The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival

École Normale Supérieure
What is a proof assistant?

A tool to **formalize** and **verify** proofs

The key word is **assistant**: it assists the user in

- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:

- formalization is done with respect to the knowledge of the user, it is **error prone**
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...
Purpose of Coq and principle

Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)

- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps

- Proof search is usually mostly manual and takes most of the time
Main proof assistants

Coq: the topic of this lecture

Isabelle / HOL: a higher order logic framework
- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp
- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System
- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation
Overall workflow

1. **Define the objects** properties need be proved about
 Data-structures, base types, programs written in the Coq (or vernacular) language

2. Write and prove **intermediate lemmas**
 - a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of *tactics applications*
 tactics are described as part of a separate language.
 - at the end of the proof, a **proof term** is constructed and verified.

3. Write and prove the **main theorems**

4. If needed, **extract** programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- The **core of Coq** is defined by a language of **terms**
- **Commands** are used in order to manipulate terms

Examples of terms:

- **base values:** 0, 1, true...
- **types:** nat, bool, but also Prop...
- **functions:** fun (n: nat) => n + 1
- **function applications:** (fun (n: nat) => n + 1) 8
- **logical formulas:**
 - exists p: nat, 8 = 2 * p,
 - forall a b: Prop, a/\b -> a
- **complex functions** (more on this one later):
 - fun (a b : Prop) (H : a /\ b) =>
 - and_ind (fun (H0 : a) (_ : b) => H0) H
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by \(\text{term: type} \)

- \(0: \text{nat} \)
- \(\text{nat}: \text{Set} \)
- \(\text{Set}: \text{Type} \)
- \(\text{Type}: \text{Type} \) (**caveat: not quite the same instance**)
- \((\text{fun (n: nat) \Rightarrow n + 1}): \text{nat \to nat} \)
- more complex types get interesting:

 \[
 \text{fun (a b : Prop) (H : a \land b) \Rightarrow} \\
 \text{and_ind (fun (H0 : a) (_ : b) \Rightarrow H0) H} \\
 : \forall a b : \text{Prop}, a \land b \to a
 \]
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a term of type P
- A proof of $P \implies Q$ can be viewed a function transforming a proof of P into a proof of Q, hence, a function of type $P \rightarrow Q$...

Similarity between typing rules and proof rules:

\[
\Gamma, x : P \vdash u : Q \\
\frac{\Gamma \vdash \lambda x \cdot u : P \rightarrow Q}{\frac{\Gamma \vdash u : P \rightarrow Q}{\frac{\Gamma \vdash v : P}{\Gamma \vdash u \, v : Q}}} \quad \text{fun}
\]

\[
\Gamma \vdash P \implies Q \\
\frac{\Gamma \vdash P \implies Q}{\frac{\Gamma \vdash P}{\Gamma \vdash Q}} \quad \text{implic}
\]

Correspondance:

<table>
<thead>
<tr>
<th>program</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Search a proof of P

\equiv search u of type P
Defining a term

Two ways:

1. **Define it fully**, with its type and its definition

 Definition zero: nat := 0.

2. **Provide only its type** and search for a proof of it

 Lemma lzero: nat.

 exact 0.
 Save.
 Definition lincr: forall n: nat, nat.

 intro. exact (n + 1).
 Save.

- **Definition**: Definition name u: t := def.
- **Proof**: Definition name u: t. or Lemma name u: t.
Inductive definition

- A **very powerful** mechanism
- In Coq, **almost everything** is actually an inductive definition
 ... examples: integers, booleans, equality, conjunction...

Syntax:

```
Inductive tree : Set :=
  | leaf : tree
  | node : tree -> tree -> tree.
```

Induction principles automatically provided by Coq, and to use in induction proofs:

```
tree_ind : forall P : tree -> Prop,
  P leaf
  -> (forall t : tree, P t -> forall t0 : tree, P t0
    -> P (node t t0))
  -> forall t : tree, P t
```
Recursive functions

- Very natural to work with inductive definitions
- **Caveat:** must provably terminate
 this is usually checked with a **strict sub-term condition**

- **Syntax:**
  ```coq
  Fixpoint size (t : tree) : nat :=
      match t with
      | leaf => 0
      | node t0 t1 => 1 + (size t0) + (size t1)
  end.
  ``

- **Ill formed definition, rejected by the system (termination issue):**
  ```coq
 Fixpoint f (t : tree) : nat :=
 match t with
 | leaf | node leaf leaf => 0
 | node _ _ => f (node leaf leaf)
 end.
  ```
View in proof mode:

- above the bar: current assumptions
- below the bar: current subgoal (there may be several goals)
- at the end: displays
- command Save. stores the term.

Progression towards a finished proof:
- based on commands called tactics
- in the background, Coq constructs the proof term
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independently checked (very reliable!)

**Introduction of an assumption** (proof tree and term):

\[
\Gamma, P \vdash Q \\
\Gamma \vdash P \implies Q
\]

\[
\Gamma, x : P \vdash u : Q \\
\Gamma \vdash \lambda x \cdot u : P \rightarrow Q
\]

**Application of an implication:**

\[
\Gamma \vdash P \implies Q \\
\Gamma \vdash P \\
\Gamma \vdash Q
\]

\[
\Gamma \vdash u : P \rightarrow Q \\
\Gamma \vdash v : P \\
\Gamma \vdash u \cdot v : Q
\]

**Immediate conclusion of a subgoal:**

\[
\Gamma, P \vdash P
\]

\[
\Gamma, x : P \vdash x : P
\]
So far, we have considered fairly manual tactics...

There are also **automated tactics**, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

**Tauto**: decides propositional logic

**Omega**: solves a class of numeric (in)-equalities (see manual)
A glimpse at the tactic language

**Most common tactics:**

Tactic	Effect
------------	========================================================================
intro.	Introduce one assumption
intros.	Introduce as many assumptions as possible
apply H.	Applies assumption H (should be of the form A→B)
elim H.	Decomposes assumption H
exact t.	Provides a proof term for current sub-goal
trivial.	Conclude immediately very simple proofs.
induction t.	Perform induction proof over term t
rewrite H.	Rewrite assumption H (should be of the form t0=t1)
tauto.	Decision procedure in propositional logic

Do not hesitate to look at the online manual!
A glimpse at the command language

**Most common tactics** (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check t.</td>
<td>Prints the type of term t</td>
</tr>
<tr>
<td>Print t.</td>
<td>Prints the type and definition of term t</td>
</tr>
<tr>
<td>Definition u: t := [term].</td>
<td>Full definition of term u</td>
</tr>
<tr>
<td>Lemma t.</td>
<td>Start a proof of term t</td>
</tr>
<tr>
<td>Theorem t.</td>
<td></td>
</tr>
<tr>
<td>Definition t.</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>