The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival

École Normale Supérieure
What is a proof assistant?

A tool to *formalize* and *verify* proofs

The key word is *assistant*: it assists the user in
- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:
- formalization is done with respect to the knowledge of the user, it is *error prone*
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Purpose of Coq and principle

Coq is a programming language
- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)
- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant
- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps
- Proof search is usually mostly manual and takes most of the time
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. **Define the objects** properties need be proved about
 Data-structures, base types, programs written in the Coq (or vernacular) language

2. Write and prove **intermediate lemmas**
 - a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of tactics applications
 tactics are described as part of a separate language.
 - at the end of the proof, a **proof term** is constructed and verified.

3. Write and prove the **main theorems**

4. If needed, **extract** programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- The **core of Coq** is defined by a language of **terms**
- **Commands** are used in order to manipulate terms

Examples of terms:
- **base values:** 0, 1, $true$...
- **types:** nat, $bool$, but also $Prop$...
- **functions:** $fun \ (n : nat) \Rightarrow n + 1$
- **function applications:** $(fun \ (n : nat) \Rightarrow n + 1) \ 8$
- **logical formulas:**
 - $\exists \ p : nat, \ 8 = 2 \times p$
 - $\forall a \ b : Prop, \ a \land b \rightarrow a$
- **complex functions** (more on this one later):
 - $fun \ (a \ b : Prop) \ (H : a \land b) \Rightarrow$
 - $\text{and_ind} \ (fun \ (H0 : a) \ (_ : b) \Rightarrow H0) \ H$
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by `term : type`

0: nat

nat: Set

Set: Type

Type: Type (*caveat: not quite the same instance*)

(fun (n: nat) => n + 1): nat -> nat

more complex types get interesting:

fun (a b : Prop) (H : a \ b) =>
 and_ind (fun (H0 : a) (_, : b) => H0) H
: forall a b: Prop, a \ b -> a
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a term of type P
- A proof of $P \rightarrow Q$ can be viewed a function transforming a proof of P into a proof of Q, hence, a function of type $P \rightarrow Q$...

Similarity between typing rules and proof rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Type</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma, ; \chi : P \vdash u : Q$</td>
<td>$\Gamma \vdash \lambda \chi \cdot u : P \rightarrow Q$</td>
<td>fun</td>
</tr>
<tr>
<td>$\Gamma \vdash u : P \rightarrow Q$</td>
<td>$\Gamma \vdash v : P$</td>
<td>$\Gamma \vdash u ; v : Q$</td>
</tr>
<tr>
<td>$\Gamma, P \vdash Q$</td>
<td>$\Gamma \vdash P \rightarrow Q$</td>
<td>implic</td>
</tr>
<tr>
<td>$\Gamma \vdash P \rightarrow Q$</td>
<td>$\Gamma \vdash P$</td>
<td>$\Gamma \vdash Q$</td>
</tr>
</tbody>
</table>

Correspondance:

<table>
<thead>
<tr>
<th>Program</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Theorem</td>
</tr>
</tbody>
</table>

Search a proof of P is equivalent to search u of type P.
Defining a term

Two ways:

1. **Define it fully**, with its type and its definition

 Definition zero: nat := 0.

2. Provide **only its type** and search for a proof of it

 Lemma lzero: nat.

 exact 0.

 Save.

 Definition lincr: forall n: nat, nat.

 intro. exact (n + 1).

 Save.

- **Definition**: Definition name u: t := def.
- **Proof**: Definition name u: t. or Lemma name u: t.
Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition
 ... examples: integers, booleans, equality, conjunction...

Syntax:

```plaintext
Inductive tree : Set :=
| leaf: tree
| node: tree -> tree -> tree.
```

Induction principles automatically provided by Coq, and to use in induction proofs:

```plaintext
tree_ind: forall P : tree -> Prop,
    P Leaf
  -> (forall t : tree, P t -> forall t0 : tree, P t0
      -> P (node t t0))
  -> forall t : tree, P t
```
Recursive functions

- Very natural to work with inductive definitions
- **Caveat: must provably terminate**
 this is usually checked with a **strict sub-term condition**

Syntax:

```coq
Fixpoint size (t: tree) : nat :=
  match t with
  | leaf => 0
  | node t0 t1 => 1 + (size t0) + (size t1)
  end.
```

Ill formed definition, rejected by the system (termination issue):

```coq
Fixpoint f (t: tree): nat :=
  match t with
  | leaf | node leaf leaf => 0
  | node _ _ => f (node leaf leaf)
  end.
```
Proving a term

View in proof mode:

\[a : \text{Prop} \]
\[b : \text{Prop} \]
\[H : a \land b \]
\[H_0 : a \]
\[H_1 : b \]

\[\text{above the bar: current assumptions} \]
\[\text{below the bar: current subgoal} \]
\[\text{(there may be several goals)} \]
\[\text{at the end: displays} \]
\[\text{No more subgoals.} \]
\[\text{command Save. stores the term.} \]

Progression towards a finished proof:

- based on commands called \textbf{tactics}
- in the background, Coq \textbf{constructs the proof term}
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal.
- In the background, Coq constructs the proof term.
- At the end, the term is independently checked (very reliable!)

Introduction of an assumption (proof tree and term):

\[
\frac{\Gamma, P \vdash Q}{\Gamma \vdash P \implies Q} \quad \frac{\Gamma, x : P \vdash u : Q}{\Gamma \vdash \lambda x \cdot u : P \rightarrow Q}
\]

Application of an implication:

\[
\frac{\Gamma \vdash P \implies Q}{\Gamma \vdash Q} \quad \frac{\Gamma \vdash P}{\Gamma \vdash P}
\]

\[
\frac{\Gamma \vdash u : P \rightarrow Q}{\Gamma \vdash u \cdot v : Q} \quad \frac{\Gamma \vdash v : P}{\Gamma \vdash v : P}
\]

Immediate conclusion of a subgoal:

\[
\frac{\Gamma, P \vdash P}{\Gamma, \Gamma, P \vdash x : P} \quad \frac{\Gamma, x : P \vdash x : P}{\Gamma, x : P \vdash x : P}
\]
So far, we have considered fairly manual tactics...

There are also **automated tactics**, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Tauto: decides propositional logic

Omega: solves a class of numeric (in)-equalities (see manual)
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H</td>
<td>Applies assumption H (should be of the form $A \rightarrow B$)</td>
</tr>
<tr>
<td>elim H</td>
<td>Decomposes assumption H</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs.</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term t</td>
</tr>
<tr>
<td>rewrite H</td>
<td>Rewrite assumption H (should be of the form $t_0 = t_1$)</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Check t.</code></td>
<td>Prints the type of term <code>t</code></td>
</tr>
<tr>
<td><code>Print t.</code></td>
<td>Prints the type and definition of term <code>t</code></td>
</tr>
<tr>
<td><code>Definition u: t := [term]</code></td>
<td>Full definition of term <code>u</code></td>
</tr>
<tr>
<td><code>Lemma t.</code></td>
<td>Start a proof of term <code>t</code></td>
</tr>
<tr>
<td><code>Theorem t.</code></td>
<td></td>
</tr>
<tr>
<td><code>Definition t.</code></td>
<td></td>
</tr>
<tr>
<td><code>Save.</code></td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>