Operational Semantics
Semantics and applications to verification

Xavier Rival

École Normale Supérieure
Program of this first lecture

Operational semantics

Mathematical description of the executions of a program

1. a model of programs: transition systems
 ▶ definition, a small step semantics
 ▶ a few common examples

2. trace semantics: a kind of big step semantics
 ▶ finite and infinite executions
 ▶ fixpoint-based definitions
 ▶ notion of compositional semantics
Outline

1 Transition systems and small step semantics
 - Definition and properties
 - Examples

2 Traces semantics

3 Summary
Definition

We will characterize a program by:

- **states**: photography of the program status at an instant of the execution
- **execution steps**: how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple \((\mathcal{S}, \rightarrow)\) where:

- \(\mathcal{S}\) is the set of states of the system
- \(\rightarrow \subseteq \mathcal{P}(\mathcal{S} \times \mathcal{S})\) is the transition relation of the system

Note:

- the set of states may be infinite
Transition systems: properties of the transition relation

A **deterministic** system is such that a state fully determines the next state

\[\forall s_0, s_1, s'_1 \in S, \ (s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1) \implies s_1 = s'_1 \]

Otherwise, a transition system is **non deterministic**, i.e.:

\[\exists s_0, s_1, s'_1 \in S, \ s_0 \rightarrow s_1 \land s_0 \rightarrow s'_1 \land s_1 \neq s'_1 \]

Notes:

- transition relation \rightarrow defines atomic execution steps; it is often called **small-step semantics** or **structured operational semantics**
- steps are **discrete** (not continuous) to describe both discrete and continuous behaviors, we would need to look at *hybrid systems* (beyond the scope of this lecture)
Transition systems: special states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of **initial states** $S_I \subseteq S$ denotes states where the execution should start
- a set of **final states** $S_F \subseteq S$ denotes states where the execution should reach the end of the program

When needed, we add these to the definition of the transition systems $(S, \rightarrow, S_I, S_F)$.

Blocking state (not the same as final state):

- a state $s_0 \in S$ is **blocking** when it is the origin of no transition: $\forall s_1 \in S, \neg (s_0 \rightarrow s_1)$
- example: we often introduce an **error state** (usually noted Ω to denote the erroneous, blocking configuration)
Outline

1. Transition systems and small step semantics
 - Definition and properties
 - Examples

2. Traces semantics

3. Summary
Finite automata as transition systems

We can clearly formalize the **word recognition** by a finite automaton using a transition system:

- we consider automaton $\mathcal{A} = (Q, q_i, q_f, \rightarrow)$
- a “state” is defined by:
 - the remaining of the word to recognize
 - the automaton state that has been reached so far
thus, $S = Q \times L^*$

- the **transition relation** \rightarrow of the transition system is defined by:

 $$(q_0, aw) \rightarrow (q_1, w) \iff q_0 \xrightarrow{a} q_1$$

- the **initial** and **final states** are defined by:

 \[S_I = \{(q_i, w) \mid w \in L^*\} \quad \text{and} \quad S_F = \{(q_f, \epsilon)\} \]
Pure λ-calculus

A bare bones model of functional programming:

\begin{itemize}
 \item λ-terms
 \begin{itemize}
 \item The set of λ-terms is defined by:
 \begin{align*}
 t, u, \ldots & := x \quad \text{variable} \\
 & \mid \lambda x \cdot t \quad \text{abstraction} \\
 & \mid t u \quad \text{application}
 \end{align*}
 \end{itemize}
 \item β-reduction
 \begin{itemize}
 \item $(\lambda x \cdot t) u \rightarrow^\beta t[x \leftarrow u]$
 \item if $u \rightarrow^\beta v$ then $\lambda x \cdot u \rightarrow^\beta \lambda x \cdot v$
 \item if $u \rightarrow^\beta v$ then $u t \rightarrow^\beta v t$
 \item if $u \rightarrow^\beta v$ then $t u \rightarrow^\beta t v$
 \end{itemize}
\end{itemize}

The λ-calculus defines a transition system:

\begin{itemize}
 \item \mathcal{S} is the set of λ-terms and \rightarrow^β the transition relation
 \item \rightarrow^β is \textit{non-deterministic}; example?
 though, ML fixes an execution order
 \item given a lambda term t_0, we may consider $(\mathcal{S}, \rightarrow^\beta, \mathcal{S}_I)$ where $\mathcal{S}_I = \{ t_0 \}$
 \item \textbf{blocking states} are terms with no redex $(\lambda x \cdot u) v$
\end{itemize}
A MIPS like assembly language: syntax

We now consider a (very simplified) **assembly language**

- machine integers: sequences of 32-bits (set: \mathbb{B}^{32})
- instructions are encoded over 32-bits (set: \mathbb{I}_{MIPS}) and stored into the same space as data (i.e., $\mathbb{I}_{MIPS} \subseteq \mathbb{B}^{32}$)

Memory configurations

- **program counter** pc
 - current instruction
- **general purpose registers**
 - $r_0 \ldots r_{31}$
- **main memory** (RAM)
 - $\text{mem} : \text{Addrs} \rightarrow \mathbb{B}^{32}$
 - where $\text{Addrs} \subseteq \mathbb{B}^{32}$

Instructions

\[
i ::= (\in \mathbb{I}_{MIPS}) \\
\text{add } r_d, r_{s0}, r_{s1} \quad \text{addition} \\
\text{addi } r_d, r_{s0}, v \quad \text{add. } v \in \mathbb{B}^{32} \\
\text{sub } r_d, r_{s0}, r_{s1} \quad \text{subtraction} \\
\text{b } dst \quad \text{branch} \\
\text{blt } r_{s0}, r_{s1}, dst \quad \text{cond. branch} \\
\text{ld } r_d, o, r_x \quad \text{relative load} \\
\text{st } r_d, o, r_x \quad \text{relative store} \\
v, dst, o \in \mathbb{B}^{32}
\]
Definition: state

A state is a tuple \((pc, \rho, \mu)\) which comprises:

- a **program counter** value \(pc \in \mathbb{B}^{32}\)
- a function mapping each **general purpose register** to its value \(\rho : \{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- a function mapping each **memory cell** to its value \(\mu : \text{Addrs} \rightarrow \mathbb{B}^{32}\)

What would a **dangerous state** be?

- writing **over an instruction**
- reading or writing **outside the program’s memory**

⇒ we cannot fully formalize these yet...

as we need to formalize the behavior of each instruction first
A MIPS like assembly language: transition relation

We assume a state $s = (pc, \rho, \mu)$ and that $\mu(pc) = i$; then:

- **if** $i = \text{add } r_d, r_{s0}, r_{s1}$, **then**:
 \[
 s \rightarrow (pc + 4, \rho[d \leftarrow \rho(s0) + \rho(s1)], \mu)
 \]

- **if** $i = \text{addi } r_d, r_{s0}, v$, **then**:
 \[
 s \rightarrow (pc + 4, \rho[d \leftarrow \rho(s0) + v], \mu)
 \]

- **if** $i = \text{sub } r_d, r_{s0}, r_{s1}$, **then**:
 \[
 s \rightarrow (pc + 4, \rho[d \leftarrow \rho(s0) - \rho(s1)], \mu)
 \]

- **if** $i = \text{b dst}$, **then**:
 \[
 s \rightarrow (\text{dst}, \rho, \mu)
 \]
A MIPS like assembly language: transition relation

We assume a state $s = (pc, \rho, \mu)$ and that $\mu(pc) = i$; then:

- if $i = \text{blt } r_{s0}, r_{s1}, dst$, then:
 $$s \rightarrow \begin{cases} (dst, \rho, \mu) & \text{if } \rho(s0) < \rho(s1) \\ (pc + 4, \rho, \mu) & \text{otherwise} \end{cases}$$

- if $i = \text{ld } r_d, o, r_x$, then:
 $$s \rightarrow \begin{cases} (pc + 4, \rho[d \leftarrow \mu(\rho(x) + o)], \mu) & \text{if } \mu(\rho(x) + o) \text{ is defined} \\ \Omega & \text{otherwise} \end{cases}$$

- if $i = \text{st } r_d, o, r_x$, then:
 $$s \rightarrow \begin{cases} (pc + 4, \rho, \mu[x + o \leftarrow \rho(d)]) & \text{if } \mu(\rho(x) + o) \text{ is defined} \\ \Omega & \text{otherwise} \end{cases}$$
We now look at a more classical **imperative language** (intuitively, a bare-bone subset of C):

- **variables** X: finite, predefined set of variables
- **labels** L: before and after each statement
- **values** V: $V_{\text{int}} \cup V_{\text{float}} \cup \ldots$

Syntax

| e | ::= $v \in V_{\text{int}} \cup V_{\text{float}} \cup \ldots | e + e | e \ast e | \ldots$ | expressions |
|-------|-----------------|-----------------|-----------------|
| c | ::= TRUE | FALSE | $e < e$ | $e = e$ | conditions |
| i | ::= $x := e;$ | if(c) b else b | while(c) b | assignment |
| | | condition | loop |
| b | ::= $\{i;\ldots;i;\}$ | block, program(P) |
A simple imperative language: states

A **non-error state** should fully describe the configuration at one instant of the program execution:

- the **memory state** defines the current contents of the memory
 \[m \in \mathcal{M} = X \longrightarrow \mathcal{V} \]
- the **control state** defines *where* the program currently is
 - analogous to the program counter
 - can be defined by adding **labels** \(\mathbb{L} = \{ \ell_0, \ell_1, \ldots \} \) between each pair of consecutive statements; then:
 \[S = \mathbb{L} \times \mathcal{M} \cup \{ \Omega \} \]
 - or by the program remaining to be executed; then:
 \[S = \mathcal{P} \times \mathcal{M} \cup \{ \Omega \} \]
A simple imperative language: semantics of expressions

- The **semantics** \([e]\) of expression \(e\) should evaluate each expression into a value, given a memory state.
- **Evaluation errors** may occur: division by zero...
 error value is also noted \(\Omega\).

Thus: \([e] : M \rightarrow V \uplus \{\Omega}\)

Definition, by induction over the syntax:

\[
\begin{align*}
[e_0 + e_1](m) &= [e_0](m) \oplus [e_1](m) \\
[e_0/e_1](m) &= \begin{cases}
\Omega & \text{if } [e_1](m) = 0 \\
[e_0](m)/(e_1)(m) & \text{otherwise}
\end{cases}
\end{align*}
\]

where \(\oplus\) is the machine implementation of operator \(\oplus\), and is \(\Omega\)-strict, i.e.,
\[
\forall \nu \in V, \; \nu \oplus \Omega = \Omega \oplus \nu = \Omega.
\]
A simple imperative language: semantics of conditions

- The **semantics** \([c]\) of condition \(c\) should return a *boolean value*
- It follows a similar definition to that of the semantics of expressions:
 \([c] : M \rightarrow V_{\text{bool}} \cup \{\Omega\}\)

Definition, by **induction over the syntax**:

\[
\begin{align*}
\llbracket \text{TRUE} \rrbracket (m) &= \text{TRUE} \\
\llbracket \text{FALSE} \rrbracket (m) &= \text{FALSE} \\
\llbracket e_0 < e_1 \rrbracket (m) &= \begin{cases}
\text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) < \llbracket e_1 \rrbracket (m) \\
\text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \geq \llbracket e_1 \rrbracket (m) \\
\Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases} \\
\llbracket e_0 = e_1 \rrbracket (m) &= \begin{cases}
\text{TRUE} & \text{if } \llbracket e_0 \rrbracket (m) = \llbracket e_1 \rrbracket (m) \\
\text{FALSE} & \text{if } \llbracket e_0 \rrbracket (m) \neq \llbracket e_1 \rrbracket (m) \\
\Omega & \text{if } \llbracket e_0 \rrbracket (m) = \Omega \text{ or } \llbracket e_1 \rrbracket (m) = \Omega
\end{cases}
\end{align*}
\]
A simple imperative language: transitions

We now consider the transition induced by each statement.

Case of assignment $l_0 : x = e; \ l_1$
- if $\llbracket e \rrbracket(m) \neq \Omega$, then $(l_0, m) \rightarrow (l_1, m[x \leftarrow \llbracket e \rrbracket(m)])$
- if $\llbracket e \rrbracket(m) = \Omega$, then $(l_0, m) \rightarrow \Omega$

Case of condition $l_0 : \text{if}(c)\{l_1 : b_t \ l_2\} \ \text{else}\{l_3 : b_f \ l_4\} \ l_5$
- if $\llbracket c \rrbracket(m) = \text{TRUE}$, then $(l_0, m) \rightarrow (l_1, m)$
- if $\llbracket c \rrbracket(m) = \text{FALSE}$, then $(l_0, m) \rightarrow (l_3, m)$
- if $\llbracket c \rrbracket(m) = \Omega$, then $(l_0, m) \rightarrow \Omega$
- $(l_2, m) \rightarrow (l_5, m)$
- $(l_4, m) \rightarrow (l_5, m)$
A simple imperative language: transitions

Case of loop \(l_0 : \text{while}(c) \{ l_1 : b_t \ l_2 \} \ l_3 \)

- if \(\llbracket c \rrbracket(m) = \text{TRUE} \), then \((l_0, m) \rightarrow (l_1, m) \)
- if \(\llbracket c \rrbracket(m) = \text{FALSE} \), then \((l_2, m) \rightarrow (l_1, m) \)
- if \(\llbracket c \rrbracket(m) = \Omega \), then \((l_0, m) \rightarrow \Omega \)
- if \(\llbracket c \rrbracket(m) = \Omega \), then \((l_2, m) \rightarrow \Omega \)

Case of \(\{ l_0 : i_0; l_1 : \ldots; l_{n-1} i_{n-1}; l_n \} \)

- the transition relation is defined by the individual instructions
Extending the language with non-determinism

The language we have considered so far is a bit limited:

- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non deterministic inputs...

... with an input instruction:
- \(i ::= \ldots | \ x ::= \text{input()} \)
- \(l_0 : x ::= \text{input(); } l_1 \) generates transitions
 \(\forall v \in \mathbb{V}, (l_0, m) \rightarrow (l_1, m[x \leftarrow v]) \)
- one instruction induces non determinism

... with a random function:
- \(e ::= \ldots | \text{rand()} \)
- expressions have a non-deterministic semantics:
 \[
 \begin{align*}
 [e] : M &\rightarrow \mathcal{P} (\mathbb{V} \cup \{\Omega\}) \\
 [\text{rand()}](m) &= \mathbb{V} \\
 [v](m) &= \{v\} \\
 [c] : M &\rightarrow \mathcal{P} (\mathbb{V}_{\text{bool}} \cup \{\Omega\})
 \end{align*}
 \]
- all instructions induce non determinism
Semantics of real world programming languages

C language:
- several **norms**: ANSI C’99, ANSI C’11, K&R...
- not fully specified:
 - undefined behavior
 - implementation dependent behavior: architecture (ABI) or implementation (compiler...)
 - unspecified parts: leave room for implementation of compilers and optimizations
- **formalizations** in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:
- more formal...
- ... but still with some unspecified parts, e.g., execution order
Outline

1 Transition systems and small step semantics

2 Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3 Summary
Execution traces

- So far, we considered only states and atomic transitions
- We now consider program *executions* as a whole

Definition: traces

- A **finite trace** is a finite sequence of states s_0, \ldots, s_n, noted $\langle s_0, \ldots, s_n \rangle$
- An **infinite trace** is an infinite sequence of states $\langle s_0, \ldots \rangle$

Besides, we write:

- \mathcal{S}^* for the *set of finite traces*
- \mathcal{S}^ω for the *set of infinite traces*
- $\mathcal{S}^\alpha = \mathcal{S}^* \cup \mathcal{S}^\omega$ for the *set of finite or infinite traces*
Operations on traces: concatenation

Definition: concatenation

The concatenation operator \(\cdot \) is defined by:

\[
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots, s'_n \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots, s'_n \rangle \\
\langle s_0, \ldots, s_n \rangle \cdot \langle s'_0, \ldots \rangle = \langle s_0, \ldots, s_n, s'_0, \ldots \rangle \\
\langle s_0, \ldots, s_n, \ldots \rangle \cdot \sigma' = \langle s_0, \ldots, s_n, \ldots \rangle
\]

We also define:

- the empty trace \(\epsilon \), neutral element for \(\cdot \).
- the length operator \(|.| \):

\[
\begin{align*}
|\epsilon| & = 0 \\
|\langle s_0, \ldots, s_n \rangle| & = n + 1 \\
|\langle s_0, \ldots \rangle| & = \omega
\end{align*}
\]
Comparing traces: the prefix order relation

Definition: prefix order relation

Relation \prec is defined by:

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots, s'_n \rangle \iff \begin{cases} n \leq n' \\
\forall i \in [0, n], \ s_i = s'_i \end{cases}
\]

\[
\langle s_0, \ldots \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in \mathbb{N}, \ s_i = s'_i
\]

\[
\langle s_0, \ldots, s_n \rangle \prec \langle s'_0, \ldots \rangle \iff \forall i \in [0, n], \ s_i = s'_i
\]

Proof: straightforward application of the definition of order relations
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Semantics of finite traces

We consider a transition system $S = (\mathcal{S}, \rightarrow)$

Definition

The *finite traces semantics* $\llbracket S \rrbracket^*$ is defined by:

$$\llbracket S \rrbracket^* = \{ \langle s_0, \ldots, s_n \rangle \in \mathcal{S}^* \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Example:

- contrived transition system $S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\})$
- finite traces semantics:

 $$\llbracket S \rrbracket^* = \{ \epsilon, \langle a, b, \ldots, a, b, a \rangle, \langle b, a, \ldots, a, b, a \rangle, \langle a, b, \ldots, a, b, a, b \rangle, \langle b, a, \ldots, a, b, a, b \rangle, \langle a, b, \ldots, a, b, a, b, c \rangle, \langle b, a, \ldots, a, b, a, b, c \rangle, \langle c \rangle, \langle d \rangle \}$$
Interesting subsets of the finite trace semantics

We consider a transition system $S = (S, \rightarrow, S_I, S_F)$

- the **initial traces**, i.e., starting from an initial state:
 \[
 \{ \langle s_0, \ldots, s_n \rangle \in \mathbb{J}S^* \mid s_0 \in S_I \}\]

- the **traces reaching a blocking state**:
 \[
 \{ \sigma \in \mathbb{J}S^* \mid \forall \sigma' \in \mathbb{J}S^*, \sigma \prec \sigma' \implies \sigma = \sigma' \}\]

- the **traces ending in a final state**:
 \[
 \{ \langle s_0, \ldots, s_n \rangle \in \mathbb{J}S^* \mid s_n \in S_F \}\]

Example (same transition system, with $S_I = \{a\}$ and $S_F = \{c\}$):
- traces from an initial state ending in a final state:
 \[
 \{ \langle a, b, \ldots, a, b, a, b, c \rangle \}\]
Example: finite automaton

We consider the example of the previous course:

\[L = \{a, b\} \quad Q = \{q_0, q_1, q_2\} \]

\[q_i = q_0 \quad q_f = q_2 \]

\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_1 \]

Then, we have the following traces:

\[\tau_0 = \langle (q_0, ab), (q_1, b), (q_2, \epsilon) \rangle \]

\[\tau_1 = \langle (q_0, abab), (q_1, bab), (q_2, ab), (q_1, b), (q_2, \epsilon) \rangle \]

\[\tau_2 = \langle (q_0, ababab), (q_1, babab), (q_2, abab), (q_1, bab) \rangle \]

\[\tau_3 = \langle (q_0, abaaa), (q_1, baaa), (q_2, aaa), (q_1, aa) \rangle \]

Then:

- \(\tau_0, \tau_1 \) are initial traces, reaching a final state
- \(\tau_2 \) is an initial trace, and is not maximal
- \(\tau_3 \) reaches a blocking state, but not a final state
Example: λ-term

We consider λ-term $\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

\[
\tau_0 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \\
\lambda y \cdot y \rangle
\]

\[
\tau_1 = \langle \lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \\
\lambda y \cdot ((\lambda x \cdot y)((\lambda x \cdot x x) (\lambda x \cdot x x))) \rangle
\]

Then:

- τ_0 is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_1 can be extended for arbitrarily many steps; the second part of the course will study infinite traces
Example: imperative program

Similarly, we can write the traces of a simple imperative program:

\[\begin{align*}
\ell_0 & : \ x := 1; \\
\ell_1 & : \ y := 0; \\
\ell_2 & : \ \textbf{while}(x < 4)\{ \\
\ell_3 & : \quad y := y + x; \\
\ell_4 & : \quad x := x + 1; \\
\ell_5 & : \} \\
\ell_6 & : \ (\text{final program point})
\end{align*}\]

\[\tau = \langle \ell_0, (x = 6, y = 8)), (\ell_1, (x = 1, y = 8)), (\ell_2, (x = 1, y = 0)), (\ell_3, (x = 1, y = 0)), (\ell_4, (x = 1, y = 1)), (\ell_5, (x = 2, y = 1)), (\ell_3, (x = 2, y = 1)), (\ell_4, (x = 2, y = 3)), (\ell_5, (x = 3, y = 3)), (\ell_3, (x = 3, y = 3)), (\ell_4, (x = 3, y = 6)), (\ell_5, (x = 4, y = 6)), (\ell_6, (x = 4, y = 6)) \rangle\]

- very **precise** description of what the program does...
- ... but quite **cumbersome**
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Towards a fixpoint definition

We consider again our contrived transition system

\[S = (\{a, b, c, d\}, \{(a, b), (b, a), (b, c)\}) \]

Traces by length:

<table>
<thead>
<tr>
<th>(i)</th>
<th>traces of length (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle a\rangle, \langle b\rangle, \langle c\rangle, \langle d\rangle)</td>
</tr>
<tr>
<td>2</td>
<td>(\langle a, b\rangle, \langle b, a\rangle, \langle b, c\rangle)</td>
</tr>
<tr>
<td>3</td>
<td>(\langle a, b, a\rangle, \langle b, a, b\rangle, \langle a, b, c\rangle)</td>
</tr>
<tr>
<td>4</td>
<td>(\langle a, b, a, b\rangle, \langle b, a, b, a\rangle, \langle b, a, b, c\rangle)</td>
</tr>
</tbody>
</table>

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length \(i + 1\) can be derived from the traces of length \(i\), by adding a transition
Trace semantics fixpoint form

We define a semantic function, that computes the traces of length \(i + 1 \) from the traces of length \(i \) (where \(i \geq 1 \)):

Finite traces semantics as a fixpoint

Let \(\mathcal{I} = \{\epsilon\} \cup \{\langle s \rangle \mid s \in \mathcal{S}\} \).
Let \(F_* \) be the function defined by:

\[
F_* : \mathcal{P}(\mathcal{S}^*) \longrightarrow \mathcal{P}(\mathcal{S}^*)
\]

\[
X \longmapsto X \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\}
\]

Then, \(F_* \) is continuous and thus has a least-fixpoint greater than \(\mathcal{I} \); moreover:

\[
\text{lfp}_{\mathcal{I}} F_* = [\mathcal{S}]^* = \bigcup_{n \in \mathbb{N}} F_*^n(\mathcal{I})
\]
Fixpoint definition: proof (1), fixpoint existence

First, we prove that \(F_\star \) is **continuous**.

Let \(\mathcal{X} \subseteq \mathcal{P}(S^\star) \) and \(A = \bigcup \mathcal{X} \in \mathcal{X} X \). Then:

\[
F_\star(\bigcup_{X \in \mathcal{X}} X) = A \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\langle s_0, \ldots, s_n \rangle \in \bigcup_{X \in \mathcal{X}} X) \land s_n \rightarrow s_{n+1}\}
\]

\[
= A \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid (\exists X \in \mathcal{X}, \langle s_0, \ldots, s_n \rangle \in X) \land s_n \rightarrow s_{n+1}\}
\]

\[
= A \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \exists X \in \mathcal{X}, \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\}
\]

\[
= (\bigcup_{X \in \mathcal{X}} X) \cup (\bigcup_{X \in \mathcal{X}} \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\})
\]

\[
= \bigcup_{X \in \mathcal{X}} (X \cup \{\langle s_0, \ldots, s_n, s_{n+1} \rangle \mid \langle s_0, \ldots, s_n \rangle \in X \land s_n \rightarrow s_{n+1}\})
\]

\[
= \bigcup_{X \in \mathcal{X}} F_\star(X)
\]

Function \(F_\star \) is \(\cup \)-complete, hence continuous.

As \((\mathcal{P}(S^\star), \subseteq) \) is a CPO, the continuity of \(F_\star \) entails the **existence of a least-fixpoint** (Kleene theorem); moreover, it implies that:

\[
\text{lfp}_\mathcal{I} F_\star = \bigcup_{n \in \mathbb{N}} F^n_\star(\mathcal{I})
\]
Fixpoint definition: proof (2), fixpoint equality

We now show that \([S]^*\) is equal to \(\text{lfp}_\mathcal{I} F_*\), by showing the property below, by induction over \(n\):

\[
\forall k \leq n, \langle s_0, \ldots, s_k \rangle \in F_*^n(\mathcal{I}) \iff \langle s_0, \ldots, s_k \rangle \in [S]^*
\]

- at rank 0, only traces of length 1 need be considered:

\[
\langle s \rangle \in [S]^* \iff s \in S \iff \langle s \rangle \in F_*^0(\mathcal{I})
\]

- at rank \(n + 1\), and assuming the property holds at rank \(n\) (the equivalence is obvious for traces of length 1):

\[
\langle s_0, \ldots, s_k, s_{k+1} \rangle \in [S]^* \\
\iff \langle s_0, \ldots, s_k \rangle \in [S]^* \wedge s_k \rightarrow s_{k+1} \\
\iff \langle s_0, \ldots, s_k \rangle \in F_*^n(\mathcal{I}) \wedge s_k \rightarrow s_{k+1} \quad (k \leq n \text{ since } k + 1 \leq n + 1) \\
\iff \langle s_0, \ldots, s_k, s_{k+1} \rangle \in F_*^{n+1}(\mathcal{I})
\]
Trace semantics fixpoint form: example

Example, with the same simple transition system $S = (\mathcal{S}, \rightarrow)$:

- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

\[
\begin{align*}
F^0_\star(\mathcal{I}) &= \{\epsilon, \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle\} \\
F^1_\star(\mathcal{I}) &= F^0_\star(\mathcal{I}) \cup \{\langle b, a \rangle, \langle a, b \rangle, \langle b, c \rangle\} \\
F^2_\star(\mathcal{I}) &= F^1_\star(\mathcal{I}) \cup \{\langle a, b, a \rangle, \langle b, a, b \rangle, \langle a, b, c \rangle\} \\
F^3_\star(\mathcal{I}) &= F^2_\star(\mathcal{I}) \cup \{\langle b, a, b, a \rangle, \langle a, b, a, b \rangle, \langle b, a, b, c \rangle\} \\
F^4_\star(\mathcal{I}) &= F^3_\star(\mathcal{I}) \cup \{\langle a, b, a, b, a \rangle, \langle b, a, b, a, b \rangle, \langle a, b, a, b, c \rangle\} \\
F^5_\star(\mathcal{I}) &= \ldots
\end{align*}
\]

- the traces of $[\mathcal{S}]^\star$ of length $n + 1$ appear in $F^n_\star(\mathcal{I})$
Outline

1. Transition systems and small step semantics

2. Traces semantics
 - Definitions
 - Finite traces semantics
 - Fixpoint definition
 - Compositionality
 - Infinite traces semantics

3. Summary
Notion of compositional semantics

The traces semantics definition we have seen is **global**:

- the **whole system** defines a **transition relation**
- we **iterate** this relation until we get a fixpoint

Though, a **modular** definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics?
Notion of compositional semantics

Observation: programs often have an inductive structure

- \(\lambda \)-terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics \(\llbracket . \rrbracket \) is said to be **compositional** when the semantics of a program can be defined as a function of the semantics of its parts, i.e.,

When program \(\pi \) writes down as \(C[\pi_0, \ldots, \pi_k] \) where \(\pi_0, \ldots, \pi_k \) are its components, there exists a function \(F_C \) such that

\[
\llbracket \pi \rrbracket = F_C(\llbracket \pi_0 \rrbracket, \ldots, \llbracket \pi_k \rrbracket),
\]

where \(F_C \) depends only on syntactic construction \(F_C \).
Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv l_0 : i_0; l_1 : i_1; l_2$:

$$[b]^* = [i_0]^* \cup [i_1]^* \cup \{ \langle s_0, \ldots, s_m \rangle \mid \exists n \in [0, m], \langle s_0, \ldots, s_n \rangle \in [i_0]^* \land \langle s_n, \ldots, s_m \rangle \in [i_1]^* \}$$

This amounts to concatenating traces of $[i_0]^*$ and $[i_1]^*$ that share a state in common (necessarily at point l_1).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language
Case of λ-calculus

Case of a λ-term $t = (\lambda x \cdot u) \nu$:

- executions may start with a reduction in u
- executions may start with a reduction in ν
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in u and ν in an arbitrary order

No nice compositional trace semantics of λ-calculus...
Outline

1 Transition systems and small step semantics

2 Traces semantics
 • Definitions
 • Finite traces semantics
 • Fixpoint definition
 • Compositionality
 • Infinite traces semantics

3 Summary
Non termination

Can the finite traces semantics express non termination?

Consider the case of our contrived system:

\[S = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\} \]

- this system clearly has non-terminating behaviors: it can loop from \(a\) to \(b\) and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order \(\prec\):
 \[
 \langle a, b \rangle, \langle a, b, a \rangle, \langle a, b, a, b \rangle, \langle a, b, a, b, a \rangle, \ldots \in [S]^*
 \]
- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces
Semantics of infinite traces

We consider a transition system $S = (\mathcal{S}, \rightarrow)$

Definition

The **infinite traces semantics** $[S]^{\omega}$ is defined by:

$$[S]^{\omega} = \{ \langle s_0, \ldots \rangle \in \mathcal{S}^{\omega} \mid \forall i, s_i \rightarrow s_{i+1} \}$$

Infinite traces starting from an initial state (considering $S = (\mathcal{S}, \rightarrow, \mathcal{S}_I, \mathcal{S}_F)$):

$$\{ \langle s_0, \ldots \rangle \in [S]^{\omega} \mid s_0 \in \mathcal{S}_I \}$$

Example:
- contrived transition system defined by
 $$\mathcal{S} = \{a, b, c, d\} \quad (\rightarrow) = \{(a, b), (b, a), (b, c)\}$$
- the infinite traces semantics contains exactly two traces
 $$[S]^{\omega} = \{ \langle a, b, \ldots, a, b, a, b, \ldots \rangle, \langle b, a, \ldots, b, a, b, a, \ldots \rangle \}$$
Fixpoint form

Can we also provide a fixpoint form for $[S]^\omega$?

Intuitively, $\langle s_0, s_1, \ldots \rangle \in [S]^\omega$ if and only if $\forall n, s_n \rightarrow s_{n+1}$, i.e.,

$$\forall n \in \mathbb{N}, \forall k \leq n, s_k \rightarrow s_{k+1}$$

Let F_ω be defined by:

$$F_\omega : \mathcal{P}(S^\omega) \longrightarrow \mathcal{P}(S^\omega)$$

$$X \longmapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}$$

Then, we can show by induction that:

$$\sigma \in [S]^\omega \iff \forall n \in \mathbb{N}, \sigma \in F_\omega^n(S^\omega) \iff \bigcap_{n \in \mathbb{N}} F_\omega^n(S^\omega)$$
Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_ω be the function defined by:

$$
F_\omega : \mathcal{P}(\mathcal{S}_\omega) \rightarrow \mathcal{P}(\mathcal{S}_\omega)
$$

$$
X \mapsto \{ \langle s_0, s_1, \ldots, s_n, \ldots \rangle \mid \langle s_1, \ldots, s_n, \ldots \rangle \in X \land s_0 \rightarrow s_1 \}
$$

Then, F_ω is \(\cap\)-continuous and thus has a greatest-fixpoint; moreover:

$$
gfp_{\mathcal{S}_\omega} F_\omega = [S]^\omega = \bigcap_{n \in \mathbb{N}} F_\omega^n(\mathcal{S}_\omega)
$$

Proof sketch:

- the \(\cap\)-continuity proof is similar as for the \(\cup\)-continuity of F_\ast
- by the dual version of Kleene’s theorem, $gfp_{\mathcal{S}_\omega} F_\omega$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F_\omega^n(\mathcal{S}_\omega)$, i.e. to $[S]^\omega$ (similar induction proof)
Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:
- $\mathcal{S} = \{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b$, $b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

\[
\begin{align*}
F_0^0(\mathcal{S}^\omega) &= \mathcal{S}^\omega \\
F_0^1(\mathcal{S}^\omega) &= \langle a, b \rangle \cdot \mathcal{S}^\omega \cup \langle b, a \rangle \cdot \mathcal{S}^\omega \cup \langle b, c \rangle \cdot \mathcal{S}^\omega \\
F_0^2(\mathcal{S}^\omega) &= \langle b, a, b \rangle \cdot \mathcal{S}^\omega \cup \langle a, b, a \rangle \cdot \mathcal{S}^\omega \cup \langle a, b, c \rangle \cdot \mathcal{S}^\omega \\
F_0^3(\mathcal{S}^\omega) &= \langle a, b, a, b \rangle \cdot \mathcal{S}^\omega \cup \langle b, a, b, a \rangle \cdot \mathcal{S}^\omega \cup \langle b, a, b, c \rangle \cdot \mathcal{S}^\omega \\
F_0^4(\mathcal{S}^\omega) &= \ldots
\end{align*}
\]

Intuition

- at iterate n, prefixes of length $n + 1$ match the traces in the infinite semantics
- only $\langle a, b, \ldots, a, b, a, b, \ldots \rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots \rangle$ belong to *all* iterates
Outline

1. Transition systems and small step semantics
2. Traces semantics
3. Summary
We have discussed:

- **small-step / structural operational semantics:**
 individual program steps

- **big-step / natural semantics:**
 program executions as sequences of transitions

- their **fixpoint definitions** and properties

Next lectures:

- another family of semantics, **more compact and compositional**
- **semantic program** and **proof methods**