/120); 3 < x3<a:]
F=8<z,z<0Va<y, y<O0Vz>y)}
R=3>xzVvz>y

57

CDCL(T) : Example

R=3>xVvax>y T < Yz<ova<y) € M
R:=3>zx

RESOLVE

Mode = resolution

M = [y < O(y<0\/x2y); T < Y@<ova<y)r > 0(32me20); 3< $3<$]
F=83<z,z<0Vzx<y,y<0OVz>y)}
R=3>xVz>y

57

CDCL(T) : Example

R=3>xVvax>y T < Yz<ova<y) € M
R:=3>zx

RESOLVE

Mode = resolution

M = [y < O(y<0\/x2y); T < Y@<ova<y)r > 0(32me20); 3< $3<$]
F=83<z,z<0Vzx<y,y<0OVz>y)}
R=3>ux

57

CDCL(T) : Example

R=3>=x 3< a3, €M
R =1

RESOLVE

Mode = resolution

M = [y < 0(y<0\/w2y); T < Yz<ova<y)> T > 0(32:10\/3320); 3< x3<x]
F=8<z,z2<0Va<y, y<O0Vz>y)}
R=3>=x

57

CDCL(T) : Example

R=3>=x 3< a3, €M
R =1

RESOLVE

Mode = resolution

M = [y < 0(y<0\/w2y); T < Yz<ova<y)> T > 0(32:10\/3320); 3< x3<x]
F=8<z,z2<0Va<y, y<O0Vz>y)}
R=1

57

CDCL(T) : Example

R=_1

RESOLVE —m————
return UNSAT

Mode = resolution

M = [y < 0(y<0\/w2y); T < Yz<ova<y)> T > 0(32:10\/3320); 3< x3<x]
F=8<z,z2<0Va<y, y<O0Vz>y)}
R=1

57

Explanations

How to find efficiently ly,...,l, € M such that l;,...,[, = L7

» In practice, we check for M = L and, if that's true, then we
ask the theory solver to produce an explanation, that is, a set
of literals {l1,...,l,} € M such that {l,...,l,} =L

» There may be several explanations and some of them may
contain irrelevant literals

» Decision procedures try to produce minimal explanations

58

Theory Propagation

» Similarly to rule UNIT, rule T-PROPAGATE is optional

» Contrary to rule UNIT, the implementation of rule
T-PROPAGATE can be very costly

How to find efficiently [and ly,...,l, € M st ly,..., [, =17

» Theory solver are instrumented to find a literal [implied by M
and to return an explanation of the unsatisfiability of M A =l

» The explanation is also expected to be minimal

» In practice, decision procedures find some implied literals, not
all as this can be very costly

59

Decision Procedures for SMT

Decision procedures found in articles or textbooks need usually to
be adapted for being used in SMT solvers

> Incrementally : decision procedures are called successively on
set of literals My C My C ... C M,

To gain for efficiency, we don't want to restart from scractch
for each M, but try to reuse work done for M; when
processing M1

» Backtracking : operations for going back to a previous state
of the decision procedure should be very efficient

» Propagation : find the good tradeoff between precision and
performance

» Explanations : find an efficient generation mechanism that
removes irrelevant literals (decidability issues)

60

Examples of decision procedures

61

The Free Theory of Equality with Uninterpreted Symbols

Axioms:

> Reflexivity V.o = x
» Symmetry Vo, yx =y =y =2x
> Transitivity Vo, y,zc =yAy=z=x =2
» Congruence
vxla'-wxnaylw"ayn-

$1:y1/\/\ln:ynjf(m177ln):f(yla7y’rl)

Examples:

9(y,z) =y Nglg(y,z),x) #y
fUf(f(a) =an f(f(f(f(f(a))) =aA fla) #a

62

Congruence Closure

Let R an equivalence relation on terms. The domain of R,
denoted by dom(R), is the set of all terms and subterms of R

» Congruence
Two terms t and u are congruent by R if they are respectively
of the form f(t1,...,t,) and f(ui,...,uy) and (£, u;) € R
for all ¢

R is closed by congruence if for all terms ¢, u € dom(R)
congruent par R we have (t,u) € R

» Congruence Closure
The congruence closure of R is the smallest relation
containing R and which is closed by congruence

63

Representation of Terms and Equality Relation

1. Terms are represented by DAG (directed acyclic graphs)

For instance, f(f(a,b),b) is represented by the following
graph

f

N
b

64

Representation of Terms and Equality Relation

1. Terms are represented by DAG (directed acyclic graphs)

For instance, f(f(a,b),b) is represented by the following
graph

2. R is represented by dotted lines

For instance, f(f(a,b),b) = a is represented by a dotted line
between f and a

64

Representation of Terms and Equality Relation

1. Terms are represented by DAG (directed acyclic graphs)

For instance, f(f(a,b),b) is represented by the following
graph

2. R is represented by dotted lines

For instance, f(f(a,b),b) = a is represented by a dotted line
between f and a

3. DAG associated with an equivalence relation are called E-DAG
(equality DAG)

64

Naive Congruence Closure

The equivalent relation R (the dotted lines) is implemented as a
union-find data structure on the nodes of the DAG

find(n) returns the representative of the node n

union(n, m) merges the equivalence classes of n and m

Naive congurence closure algorithm:
For every nodes n and m such that f£ind(n) # find(m),

if n and m are labeled with the same symbol and

they have the same number of children and

find(n;) = find(m;) for every children n; and m; of n and m
then, merge the classes of n and m by union(n,m)

65

9(g(g(a))) = ang(g(g(g(g(a))))) = ag(a) # a satisfiable?

D - Jq - (Q -— (JQ -— (q --— 0]

66

9(g(g(a))) = ang(g(g(g(g(a))))) = ag(a) # a satisfiable?

‘- RN \\\
o '-— g -— 0 -— g -— Jg <-— 0g

66

9(g(g(a))) = ang(g(g(g(g(a))))) = ag(a) # a satisfiable?

//4’,—"’\\ -
(- BRI ~.

66

Q
o
S
s
X

L

= a A g(a) # a satisfiable?

aAg(g(g(g(g(a)))))

9(g(g(a)))

66

a A g(a) # a satisfiable?

\\ //
H‘&\vg\VFg\va
Ny ~ o _-"
~ o S~ ___-- _

aAg(g(g(g(g(a)))))

g9(g(g(a)))

Q
o
S
s
X

L

66

Q
o
S
s
X

L

= a A g(a) # a satisfiable?

aAg(g(g(g(g(a)))))

9(g(g(a)))

66

Q
o
S
s
X

L

= a A g(a) # a satisfiable?

aAg(g(g(g(g(a)))))

9(g(g(a)))

- =

g\v.|v-|vg\vg\va

66

a A g(a) # a satisfiable?

- — T - = ~
- s =~ b

g\'ﬂa\'m&\vg\vg\v,a
< .~ I~ e
~ ~—a___-" 7’

aAg(g(g(g(g(a)))))

9(g(g(a)))

Q
o
S
s
X

L

66

Q
o
S
s
X

L

= a A g(a) # a satisfiable?

aAg(g(g(g(g(a)))))

g9(g(g(a)))

- > - . N

g\'ﬂa\'wo\vg\'@
S //\\/// — 7
N -~ ___-- -

66

9(g(g(a))) = ang(g(g(g(g(a))))) = a A g(a) # a satisfiable?

is implied by the E-DAG

Difference logic

67

Difference Logic (

x—y<c wherez,y,ce (QorZ)

Strict inequalities

»inZ, z—y<cisreplacedx —y <c—1
» inQ, z—y<cisreplaced x —y < c¢— 6 where § is a
symbolic sufficiently small parameter

Equalities

> x=yisthesameasz —y <cAy—z < —c

One variable constraints

» x < cis replaced by x — Z,¢ro < ¢, Where x ..., is a fresh

variable whose value must be 0 in any solution

68

DL : Graph Interpretation

Given a set of difference constraints M, we construct a weighted
directed graph Gy (V, E) as follows :

> the set of vertices V' contains the variables of the problem
plus an extra variable s

> the set of weighted edges E contains an edge y —» z for

each constraint z — y < ¢, plus an edge s 9 & for each
variable = of the problem

69

DL : Example

8
[\
[
8
ot
IN
—_

8 8 &8 8
ot >~ W~ w
[
8 8 8 8
w w — —
IANIN IA A
| | = Ot

w =

8
ot
\
8
N
VAN
[
w

70

DL : Satisfiability and Models

A negative cycle in Gy (V, E) is a path
co &1 Cn—1 Cn
ro—>T1 —> ... —2 Ty — X0
such that co +c1 4+ -+ +cp_1+ ¢, <0

Theorem

If Gar(V, E) has a negative cycle then M is unsatisfiable, otherwise
a solution is
x1 =0(8,21), ..., xn = 0(s,2p)

where §(s, x;) is the shortest-path weight from s to z;

71

DL : Correctness

Proof.

Cn—1

Any negative-weight cycle v; — vy —2 ... =25 v, — vy
corresponds to a set of difference constraints

v —v1 < 1
vg — U2 < C2

V1 — Unp < Cp

If we sum them all, we get 0 < ¢y +co + -+ - + ¢, which is
impossible since a negative cycle implies ¢y +co 4+ -+ ¢, <0

Now, if Gas(V, E) has no negative cycle, for any edge z; — xj we
have 0(s,z;) < d(s,x;) + ¢, or equivalently d(s,z;) — d(s,z;) < c.
Thus, letting z; = 6(s, x;) and x; = 0(s, x;) satifies the
constraints x; — x; < ¢

72

DL : Example (cont)

xl—mQSO
ry — x5 < —1
ro—x5 <1
r3—x1 <5H
T4 —x1 < 4
Ty —x3 < —1
r5 —x3 < —3
T — x4 < —3

73

DL : Example (cont)

xl—mQSO
r]—a5 < —1

To—x5 <1

r3—x1 <5H
T4 —x1 < 4
Ty —x3 < —1
r5 —x3 < —3

$5*$4§*3

73

DL : Example (cont)

|1 = —5
To = —3
3 =10
Ty = —1

.SL'5:*4

73

Negative Cycle Detection

Negative cycle can be detected with shortest path algorithms
Most algorithms are based on the technique of relaxation
» For each vertex x, we maintain an upper bound d[z] on the

weight of a shortest path from s to x

» Relaxing an edge © — y consists in testing whether we can
improve the shortest path to y found so far by going through =

» Additionally, shortest paths are saved in an array 7 that gives
the predecessor of each vertex

|fd[] []+cthen

74

Bellman-Ford Algorithm

for each z; € V do d[z;] := oo done
d[s] :==0
fori:=1to |V|—1do
for each z; — xrj € I/ do
if d[z;] > d[z;] + c then
d(z;] :==d[z;] + ¢
mlz;] i==u
done
done

for each z; —— z; € I/ do
if dlx;] > dlx;] + c then
return Negative Cycle Detected

Follow 7 to reconstruct the cycle
done

75

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that Gy (V, E) contains a negative cycle

To 2 1y 25 L it xp with xg = x. Assume Bellman-Ford
does not find the cycle. Thus, d[z;] < d[x;—1] + ¢;—1 for all
i=1,2,..., k. Summing these inequalities, we get

k k k
Z x;) < Z [zi—1] + Z Ci—1
=1 =1

76

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that Gy (V, E) contains a negative cycle

To 2 1y 25 L it xp with xg = x. Assume Bellman-Ford
does not find the cycle. Thus, d[z;] < d[x;—1] + ¢;—1 for all
i=1,2,..., k. Summing these inequalities, we get

76

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that Gy (V, E') contains a negative cycle
o —2 1 5 ... i x) with g = x. Assume Bellman-Ford
does not find the cycle. Thus, d[z;] < d[z;—1] + ¢;—1 for all

i=1,2,..., k. Summing these inequalities, we get
k k k
Zd[l‘@] - Z xz 1 < Z
i=1 i=1 i=1

but, since zg = ., we have

76

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that Gy (V, E) contains a negative cycle

To 2 1y 25 L it xp with xg = 2. Assume Bellman-Ford
does not find the cycle. Thus, d[z;] < d[z;_1] + ¢;—1 for all
i=1,2,..., k. Summing these inequalities, we get

k
0< Z Ci—1
i=1

which is impossible since the cycle is negative

76

Bellman-Ford Algorithm (cont)

» Checking satisfiability can be performed in time O(|V|.|E|)

» Inconsistency explanations are negative cycles (irredundant
but not minimal explanations)

» Incremental and backtrackable extensions exist

v

