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Introduction

Purposes of typing:

avoid errors during the execution of programs
by restricting them

help compile programs efficiently

document properties of programs

In this course, we look at typing from a formal and semantic view:

what semantics can we give to types and typing?

what semantic information is guaranteed by types?

We don’t discuss:

typing in language design and implementation

type theory as an alternative to set theory

relations between type theory and proof theory
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Classification

Type: set of values with a specific machine representation
(often, distinct types denote non-overlapping value sets, but this is not always the
case: e.g., short/int/long in C, or subtyping Java and C++)

Variables are assigned a type that defines its possible values

static vs. dynamic typing:

static: the type of each variable is known at compile time
(C, Java, OCaml)

dynamic: the type of each variable is discovered during the
execution and may change
(Python, Javascript)

Course 6 Types Antoine Miné p. 3 / 47



Classification

strongly vs. loosely typed languages:

loose: typing does not prevent invalid value construction and use
(e.g., view an integer as a pointer in C, C++, assembly)

strong: all type errors are detected
(Java, OCaml, Python, Javascript)

static strong typing: well-typed programs cannot go wrong [Milner78]

type checking vs. type inference:

checking: checks the consistency of variable use according to user
declarations
(C, Java)

inference: discover (almost) automatically a (most general) type
consistent with the use
(OCaml, except modules. . . )

Course 6 Types Antoine Miné p. 4 / 47



Overview

Goal: strong static typing for imperative programs

Classic workflow to introduce types:

design a type system
set of logical rules stating whether a program is “well typed”

prove the soundness with respect to the (operational) semantics
well-typed programs cannot go wrong

design algorithms to check typing from user-given type annotations
or to infer type annotations that make the program well typed

Less classic view:

design typing by abstraction of the semantics
sound by construction
(static analysis)
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Type systems

Type systems
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Type systems

Simple imperative language

Expressions: expr ::= X (variable)

| c (constant)

| � expr (unary operation)

| expr � expr (binary operation)

Statements: stat ::= skip (do nothing)

| X ← expr (assignment)

| stat; stat (sequence)

| if expr then stat else stat (conditional)

| while expr do stat (loop)

| local X in stat (local variable)

constants: c ∈ I
def
= Z ∪ B (integers and booleans)

operators: � ∈ {+,−,×, /,<,≤,¬,∧,∨,=, 6= }
variables: X ∈ V (V: set of all program variables)

variables are now local, with limited scope
and must be declared (no type information. . . yet!)
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Type systems

Reminders: deductive systems

Deductive system:

set of axioms and logical rules to derive theorems
defines what is provable in a formal way

Judgments: Γ ` Prop

a fact, meaning: “under hypotheses Γ, we can prove Prop”

Rules: rule:
J1 · · · Jn (hypotheses)

J (conclusion)
axiom:

J (fact)

Proof tree: complete application of rules from axioms to conclusion

example in propositional calculus:

· · ·
Γ ` B

Γ,A ` B

· · ·
Γ,A ` C

Γ,A ` B ∧ C

Γ ` A→ (B ∧ C)
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Type systems

Typing jugements

Types

type ::= int (integers)

| bool (booleans)

Hypotheses Γ:

set of type assignments X : t, with X ∈ V, t ∈ type
(meaning: variable V has type t)

Judgments:

Γ ` stat

given the type assignments Γ
stat is well-typed

Γ ` expr : type

given the type of variables Γ
expr is well-typed and has type type
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Type systems

Expression typing

Γ ` c : int
(c∈Z)

Γ ` c : bool
(c∈B)

Γ ` X : t
((X :t)∈ Γ)

Γ ` e : int

Γ ` −e : int

Γ ` e : bool

Γ ` ¬e : bool

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 � e2 : int
(�∈{+,−,×,/})

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 � e2 : bool
(�∈{=,6=,<,≤})

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 � e2 : bool
(�∈{=,6=,∧,∨})

Note: the syntax of an expressions uniquely identifies a rule to apply,
up to the choice of types for e1 and e2 in the rules for =, 6=
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Type systems

Statement typing

Γ ` skip

Γ ` e : t

Γ ` X ← e
((X :t)∈ Γ)

Γ ` s1 Γ ` s2

Γ ` s1; s2

Γ ` s1 Γ ` s2 Γ ` e : bool

Γ ` if e then s1 else s2

Γ ` s Γ ` e : bool

Γ ` while e do s

Γ ∪ {(X : t)} ` s

Γ ` local X in s

Definition: s is well-typed if we can prove ∅ ` s

Note: the syntax of a statement uniquely identifies a rule to apply,
up to the choice of t in the rule for local X in s
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Soundness of typing

Soundness of typing
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Soundness of typing

Types and errors

Goal: well-typed programs “cannot go wrong”

The operational semantics has several kinds of errors:

1 type mismatch in operators (1 ∨ 2, true + 2)

2 value errors (divide or modulo by 0, use uninitialized variables)

Typing seeks only to prevent statically the first kind of errors

value errors can be prevented with static analyses
this is much more complex and costly; we will discuss it later in the course
typing aims at a “sweet spot”: detect at compile-time all errors of a certain kind

Soundness: well-typed programs have no type mismatch error

it is proved based on an operational semantics of the program
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Soundness of typing

Reminder: denotational semantics of expressions

EJ expr K : E → P(I ∪ {Ωt ,Ωv}) E def
= V→ (I ∪ {ω})

EJ c K ρ def
= {c}

EJ [c1, c2] K ρ def
= { c ∈ Z | c1 ≤ c ≤ c2 }

EJX K ρ def
= { ρ(X ) | if ρ(X ) ∈ I } ∪ {Ωv | if ρ(X ) = ω }

EJ−e K ρ def
= {−v | v ∈ (EJ e K ρ) ∩ Z } ∪

{Ω |Ω ∈ (EJ e K ρ) ∩ {Ωt ,Ωv} } ∪
{Ωt | if (EJ e K ρ) ∩ B 6= ∅ }

EJ e1/e2 K ρ def
= { v1/v2 | v1 ∈ (EJ e1 K ρ) ∩ Z, v2 ∈ (EJ e2 K ρ) ∩ Z } ∪

{Ω |Ω ∈ ((EJ e1 K ρ) ∪ (EJ e2 K ρ)) ∩ {Ωt ,Ωv} } ∪
{Ωt | if ((EJ e1 K ρ) ∪ (EJ e2 K ρ)) ∩ B 6= ∅ } ∪
{Ωv | if 0 ∈ EJ e2 K ρ }

. . .

ω denotes the special “non-initialized” value

special values Ωt and Ωv denote type and value errors

we show here how to mix non-determinism and errors:

errors Ω ∈ {Ωt ,Ωf } from sub-expressions are propagated
new type errors Ωt and value errors Ωv may be generated
we return a set of values and errors
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Soundness of typing

Reminder: operational semantics of statements

τ [`1stat`2] ⊆ Σ2 where Σ
def
= (L × E) ∪ {Ωt ,Ωv , ω}

τ [`1skip`2]
def
= { (`1, ρ)→ (`2, ρ) | ρ ∈ E }

τ [`1X ← e`2]
def
=

{ (`1, ρ)→ (`2, ρ[X 7→ v ]) | v ∈ (EJ e K ρ) ∩ I } ∪
{ (`1, ρ)→ Ω |Ω ∈ (EJ e K ρ) ∩ {Ωt ,Ωv} }

τ [`1while `2e do `3s`4]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | true ∈ EJ e K ρ } ∪ { (`2, ρ)→ (`4, ρ) | false ∈ EJ e K ρ } ∪
{ (`2, ρ)→ Ωt | (EJ e K ρ) ∩ Z 6= ∅ } ∪ { (`2, ρ)→ Ω |Ω ∈ (EJ e K ρ) ∩ {Ωt ,Ωv} } ∪ τ [`3s`2]

(and similarly for if e then s1 else s2)

τ [`1s1; `2s2
`3]

def
= τ [`1s1

`2] ∪ τ [`2s2
`3]

τ [`1local X in s`3]
def
=

{ (`1, ρ)→ (`3, ρ′[X 7→ ρ(X )]) | (`2, ρ[X 7→ ω])→ (`3, ρ′) ∈ τ [`2s`3] } ∪
{ (`1, ρ)→ Ω | (`2, ρ[X 7→ ω])→ Ω ∈ τ [`2s`3], Ω ∈ {Ωt ,Ωv} }

when entering its scope, a local variable is assigned the “non-initialized” value ω
at the end of its scope, its former value is restored
special Ωt , Ωv states denote error (blocking states)
errors Ω from expressions are propagated; new type errors Ωt are generated
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Soundness of typing

Type soundness

Operational semantics: maximal execution traces

tJ s K def
= { (σ0, . . . , σn) | n ≥ 0, σ0 ∈ I , σn ∈ B,∀i < n:σi → σi+1 } ∪
{ (σ0, . . .) |σ0 ∈ I ,∀i ∈ N:σi → σi+1 }

Type soundness

s is well-typed =⇒ ∀(σ0, . . . , σn) ∈ tJ s K :σn 6= Ωt

(well-typed programs never stop on a type error at run-time)
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Typing checking

Typing checking
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Typing checking

Type declarations

Problem: how do we prove that a program is well typed?

Bottom-up reasoning:

construct a proof tree ending in ∅ ` s by applying rules“in reverse”

given a conclusion, there is generally only one rule to apply

the only rule that requires imagination is:
Γ ∪ {(X : t)} ` s

Γ ` local X in s

t is a free variable in the hypothesis
=⇒ we need to guess a good t that makes the proof work

to type Γ ` e1 = e2 : bool, we also have to choose between
Γ ` e1 : bool and Γ ` e1 : int
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Typing checking

Type declarations

Solution:

ask the programmer to add type information to all variable declarations

we change the syntax of declaration statements into:

stat ::= local X : type in stat
| · · ·

The typing rule for local variable declarations becomes deterministic:

Γ ∪ {(X : t)} ` s

Γ ` local X : t in s
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Typing checking

Type propagation in expressions

Given variable types, we assign a single type to each expression
(solves the indeterminacy in the typing of e1 = e2)

Algorithm: propagation by induction on the syntax

τe : ((V ⇀ type)× expr)→ (type ∪ {Ωt})

τe(Γ, c)
def
= int if c ∈ Z

τe(Γ, c)
def
= bool if c ∈ B

τe(Γ,X )
def
= Γ(X )

τe(Γ,−e)
def
= int if τe(Γ, e) = int

τe(Γ,¬e)
def
= bool if τe(Γ, e) = bool

τe(Γ, e1 � e2)
def
= int if τe(Γ, e1) = τe(Γ, e2) = int, � ∈ {+,−,×, /}

τe(Γ, e1 � e2)
def
= bool if τe(Γ, e1) = τe(Γ, e2) = int, � ∈ {=, 6=, <,≤}

τe(Γ, e1 � e2)
def
= bool if τe(Γ, e1) = τe(Γ, e2) = bool, � ∈ {=, 6=,∧,∨}

τe(e)
def
= Ωt otherwise

Ωt indicates a type error
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Typing checking

Type propagation in statements

Type checking is performed by induction on the syntax of statements:

τs : ((V ⇀ type)× stat)→ B

τs(Γ, skip)
def
= true

τs(Γ, (s1; s2))
def
= τs(Γ, s1) ∧ τs(Γ, s2)

τs(Γ,X ← e)
def
= τe(Γ, e) = Γ(X )

τs(Γ, if e then s1 else s2)
def
= τs(Γ, s1) ∧ τs(Γ, s2) ∧ τe(Γ, e) = bool

τs(Γ,while e do s)
def
= τs(Γ, s) ∧ τe(Γ, e) = bool

τs(Γ, local X : t in s)
def
= τs(Γ[X 7→ t], s)

(in particular, τs(Γ, s) = false if τe(Γ, e) = Ωt for some expression e inside s )

Theorem

τs(∅, s) = true ⇐⇒ ∅ ` s is provable

we have an algorithm to check if a program is well-typed

the algorithm also assigns statically a type to every sub-expression

(useful to compile expressions efficiently, without dynamic type checking)
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Type inference

Type inference
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Type inference

Type inference

Problem: can we avoid specifying types in the program?

Solution: automatic type inference

each variable X ∈ V is assigned a type variable tX

we generate a set of type constraints
ensuring that the program is well typed

we solve the constraint system
to infer a type value for each type variable

Type constraints: we need equalities on types and type variables

type const ::= type expr = type expr (type equality)

type expr ::= int (integers)

| bool (booleans)

| tX (type variable for X ∈ V)

Course 6 Types Antoine Miné p. 23 / 47



Type inference

Generating type constraints for expressions

Principle: similar to type propagation

τe : expr → (type expr × P(type const))

τe(c)
def
= (int, ∅) if c ∈ Z

τe(c)
def
= (bool, ∅) if c ∈ B

τe(X )
def
= (tX , ∅)

τe(−e1)
def
= (int, C1 ∪ {t1 = int})

τe(¬e1)
def
= (bool, C1 ∪ {t1 = bool})

τe(e1 � e2)
def
= (int, C1 ∪ C2 ∪ {t1 = int, t2 = int}) if � ∈ {+,−,×, /}

τe(e1 � e2)
def
= (bool, C1 ∪ C2 ∪ {t1 = int, t2 = int}) if � ∈ {<,≤}

τe(e1 � e2)
def
= (bool, C1 ∪ C2 ∪ {t1 = bool, t2 = bool}) if � ∈ {∧,∨}

τe(e1 � e2)
def
= (bool, C1 ∪ C2 ∪ {t1 = t2}) if � ∈ {=, 6=}

where (t1,C1)
def
= τe(e1) and (t2,C2)

def
= τe(e2)

we return the type of the expression (possibly a type variable)
and a set of constraints to satisfy to ensure it is well typed

no type environment is needed: variable X has symbolic type tX

e1 = e2 and e1 6= e2 reduce to type equality
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Type inference

Generating type constraints for statements

τs : stat → P(type const)

τs(skip)
def
= ∅

τs(s1; s2)
def
= τs(s1) ∪ τs(s2)

τs(X ← e)
def
= C ∪ {tX : t}

τs(if e then s1 else s2)
def
= τs(s1) ∪ τs(s2) ∪ C ∪ {t = bool}

τs(while e do s)
def
= τs(s) ∪ C ∪ {t = bool}

τs(local X in s)
def
= τs(s)

where (t,C )
def
= τe(e)

we return a set of constraints to satisfy to ensure it is well typed

for simplicity, scoping in local X ∈ s is not handled
=⇒ we assign a single type for all the local variables with the same
name

Course 6 Types Antoine Miné p. 25 / 47



Type inference

Solving type constraints

τs(s) is a set of equalities between type variables and constants int, bool

Solving algorithm: compute equivalence classes by unification

consider T = {int, bool} ∪ { tX |X ∈ V }

start with disjoint equivalence classes { {t} | t ∈ T }

for each equality (t1 = t2) ∈ τs(s),
merge the classes of t1 and t2

(with union-find data-structure: O(|τs(s)| × α(|T |)) time cost)

if int and bool end up in the same equivalence class
the program is not typable

otherwise, there exists type assignments Γ ∈ V→ type
such that the program is typable
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Type inference

Solving type constraints

If the program is typable, we end up with several equivalence classes:

the class containing int gives the set of integer variables

the class containing bool gives the set of boolean variables

other classes correspond to “polymorphic” variables
e.g. local X in if X = X then · · ·
such classes can be assigned either type bool or int

however, we can prove that these variables are in fact never initialized
=⇒ polymorphism is not useful in this language
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Object-oriented languages

Object-oriented languages
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Object-oriented languages

Object-oriented programs

In general, objects are records of fields (values) and methods (functions)

object-oriented languages focus more on code reuse

Subtyping: type-based formalization of code reuse

“t1 is a subtype of t2”
(noted t1 <: t2)

def⇐⇒ objects of type t1 can be used in all
contexts where objects of type t2 can

Examples: different languages implement subtyping differently

nominal type systems (C++, Java, C#)

objects belong to classes
subtyping is achieved through explicit inheritance
e.g., class Circle extends Figure =⇒ Circle <: Figure

structural type systems (OCaml)

objects have types, which list their typed fields and methods
t1 <: t2 if t1 has more members than t2

this is a more semantic definition
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Object-oriented languages

Including subtypes in type systems

Types and terms:

type ::= int | bool (base types)

| type → type (functions)

| {a1 : type1, . . . , an : typen} (record)

term ::= {a1 = term1, . . . , an = termn} (record creation)

| term.a (record member)

| · · ·
(a, ai ∈ A, where A is a set of record labels)

Structural subtyping rules: defining <:

` t <: t
(reflexivity)

` t2 <: t1 ` t ′1 <: t ′2
` t1 → t ′1 <: t2 → t ′2

(functions)

t1 <: t ′1 · · · ti <: t ′i
{a1 : t1, . . . , ai : ti , . . . , ai+j : ti+j} <: {a1 : t1, . . . , ai : t ′i }

(record)

functions are covariant in their result, contravariant in their argument
records can be extended and/or their members sub-typed
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Object-oriented languages

Including subtypes in type systems

Term typing rules:

Γ ` X : t
((X :t)∈Γ)

Γ ` c : type(c)
(constants)

Γ ∪ {X : t} ` m : t ′

Γ ` funX → m : t → t ′
Γ ` m : t → t ′ Γ ` n : t

Γ ` m n : t ′
(functions)

Γ ` m : {a1 : t1, . . . , an : tn}
Γ ` m.ai : ti

(record member)

Γ ` m1 : t1 · · · Γ ` mn : tn

Γ ` {a1 = m1, . . . , an = mn} : {a1 : t1, . . . , an : tn}
(record creation)

Γ ` m : t t <: t ′

Γ ` m : t ′
(subtyping)

. . .

(see [Cardelli88])
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Object-oriented languages

Type inference

Type checking:

easy if all variables are annotated with a type (or class)

Type inference: more difficult

we can still use a constraint-based algorithm

constraints now have the form t1 <: t2

we cannot use a unification algorithm anymore
a closure algorithm is required, which is much more costly
(' transitive closure of = vs. transitive closure of ≤)

there is not always a principal solution
(closed, constraint-free representation of all the types satisfying the constraints)

More efficient but less powerful object type systems exist

(e.g. OCaml uses row variables with explicit coercion and unification)

Course 6 Types Antoine Miné p. 32 / 47



Types as semantic abstraction

Types as semantic abstraction

Course 6 Types Antoine Miné p. 33 / 47



Types as semantic abstraction

Type semantics

We return to our simple imperative language:

expr ::= X
| c
| [c1, c2]
| � expr
| expr � expr

stat ::= skip
| X ← expr
| stat; stat
| if expr then stat else stat
| while expr do stat
| local X in stat

Principle: derive typing from the semantics

view types as sets of values

modify the non-deterministic denotational semantics
to reason on types instead of sets of values (abstraction)

=⇒ the semantics expresses the absence of dynamic type error
(Ωt never occurs in any computation)

the semantics on types is computable, always terminates
=⇒ we have a static analysis
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Types as semantic abstraction

Type lattice

Types I]: representative subsets of I
def
= Z ∪ B ∪ {Ωt ,Ωv}:

we distinguish integers, booleans, and type errors Ωt

but not value errors Ωv nor non-initialization ω from valid values

a type in I] over-approximates a set of values in P(I)
=⇒ every subset of I must have an over-approximation in I]

I] should be closed under ∩
=⇒ every I ⊆ I has a best over-approximation: α(I )

def
= ∩ { t ∈ I] | I ⊆ t }

We define a finite lattice I]
def
= {int], bool], all],⊥,>} where

int] bool]

⊥

>

all]

int]
def
= Z ∪ {Ωv , ω}

bool]
def
= B ∪ {Ωv , ω}

all]
def
= Z ∪ B ∪ {Ωv , ω} (no information, no type error)

⊥ def
= {Ωv , ω} (value error, non-initialization)

> def
= Z ∪ B ∪ {Ωt ,Ωv , ω} (no information, type error)

=⇒ (I],⊆,∪,∩,⊥,>) forms a complete lattice
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Types as semantic abstraction

Abstract denotational semantics of expressions

E]J expr K : E] → I] where E] def
= V→ I]

E]J c K ρ def
= int] if c ∈ Z

E]J c K ρ def
= bool] if c ∈ B

E]J [c1, c2] K ρ def
= int] if c1 ≤ c2

E]J [c1, c2] K ρ def
= ⊥ if c1 > c2

E]JX K ρ def
= ρ(X )

E]J ◦ e K ρ def
= ◦] (E]J e K ρ)

E]J e1 � e2 K ρ def
= (E]J e1 K ρ) �] (E]J e2 K ρ)

an abstract environment ρ ∈ E] assigns a type to each variable

we return ⊥ when using a non-initialized variable (ρ(X ) = ⊥)
or the expression has no value ([c1, c2] where c1 > c2)

we use abstract unary operators ◦] : I] → I]

and abstract binary operators �] : (I] × I])→ I]

(defined in the next slide)
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Types as semantic abstraction

Abstract operators

The abstract operators ◦], �] are defined as:

−] x
def
=


⊥ if x = ⊥
int] if x = int]

> if x ∈ {bool], all],>}
¬] x def

=


⊥ if x = ⊥
bool] if x = bool]

> if x ∈ {int], all],>}

x +] y
def
=


⊥ if x = ⊥ ∨ y = ⊥
int] if x = y = int]

> otherwise

x ∨] y
def
=


⊥ if x = ⊥ ∨ y = ⊥
bool] if x = y = bool]

> otherwise

x <] y
def
=


⊥ if x = ⊥ ∨ y = ⊥
bool] if x = y = int]

> otherwise

x =] y
def
=


⊥ if x = ⊥ ∨ y = ⊥
bool] if x = y ∈ {int], bool]}
> otherwise

and other operators are similar:

−] def
= ×] def

= /], ∧] def
= ∨], ≤] def

= <], and 6=] def
= =]

the operators are strict (return ⊥ if one argument is ⊥)
the operators propagate type errors (return > if one argument is >)
the operators create new type errors (return >)
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Types as semantic abstraction

Abstract denotational semantics of statements

We consider the complete lattice (V→ I], ⊆̇, ∪̇, ∩̇, ⊥̇, >̇)
(point-wise lifting)

S]J stat K : E] → E] where E] def
= V→ I]

S]J skip K ρ def
= ρ

S]J s1; s2 K def
= S]J s2 K ◦ S]J s1 K

S]J X ← e K ρ def
=


>̇ if ρ = >̇ ∨ E]J e K ρ = >
⊥̇ if E]J e K ρ = ⊥
ρ[X 7→ E]J e K ρ] otherwise

the possibility of a type error is denoted by >̇ and is propagated
(we never construct ρ where ρ(X ) = > and ρ(Y ) 6= >)

using a non-initalized variable results in ⊥̇
(we can have ρ(X ) = ⊥ and ρ(Y ) 6= ⊥, if X is not initialized but Y is,
however, X ← X + 1 will output ⊥̇ where Y maps to ⊥)
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Abstract denotational semantics of statements

S]J local X in s K ρ def
=

{
>̇ if ρ = >̇
SJ s K (ρ[X 7→ ⊥]) otherwise

S]J if e then s1 else s2 K ρ def
=

>̇ if ρ = >̇ ∨ E]J e K ρ /∈ {bool],⊥}
⊥̇ if E]J e K ρ = ⊥
(S]J s1 K ρ) ∪̇ (S]J s2 K ρ) otherwise

returns an error >̇ if e is not boolean

merges the types inferred from s1 and s2

if (S]J s1 K ρ)(X ) = int] and (S]J s2 K ρ)(X ) = bool], we get X 7→ all]

(i.e., depending on the branch taken, X may be an integer or a boolean)

Notes:
constructing ρ such that ρ(X ) = all] is not a type error
but a type error is generated if X is used when ρ(X ) = all]
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Abstract denotational semantics of statements

S]Jwhile e do s K ρ def
= S]J e K (lfp F )

where F (x)
def
= ρ ∪̇ S]J s K (S]J e K x)

and S]J e K ρ def
=


>̇ if ρ = >̇ ∨ E]J e K ρ /∈ {bool],⊥}
⊥̇ if E]J e K ρ = ⊥
ρ otherwise

similar to tests S]J if e then s K , but with a fixpoint

the sequence X0
def
= ⊥̇, Xi+1

def
= Xi ∪̇ F (Xi ) is:

increasing: Xi ⊆̇ Xi+1 (due to ∪̇)

converges in finite time (because V→ I] has bounded height)

its limit Xδ satisfies Xδ = Xδ ∪̇ F (Xδ)
and so F (Xδ) ⊆̇ Xδ
=⇒ Xδ is a post-fixpoint of F

=⇒ S]J s K can be computed in finite time
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Soundness

Consider a standard (non abstract) denotational semantics:

SJ s K : P(E)→ P(E) where E def
= {Ωt ,Ωv} ∪ (V→ (Z ∪ B ∪ {ω}))

Soundness theorem

Ωt ∈ SJ s K (λX .ω) =⇒ S]J s K ⊥̇ = >̇

Proof sketch:
every set of environments R can be over-approximated by a function αE(R) ∈ V→ I]

αE(R)
def
=

{
>̇ if Ωt ∈ R

λX .αI({ ρ(X ) | ρ ∈ R \ {Ωt ,Ωv} }) otherwise

where we abstract sets of values V as αI(V ) ∈ I]

αI(V )
def
=


⊥ if V ⊆ {ω}
int] else if V ⊆ Z ∪ {ω}
bool] else if V ⊆ B ∪ {ω}
any] otherwise

we can then prove by induction on s that ∀R: (α ◦ SJ s K )(R) ⊆̇ (S]J s K ◦ α)(R)
we conclude by noting that α(λX .ω) = ⊥̇ and Ωt ∈ α(x) ⇐⇒ x = >̇

=⇒ S]J s K can find statically all dynamic typing errors!
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Incompleteness

The typing analysis is not complete

in general: S]J s K ⊥̇ = >̇ 6=⇒ Ωt ∈ SJ s K (λX .ω)

Examples: correct programs that are reported as incorrect

P
def
= X ← 10; if X < 0 then X ← X + true

the erroneous assignment X ← X + true is never executed: SJP KR = ∅
but S]JP K ⊥̇ = >̇ as S]JP K cannot prove that the branch is never executed

P
def
= X ← 10; (while X > 0 do X ← X + 1); X ← X + true

similarly, X ← X + true is never executed

but S]JP K cannot express (and so cannot infer) non-termination

=⇒ S]J s K can report spurious typing errors

(checking exactly Ωt ∈ SJ s KR is undecidable, by reduction to the halting problem)
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Comparison with classic type inference

The analysis is flow-sensitive, classic type inference is flow-insensitive:

type inference assigns a single static type to each variable

S]J s K can assign different types to X at different program points

example: “X ← 10; · · · ;X ← true” is not well typed

but its execution has no type error and S]J s K ⊥̇ 6= >̇

The analysis takes “dead variables” into account
not-typable variables do not necessarily result in a typing error

example: “(if [0, 1] = 0 then X ← 10; else X ← true); •”
is not well typed as X cannot store values of type either int or bool at •
but its execution has not type error and S]J s K ⊥̇ 6= >̇

=⇒
static type analysis is more precise than type inference
(but it does not always give a unique, program-wide type assignment for each variable)

It is also possible to design a flow-insensitive version of the analysis
(e.g., replace S]J s KX with X ∪̇ S]J s KX )
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Polymorphism and relationality

Problem: imprecision of the type analysis

P
def
= (if [0, 1] = 0 then X ← 10; else X ← true); Y ← X ; Z ← X = Y

SJP K has no type error as X and Y always hold values of the same type

S]JP K ⊥̇ = >̇: incorrect type error

S]JP K gives the environment [X 7→ all], Y 7→ all]]

which contains environments such as [X 7→ 12, Y 7→ true]

on which X = Y causes a type error

Solution: polymorphism

represent a set of type assignments: E] def
= P(V→ I]) (instead of E] def

= V→ I])

e.g. { [X 7→ int], Y 7→ int]], [X 7→ bool], Y 7→ bool]] }
on which X =] Y gives bool] and no error

we can represent relations between types
(e.g., X and Y have the same type)

this typing analysis is more precise but still incomplete

the analysis is more costly (|E]| is larger)
but still decidable and sound
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Course 6 Types Antoine Miné p. 45 / 47



Conclusion

Conclusion

Type systems are added to programming languages
to help ensuring statically the correctness of programs

Traditional type checking is performed by propagation of declarations
Traditional type inference is performed by constraint solving

We can also view typing as an abstraction of the dynamic semantic
which can be computed statically
(in a way similar to the denotational semantics)

Typing always results in conservative approximation
but the amount of approximation can be controlled

(flow-sensitivity, relationality, etc.)
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