Overview

- **Last week:** non-relational abstract domains (intervals)

 abstract each variable independently from the others

 can express important properties (e.g., absence of overflow)

 unable to represent relations between variables

- **This week:** relational abstract domains

 more precise, but more costly

 - the need for relational domains

 - linear equality domain

 \[\sum_i \alpha_i V_i = \beta_i \]

 - polyhedra domain

 \[\sum_i \alpha_i V_i \geq \beta_i \]

 - project: relational analysis with the Apron library

- **Next week:** selected advanced topics on abstract domains

 (not needed for the project)
Motivation
Motivation

Relational assignments and tests

Example

\[
X \leftarrow \text{rand}(0, 10); \ Y \leftarrow \text{rand}(0, 10); \\
\text{if } X > Y \text{ then } X \leftarrow Y \text{ else skip}; \\
D \leftarrow Y - X; \\
\text{assert } D \geq 0
\]

Interval analysis:

- \(S^\#[X > Y?] \) is abstracted as the identity given \(R^\# \overset{\text{def}}{=} [X \mapsto [0, 10], Y \mapsto [0, 10]] \)

- \(S^\#[\text{if } X > Y \text{ then } \cdots] R^\# = R^\# \)

- \(D \leftarrow Y - X \) gives \(D \in [0, 10] -^\# [0, 10] = [-10, 10] \)

- the assertion \(D \geq 0 \) fails
Relational assignments and tests

Example

\[
X \leftarrow \text{rand}(0, 10); \quad Y \leftarrow \text{rand}(0, 10);
\]
\[
\text{if } X > Y \text{ then } X \leftarrow Y \text{ else skip;}
\]
\[
D \leftarrow Y - X;
\]
\[
\text{assert } D \geq 0
\]

Solution: relational domain

- represent explicitly the information \(X \leq Y \)
- infer that \(X \leq Y \) holds after the if \(\cdots \) then \(\cdots \) else \(\cdots \)
 \(X \leq Y \) both after \(X \leftarrow Y \) when \(X > Y \), and after skip when \(X \leq Y \)
- use \(X \leq Y \) to deduce that \(Y - X \in [0, 10] \)

Note:
the invariant we seek, \(D \geq 0 \), can be exactly represented in the interval domain
but inferring \(D \geq 0 \) requires a more expressive domain locally
Motivation

Relational loop invariants

Example

\[
\begin{align*}
I & \leftarrow 1; \ X \leftarrow 0; \\
\text{while } I \leq 1000 \text{ do} & \\
& \quad I \leftarrow I + 1; \ X \leftarrow X + 1; \\
\text{assert } X \leq 1000
\end{align*}
\]

Interval analysis:

- after iterations with \textit{widening}, we get in 2 iterations:

 as loop invariant: \(I \in [1, +\infty) \) and \(X \in [0, +\infty) \)

 after the loop: \(I \in [1001, +\infty) \) and \(X \in [0, +\infty) \) \implies \text{assert fails}

- using a \textit{decreasing} iteration after widening, we get:

 as loop invariant: \(I \in [1, 1001] \) and \(X \in [0, +\infty) \)

 after the loop: \(I = 1001 \) and \(X \in [0, +\infty) \) \implies \text{assert fails}

 (the test \(I \leq 1000 \) only refines \(I \), but gives no information on \(X \))

- without widening, we get \(I = 1001 \) and \(X = 1000 \) \implies \text{assert passes}

 but we need 1000 iterations! \(\cong \) concrete fixpoint computation
Relational loop invariants

Example

\[
I \leftarrow 1; \ X \leftarrow 0;
\]

while \(I \leq 1000 \) do

\[
I \leftarrow I + 1; \ X \leftarrow X + 1;
\]

assert \(X \leq 1000 \)

Solution: relational domain

- infer a relational loop invariant: \(I = X + 1 \land 1 \leq I \leq 1001 \)
 - \(I = X + 1 \) holds before entering the loop as \(1 = 0 + 1 \)
 - \(I = X + 1 \) is invariant by the loop body \(I \leftarrow I + 1; X \leftarrow X + 1 \)
 (can be inferred in 2 iterations with widening in the polyhedra domain)

- propagate the loop exit condition \(I > 1000 \) to get:
 - \(I = 1001 \)
 - \(X = I - 1 = 1000 \implies \text{assert passes} \)

Note:
the invariant we seek after the loop exit has an interval form: \(X \leq 1000 \)
but we need to infer a more expressive loop invariant to deduce it
Affine Equalities
The affine equality domain

We look for invariants of the form:
\[\bigwedge_j \left(\sum_{i=1}^{n} \alpha_{ij} V_i = \beta_j \right), \quad \alpha_{ij}, \beta_j \in \mathbb{Q} \]
where all the \(\alpha_{ij} \) and \(\beta_j \) are inferred automatically.

We use a domain of affine spaces proposed by Karr in 1976
\[\mathcal{E}^\# \simeq \{ \text{affine subspaces of } V \to \mathbb{R} \} \]
(with a suitable machine representation)
Affine equality representation

Machine representation:

\[\mathcal{E}^\# \text{ def } = \cup_m \{ \langle M, \vec{C} \rangle \mid M \in \mathbb{Q}^{m \times n}, \vec{C} \in \mathbb{Q}^m \} \cup \{ \bot \} \]

- either the constant \(\bot \)
- or a pair \(\langle M, \vec{C} \rangle \) where
 - \(M \in \mathbb{Q}^{m \times n} \) is a \(m \times n \) matrix, \(n = |V| \) and \(m \leq n \),
 - \(\vec{C} \in \mathbb{Q}^m \) is a row-vector with \(m \) rows

\(\langle M, \vec{C} \rangle \) represents an equation system, with solutions:

\[\gamma(\langle M, \vec{C} \rangle) \text{ def } = \{ \vec{V} \in \mathbb{R}^n \mid M \times \vec{V} = \vec{C} \} \]

M should be in row echelon form:

- \(\forall i \leq m : \exists k_i : M_{ik_i} = 1 \) and
 \[\forall c < k_i : M_{ic} = 0, \forall l \neq i : M_{lk_i} = 0, \]

- if \(i < i^0 \) then \(k_i < k_i^0 \) (leading index)

Example:

\[
\begin{bmatrix}
1 & 0 & 0 & 5 & 0 \\
0 & 1 & 0 & 6 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Remarks:

- the representation is unique
- as \(m \leq n = |V| \), the memory cost is in \(\mathcal{O}(n^2) \) at worst
- \(\top \) is represented as the empty equation system: \(m = 0 \)
Galois connection:

between arbitrary subsets and affine subsets

\[(\mathcal{P}(\mathbb{R}^{\mathbb{V}}), \subseteq) \leftrightarrow (\text{Aff}(\mathbb{R}^{\mathbb{V}}), \subseteq) \]

- \(\gamma(X) \overset{\text{def}}{=} X \) (identity)
- \(\alpha(X) \overset{\text{def}}{=} \text{smallest affine subset containing } X \)

\(\text{Aff}(\mathbb{R}^{\mathbb{V}}) \) is closed under arbitrary intersections, so we have:

\[\alpha(X) = \bigcap \{ Y \in \text{Aff}(\mathbb{R}^{\mathbb{V}}) \mid X \subseteq Y \} \]

\(\text{Aff}(\mathbb{R}^{\mathbb{V}}) \) contains every point in \(\mathbb{R}^{\mathbb{V}} \)

we can also construct \(\alpha(X) \) by (abstract) union:

\[\alpha(X) = \bigcup \{ \{x\} \mid x \in X \} \]

Notes:

- we have assimilated \(\mathbb{V} \rightarrow \mathbb{R} \) to \(\mathbb{R}^{\mathbb{V}} \)
- we have used \(\text{Aff}(\mathbb{R}^{\mathbb{V}}) \) instead of the matrix representation \(\mathcal{E}^\# \) for simplicity; a Galois connection also exists between \(\mathcal{P}(\mathbb{R}^{\mathbb{V}}) \) and \(\mathcal{E}^\# \)
Normalisation and emptiness testing

Let $M \times \vec{V} = \vec{C}$ be a system, not necessarily in normal form.

The Gaussian reduction tells in $O(n^3)$ time:

- whether the system is satisfiable, and in that case
- gives an equivalent system in normal form

i.e.: it returns an element in $E^\#$

Example:

\[
\begin{align*}
2X + Y + Z &= 19 \\
2X + Y - Z &= 9 \\
3Z &= 15
\end{align*}
\]

\[\Rightarrow \begin{align*}
X + 0.5Y &= 7 \\
Z &= 5
\end{align*}\]
Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: \(Gauss(⟨M, \vec{C}⟩) \)

\[
\begin{align*}
r &\leftarrow 0 \quad \text{(rank } r) \\
\text{for } c \text{ from } 1 \to n & \quad \text{(column } c) \\
\quad \text{if } \exists \ell > r: M_{\ell c} \neq 0 \quad \text{(pivot } \ell) \\
\quad &\quad r \leftarrow r + 1 \\
\quad &\quad \text{swap } ⟨\vec{M}_\ell, C_\ell⟩ \text{ and } ⟨\vec{M}_r, C_r⟩ \\
\quad &\quad \text{divide } ⟨\vec{M}_r, C_r⟩ \text{ by } M_{rc} \\
\quad &\quad \text{for } j \text{ from } 1 \to n, j \neq r \\
\quad &\quad \quad \text{replace } ⟨\vec{M}_j, C_j⟩ \text{ with } ⟨\vec{M}_j, C_j⟩ - M_{jc}⟨\vec{M}_r, C_r⟩ \\
\text{if } \exists \ell: ⟨\vec{M}_\ell, C_\ell⟩ = ⟨0, \ldots, 0, c⟩, c \neq 0 & \quad \text{then return } \bot \\
\text{remove all rows } ⟨\vec{M}_\ell, C_\ell⟩ \text{ that equal } ⟨0, \ldots, 0, 0⟩
\end{align*}
\]
Affine equality operators

Abstract operators:

If \(X^\# \neq \bot \), we define:

\[
X^\# \cap^\# Y^\# \overset{\text{def}}{=} \text{Gauss} \left(\left\langle \left[\begin{array}{c} M_{X^\#} \\ M_{Y^\#} \end{array} \right], \left[\begin{array}{c} \vec{C}_{X^\#} \\ \vec{C}_{Y^\#} \end{array} \right] \right\rangle \right) \quad \text{(join equations)}
\]

\[
X^\# =^\# Y^\# \iff M_{X^\#} = M_{Y^\#} \quad \text{and} \quad \vec{C}_{X^\#} = \vec{C}_{Y^\#} \quad \text{(uniqueness)}
\]

\[
X^\# \subseteq^\# Y^\# \iff X^\# \cap^\# Y^\# =^\# X^\#
\]

\[
S^\#[\sum_j \alpha_j V_j = \beta?] X^\# \overset{\text{def}}{=} \text{Gauss} \left(\left\langle \left[\begin{array}{c} M_{X^\#} \\ \alpha_1 \cdots \alpha_n \end{array} \right], \left[\begin{array}{c} \vec{C}_{X^\#} \\ \beta \end{array} \right] \right\rangle \right) \quad \text{(add equation)}
\]

\[
S^\#[e \otimes e^0?] X^\# \overset{\text{def}}{=} X^\# \quad \text{for other tests}
\]

Remark:

\(\subseteq^\#, =^\#, \cap^\#, =^\# \) and \(S^\#[\sum_j \alpha_j V_j = \beta] = 0? \) are exact:

\(X^\# \subseteq^\# Y^\# \iff \gamma(X^\#) \subseteq \gamma(Y^\#), \quad \gamma(X^\# \cap^\# Y^\#) = \gamma(X^\#) \cap \gamma(Y^\#), \ldots \)
Affine equality assignment

Non-deterministic assignment: \(S^\#[V_j \leftarrow [\infty, +\infty]] \)

Principle: remove all the occurrences of \(V_j \)
but reduce the number of equations by only one
(add a single degree of freedom)

Algorithm: assuming \(V_j \) occurs in \(M \)

- Pick the row \(\langle \vec{M}_i, C_i \rangle \) such that \(M_{ij} \neq 0 \) and \(i \) maximal
- Use it to eliminate all the occurrences of \(V_j \) in lines before \(i \)
 \((i \) maximal \(\Rightarrow M \) stays in row echelon form)\)
- Remove the row \(\langle \vec{M}_i, C_i \rangle \)

Example: forgetting \(Z \)
\[
\begin{align*}
X + Z &= 10 \\
Y + Z &= 7
\end{align*}
\]
\[
\Rightarrow \quad \begin{align*}
X - Y &= 3
\end{align*}
\]

The operator is exact
Affine equality assignment

Affine assignments: \(S^\#[V_j \leftarrow \sum_i \alpha_i V_i + \beta] \)

\[
S^\#[V_j \leftarrow \sum_i \alpha_i V_i + \beta] X^\# \overset{\text{def}}{=} \\
\text{if } \alpha_j = 0, (S^\#[V_j = \sum_i \alpha_i V_i + \beta] \circ S^\#[V_j \leftarrow [\neg\infty, +\infty]]) X^# \\
\text{if } \alpha_j \neq 0, \langle M, \vec{C} \rangle \text{ where } V_j \text{ is replaced with } \frac{1}{\alpha_j} (V_j - \sum_{i \neq j} \alpha_i V_i - \beta) \\
\text{(variable substitution)}
\]

Proof sketch: based on properties in the concrete

non-invertible assignment: \(\alpha_j = 0 \)

\[
S[V_j \leftarrow e] = S[V_j \leftarrow e] \circ S[V_j \leftarrow [\neg\infty, +\infty]] \text{ as the value of } V \text{ is not used in } e \\
\text{so } S[V_j \leftarrow e] = S[V_j = e?] \circ S[V_j \leftarrow [\neg\infty, +\infty]]
\]

invertible assignment: \(\alpha_j \neq 0 \)

\[
S[V_j \leftarrow e] \subseteq S[V_j \leftarrow e] \circ S[V_j \leftarrow [\neg\infty, +\infty]] \text{ as } e \text{ depends on } V \\
\rho \in S[V_j \leftarrow e] R \iff \exists \rho' \in R: \rho = \rho'[V_j \mapsto \sum_i \alpha_i \rho'(V_i) + \beta] \\
\iff \exists \rho' \in R: \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho'(V_i) - \beta) / \alpha_j] = \rho' \\
\iff \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho(V_i) - \beta) / \alpha_j] \in R
\]

Non-affine assignments: revert to non-deterministic case

\[
S^\#[V_j \leftarrow e] X^# \overset{\text{def}}{=} S^\#[V_j \leftarrow [\neg\infty, +\infty]] X^# \text{ (imprecise but sound)}
\]
Affine equality join

Join: $\langle M, \vec{C} \rangle \cup^# \langle N, \vec{D} \rangle$

Idea: unify columns 1 to n of $\langle M, \vec{C} \rangle$ and $\langle N, \vec{D} \rangle$ using row operations

Example:

Assume that we have unified columns 1 to k to get $\begin{pmatrix} R \\ 0 \end{pmatrix}$, arguments are in row echelon form, and we have to unify at column $k + 1$: $\beta(\vec{0} \ 1 \ 0)$ with $\beta(\vec{0} \ 0 \ 0)$

$\begin{pmatrix} R & 0 & M_1 \\ \vec{0} & 1 & M_2 \\ 0 & 0 & M_3 \end{pmatrix}, \begin{pmatrix} R & \vec{\beta} & N_1 \\ \vec{0} & 0 & N_2 \\ 0 & 0 & N_3 \end{pmatrix} \Rightarrow \begin{pmatrix} R & \vec{\beta} & M'_1 \\ \vec{0} & 0 & 0 \\ 0 & 0 & M_3 \end{pmatrix}, \begin{pmatrix} R & \vec{\beta} & N_1 \\ \vec{0} & 0 & N_2 \\ 0 & 0 & N_3 \end{pmatrix}$

Use the row $(\vec{0} \ 1 \ M_2)$ to create $\vec{\beta}$ in the left argument
Then remove the row $(\vec{0} \ 1 \ M_2)$
The right argument is unchanged
\Rightarrow we have now unified columns 1 to $k + 1$

Unifying $\alpha(\vec{0} \ 0)$ and $\alpha(\vec{0} \ 1 \ 0)$ is similar
Unifying $\alpha(\vec{0} \ 0)$ and $\beta(\vec{0} \ 0 \ 0)$ is a bit more complicated...
No other case possible as we are in row echelon form
Analysis example

No infinite increasing chain: we can iterate **without widening**!

Example

\[
X \leftarrow 10; Y \leftarrow 100; \\
\text{while } X \neq 0 \text{ do} \\
\quad X \leftarrow X - 1; \\
\quad Y \leftarrow Y + 10
\]

Abstract loop iterations:

\[
\lim_{\lambda X^\#.I^\# \cup^\# S^\#[\text{ body }]} (S^\#[X \neq 0?] X^\#)
\]

- **loop entry:** \(I^\# = (X = 10 \land Y = 100) \)
- **after one loop body iteration:** \(F^\#(I^\#) = (X = 9 \land Y = 110) \)
- \(\implies X^\# \overset{\text{def}}{=} I^\# \cup^\# F^\#(I^\#) = (10X + Y = 200) \)
- \(X^\# \) is stable

at loop exit, we get \(S^\#[[X = 0?]] (10X + Y = 200) = (X = 0 \land Y = 200) \)
Polyhedra
The polyhedron domain

We look for invariants of the form: \(\wedge_j (\sum_{i=1}^n \alpha_{ij} V_i \geq \beta_j) \)

We use the polyhedron domain by Cousot and Halbwachs (1978)

\[\mathcal{E}^{\#} \simeq \{ \text{closed convex polyhedra of } V \to \mathbb{R} \} \]

Note: polyhedra need not be bounded (\(\neq \text{polytopes} \))
Double description of polyhedra

Polyhedra have **dual** representations (Weyl–Minkowski Theorem)

Constraint representation

\(\langle M, \vec{C} \rangle \) with \(M \in \mathbb{Q}^{m \times n} \) and \(\vec{C} \in \mathbb{Q}^m \)

represents:

\[
\gamma(\langle M, \vec{C} \rangle) \overset{\text{def}}{=} \{ \vec{V} | M \times \vec{V} \geq \vec{C} \}
\]

We will also often use a **constraint set notation** \(\{ \sum_i \alpha_{ij} V_i \geq \beta_j \} \)

Generator representation

\([P, R]\) where

- \(P \in \mathbb{Q}^{n \times p} \) is a set of \(p \) points: \(\vec{P}_1, \ldots, \vec{P}_p \)
- \(R \in \mathbb{Q}^{n \times r} \) is a set of \(r \) rays: \(\vec{R}_1, \ldots, \vec{R}_r \)

\[
\gamma([P, R]) \overset{\text{def}}{=} \{ (\sum_{j=1}^{p} \alpha_j \vec{P}_j) + (\sum_{j=1}^{r} \beta_j \vec{R}_j) | \forall j, \alpha_j, \beta_j \geq 0: \sum_{j=1}^{p} \alpha_j = 1 \}
\]
Generator representation examples:

\[\gamma([P, R]) \overset{\text{def}}{=} \{ (\sum_{j=1}^{p} \alpha_j \vec{P}_j) + (\sum_{j=1}^{r} \beta_j \vec{R}_j) \mid \forall j, \alpha_j, \beta_j \geq 0: \sum_{j=1}^{p} \alpha_j = 1 \} \]
Duality in polyhedra

Duality: \(P^* \) is the dual of \(P \), so that:

- the generators of \(P^* \) are the constraints of \(P \)
- the constraints of \(P^* \) are the generators of \(P \)
- \(P^{**} = P \)
Polyhedra representations

Minimal representations

- A constraint / generator system is minimal if no constraint / generator can be omitted without changing the concretization
- Minimal representations are not unique

Example: three different constraint representations for a point

- (a) $y + x \geq 0$, $y - x \geq 0$, $y \leq 0$, $y \geq -5$ (non minimal)
- (b) $y + x \geq 0$, $y - x \geq 0$, $y \leq 0$ (minimal)
- (c) $x \leq 0$, $x \geq 0$, $y \leq 0$, $y \geq 0$ (minimal)
- **No bound on the size of representations** (even minimal ones)
- **No best abstraction** α

Example: A disc has infinitely many polyhedral over-approximations, but no best one.
Chernikova’s algorithm

Algorithm by Chernikova (1968), improved by LeVerge (1992) to switch from a constraint system to an equivalent generator system

Motivation: most operators are easier on one representation

- By **duality**, we can use the same algorithm to switch from generators to constraints
- The minimal generator system can be **exponential** in the original constraint system (e.g., hypercube: $2n$ constraints, 2^n vertices)
- **Equality** constraints and lines (pairs of opposed rays) may be handled separately and more efficiently
- Chernikova’s algorithm minimizes the representation on-the-fly (not presented here)

Algorithm: incrementally add constraints one by one

Start with:

- $P_0 = \{(0, \ldots, 0)\}$ (origin)
- $R_0 = \{ \vec{x}_i, -\vec{x}_i \mid 1 \leq i \leq n \}$ (axes)
Chernikova’s algorithm (cont.)

Update $[P_{k-1}, R_{k-1}]$ to $[P_k, R_k]$ by adding one constraint $\vec{M}_k \cdot \vec{V} \geq C_k \in \langle \vec{M}, \vec{C} \rangle$:

start with $P_k = R_k = \emptyset$,

- for any $\vec{P} \in P_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} \geq C_k$, add \vec{P} to P_k
- for any $\vec{R} \in R_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} \geq 0$, add \vec{R} to R_k
- for any $\vec{P}, \vec{Q} \in P_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{Q} < C_k$, add to P_k:

$$\vec{O} \overset{\text{def}}{=} \frac{C_k - \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{P} - \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{Q}$$
Chernikova’s algorithm (cont.)

for any $\vec{R}, \vec{S} \in \mathbb{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} > 0$ and $\vec{M}_k \cdot \vec{S} < 0$, add to R_k:

$$\vec{O} \overset{\text{def}}{=} (\vec{M}_k \cdot \vec{S}) \vec{R} - (\vec{M}_k \cdot \vec{R}) \vec{S}$$

for any $\vec{P} \in P_{k-1}$, $\vec{R} \in \mathbb{R}_{k-1}$ s.t. either $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{R} < 0$, or $\vec{M}_k \cdot \vec{P} < C_k$ and $\vec{M}_k \cdot \vec{R} > 0$, add to P_k:

$$\vec{O} \overset{\text{def}}{=} \vec{P} + \frac{C_k - M_k \cdot \vec{P}}{M_k \cdot \vec{R}} \vec{R}$$
Example:

\[P_0 = \{(0, 0)\} \quad R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \]
Example:

\[
\begin{align*}
P_0 &= \{(0, 0)\} \\
R_0 &= \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \\
P_1 &= \{(0, 1)\} \\
R_1 &= \{(1, 0), (-1, 0), (0, 1)\}
\end{align*}
\]
Chernikova’s algorithm example

Example:

\[
\begin{align*}
Y &\geq 1 & P_0 &= \{(0, 0)\} & R_0 &= \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \\
X + Y &\geq 3 & P_1 &= \{(0, 1)\} & R_1 &= \{(1, 0), (-1, 0), (0, 1)\} \\
& & P_2 &= \{(2, 1)\} & R_2 &= \{(1, 0), (-1, 1), (0, 1)\}
\end{align*}
\]
Chernikova’s algorithm example

Example:

\[
P_0 = \{(0, 0)\} \quad R_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\}
\]
\[
P_1 = \{(0, 1)\} \quad R_1 = \{(1, 0), (-1, 0), (0, 1)\}
\]
\[
P_2 = \{(2, 1)\} \quad R_2 = \{(1, 0), (-1, 1), (0, 1)\}
\]
\[
P_3 = \{(2, 1), (1, 2)\} \quad R_3 = \{(0, 1), (1, 1)\}
\]
Operators on polyhedra

Abstract operators:

Given $X^\#$, $Y^\# \not= \bot$, we define:

\[
X^\# \subseteq^\# Y^\# \iff \left\{ \begin{array}{l}
\forall \vec{P} \in P_{X^\#} : M_{Y^\#} \times \vec{P} \geq \vec{C}_{Y^\#} \\
\forall \vec{R} \in R_{X^\#} : M_{Y^\#} \times \vec{R} \geq \vec{0}
\end{array} \right.
\]

\[
X^\# =^\# Y^\# \iff X^\# \subseteq^\# Y^\# \text{ and } Y^\# \subseteq^\# X^\#
\]

\[
X^\# \cap^\# Y^\# \defeq \left\langle \left[\begin{array}{c} M_{X^\#} \\
M_{Y^\#} \end{array} \right], \left[\begin{array}{c} \vec{C}_{X^\#} \\
\vec{C}_{Y^\#} \end{array} \right] \right\rangle \quad (\text{join constraint sets})
\]

$\subseteq^\#$, $=^\#$ and $\cap^\#$ are exact (in $P(\forall \rightarrow \mathbb{R})$)
Operators on polyhedra (cont.)

Join: \[X^\# \cup^\# Y^\# \overset{\text{def}}{=} \left[[P_{X^\#}, P_{Y^\#}], [R_{X^\#}, R_{Y^\#}] \right] \] (join generator sets)

Examples:

- two polytopes
- a point and a line

\(\cup^\# \) is optimal (in \(P(\mathbb{V} \to \mathbb{R}) \)):

we get the topological closure of the convex hull of \(\gamma(X^\#) \cup \gamma(Y^\#) \)
Operators on polyhedra (cont.)

Affine tests:
\[S^\#[\sum_i \alpha_i V_i \geq \beta?] X^\# \overset{\text{def}}{=} \left\langle \left[\begin{array}{c} M_{X^\#} \\ \alpha_1 \cdots \alpha_n \end{array} \right], \left[\begin{array}{c} \bar{C}_{X^\#} \\ \beta \end{array} \right] \right\rangle \]

Non-deterministic assignment:
\[S^\#[V_j \leftarrow [\infty, +\infty]] X^\# \overset{\text{def}}{=} [P_{X^\#}, [R_{X^\#} \bar{x}_j (-\bar{x}_j)]] \]

- these operators are exact (in \(\mathcal{P}(\forall \rightarrow \mathbb{R}) \))
- other tests can be abstracted as \(S^\#[c?] X^\# \overset{\text{def}}{=} X^\# \)
 (sound but not optimal)
Operators on polyhedra (cont.)

Affine assignment:

\[
S^\# [V_j \leftarrow \sum_i \alpha_i V_i + \beta] \ X^\# \overset{\text{def}}{=} \ \\
\text{if } \alpha_j = 0, (S^\# [\sum_i \alpha_i V_i = V_j - \beta] \circ S^\# [V_j \leftarrow [-\infty, +\infty]])X^\#
\]

\[
\text{if } \alpha_j \neq 0, \langle M, \vec{C} \rangle \text{ where } V_j \text{ is replaced with } \frac{1}{\alpha_j} (V_j - \sum_{i \neq j} \alpha_i V_i - \beta)
\]

- similar to the assignment in the equality domain
- the assignment is exact (in \(\mathcal{P}(\mathbb{V} \rightarrow \mathbb{R}) \))
- assignments can also be defined on the generator system
- for non-affine assignments: \(S^\# [V \leftarrow e] \overset{\text{def}}{=} S^\# [V \leftarrow [-\infty, +\infty]] \)
 (sound but not optimal)
Polyhedra widening

$E^\#$ has strictly increasing infinite chains \implies we need a widening

Definition:

Take $X^\#$ and $Y^\#$ in minimal constraint-set form

$$X^\# \triangledown Y^\# \overset{\text{def}}{=} \{ c \in X^\# | Y^\# \subseteq \# \{ c \} \}$$

We suppress any unstable constraint $c \in X^\#$, i.e., $Y^\# \not\subseteq \# \{ c \}$

Example:

![Diagram of polyhedra widening example]
Polyhedra widening

$\mathcal{E}^\#$ has strictly increasing infinite chains \Rightarrow we need a widening

Definition:

Take $X^\#$ and $Y^\#$ in minimal constraint-set form

$$
X^\# \triangledown Y^\# \overset{\text{def}}{=} \{ c \in X^\# \mid Y^\# \subseteq \{ c \} \} \cup \{ c \in Y^\# \mid \exists c' \in X^\#: X^\# = (X^\# \setminus c') \cup \{ c \} \}
$$

We suppress any unstable constraint $c \in X^\#$, i.e., $Y^\# \not\subseteq \{ c \}$

We also keep constraints $c \in Y^\#$ equivalent to those in $X^\#$, i.e., when $\exists c' \in X^\#: X^\# = (X^\# \setminus c') \cup \{ c \}$

Example:

![Diagram](image-url)
Example analysis

Example

\[X \leftarrow 2; I \leftarrow 0; \]
while \(I < 10 \) do
 \[\text{if rand}(0, 1) = 0 \text{ then } X \leftarrow X + 2 \text{ else } X \leftarrow X - 3; \]
 \(I \leftarrow I + 1 \)

Loop invariant:

increasing iterations with widening:

\[
\begin{align*}
X_1^\# &= \{X = 2, I = 0\} \\
X_2^\# &= \{X = 2, I = 0\} \triangledown (\{X = 2, I = 0\} \cup^\# \{X \in [-1, 4], I = 1\}) \\
&= \{X = 2, I = 0\} \triangledown \{I \in [0, 1], 2 - 3I \leq X \leq 2I + 2\} \\
&= \{I \geq 0, 2 - 3I \leq X \leq 2I + 2\}
\end{align*}
\]

decreasing iteration: (recover \(I \leq 10 \))

\[
\begin{align*}
X_3^\# &= \{X = 2, I = 0\} \cup^\# \{I \in [1, 10], 2 - 3I \leq X \leq 2I + 2\} \\
&= \{I \in [0, 10], 2 - 3I \leq X \leq 2I + 2\}
\end{align*}
\]

at the loop exit, we find eventually: \(I = 10 \land X \in [-28, 22] \)
Partial conclusion

Cost vs. precision:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Invariants</th>
<th>Memory cost</th>
<th>Time cost (per op.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>intervals</td>
<td>$V \in [\ell, h]$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>affine equalities</td>
<td>$\sum_i \alpha_i V_i = \beta_i$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>polyhedra</td>
<td>$\sum_i \alpha_i V_i \geq \beta_i$</td>
<td>unbounded, exponential in practice</td>
<td></td>
</tr>
</tbody>
</table>

- domains provide a tradeoff between precision and cost
- relational invariants are sometimes necessary even to prove non-relational properties
- an abstract domain is defined by
 - a choice of abstract properties and operators (semantic aspect)
 - data-structures and algorithms (algorithmic aspect)
- an abstract domain mixes two kinds of approximations:
 - static approximations (choice of abstract properties)
 - dynamic approximations (widening)
Weakly relational domains

Principle: restrict the expressiveness of polyhedra to be more efficient at the cost of precision

Example domains:

- **Based on constraint propagation:** (closure algorithms)
 - **Octagons:** $\pm X \pm Y \leq c$
 - shortest path closure: $x + y \leq c \land -y + z \leq d \implies x + z \leq c + d$
 - quadratic memory cost, cubic time cost
 - **Two-variables per inequality:** $\alpha x + \beta y \leq c$
 - slightly more complex closure algorithm, by Nelson
 - **Octahedra:** $\sum \alpha_i V_i \leq c$, $\alpha_i \in \{-1, 0, 1\}$
 - incomplete propagation, to avoid exponential cost
 - **Pentagons:** $X - Y \leq 0$
 - restriction of octagons
 - incomplete propagation, aims at linear cost

- **Based on linear programming:**
 - **Template polyhedra:** $\mathbf{M} \times \mathbf{\vec{V}} \geq \mathbf{\vec{C}}$ for a fixed \mathbf{M}
Integers

Issue:
in relational domains we used implicitly real-valued environments \(\forall \rightarrow \mathbb{R} \)
our concrete semantics is based on integer-valued environments \(\forall \rightarrow \mathbb{Z} \)

In fact, an abstract element \(X^\# \) does not represent \(\gamma(X^\#) \subseteq \mathbb{R}^{\mathbb{V}} \), but:
\[
\gamma_{\mathbb{Z}}(X^\#) \overset{\text{def}}{=} \gamma(X^\#) \cap \mathbb{Z}^{\mathbb{V}}
\]
(keep only integer points)

Soundness and exactness for \(\gamma_{\mathbb{Z}} \)

- \(\subseteq^\# \) and \(=^\# \) are no longer exact
 - e.g., \(\gamma(2X = 1) \neq \gamma(\bot) \), but \(\gamma_{\mathbb{Z}}(2X = 1) = \gamma(\bot) = \emptyset \)
- \(\cap^\# \) and affine tests are still exact
- affine and non-deterministic assignments are no longer exact
 - e.g., \(R^\# = (Y = 2X) \), \(S^\#(X \leftarrow [-\infty, +\infty]) \) \(R^\# = T \),
 but \(S(X \leftarrow [-\infty, +\infty]) (\gamma_{\mathbb{Z}}(R^\#)) = \mathbb{Z} \times (2\mathbb{Z}) \)
- all the operators are still sound
 - \(\mathbb{Z}^{\mathbb{V}} \subseteq \mathbb{R}^{\mathbb{V}} \), so \(\forall X^\#: \gamma_{\mathbb{Z}}(X^\#) \subseteq \gamma(X^\#) \)

(in general, soundness, exactness, optimality depend on the definition of \(\gamma \)
Possible solutions:

- **enrich the domain** (add exact representations for operation results)
 - congruence equalities: \(\land_i \sum_j \alpha_{ij} V_j \equiv \beta_i [\gamma_i] \) (Granger 1991)
 - **Pressburger arithmetic** (first order logic with 0, 1, +)
 decidable, but with very costly algorithms

- **design optimal** (non-exact) operators
 also based on costly algorithms, e.g.:
 - normalization: integer hull
 smallest polyhedra containing \(\gamma_Z(X^\#) \)
 - emptiness testing: integer programming
 NP-hard, while linear programming is P

- **pragmatic solution** (efficient, non-optimal)
 - use regular operators for \(\mathbb{R}^{[\mathbb{V}]} \), then tighten each constraint to remove as many non-integer points as possible
 e.g.: \(2X + 6Y \geq 3 \rightarrow X + 3Y \geq 2 \)

Note: we abstract integers as reals!
Using the Apron Library
Using the Apron Library

Apron library

Underlying libraries & abstract domains
- box
- intervals
- octagons

NewPolka
- convex polyhedra
- linear equalities

PPL + Wrapper
- convex polyhedra
- linear congruences

Abstraction toolbox
- scalar & interval arithmetic
- linearization of expressions
- fall-back implementations

Semantics:
- $A^\gamma \rightarrow \wp(\mathbb{Z}^n \times \mathbb{R}^m)$
- dimensions and space dimensionality
- $A^\gamma \rightarrow \wp(V \rightarrow \mathbb{Z} \cup \mathbb{R})$

Developer interface

User interface
- C API
- OCaml binding
- C++ binding

http://apron.cri.ensmp.fr/library
The \texttt{Apron} module contains sub-modules:

- \texttt{Abstract1}
 - abstract elements

- \texttt{Manager}
 - abstract domains (arguments to all \texttt{Abstract1} operations)

- \texttt{Polka}
 - creates a manager for polyhedra abstract elements

- \texttt{Var}
 - integer or real program variables (denoted as a string)

- \texttt{Environment}
 - sets of integer and real program variables

- \texttt{Texpr1}
 - arithmetic expression trees

- \texttt{Tcons1}
 - arithmetic constraints (based on \texttt{Texpr1})

- \texttt{Coeff}
 - numeric coefficients (appear in \texttt{Texpr1}, \texttt{Tcons1})
Variables and environments

Variables: type `Var.t`

variables are denoted by their name, as a string:

(assumes implicitly that no two program variables have the same name)

- `Var.of_string`: `string -> Var.t`

Environments: type `Environment.t`

an abstract element abstracts a set of mappings in $\mathbb{V} \rightarrow \mathbb{R}$

\mathbb{V} is the environment; it contains integer-valued and real-valued variables

- `Environment.make`: `Var.t array -> Var.t array -> t`
 `make ivars rvars` creates an environment with `ivars` integer variables and `rvars` real variables;
 `make [||] [||]` is the empty environment

- `Environment.add`: `Environment.t -> Var.t array -> Var.t array -> t`
 `add env ivars rvars` adds some integer or real variables to `env`

- `Environment.remove`: `t -> Var.t array -> t`

internally, an abstract element abstracts a set of points in \mathbb{R}^n;
the environment maintains the mapping from variable names to dimensions in $[1, n]$
Expressions

Concrete expression trees: type Texpr1.expr

- type expr = | Cst of Coeff.t (constants)
- | Var of Var.t (variables)
- | Unop of unop * expr * typ * round (unary op.)
- | Binop of binop * expr * expr * typ * round (binary op.)

- unary operators
 - type Texpr1.unop = Neg | ...

- binary operators
 - type Texpr1.binop = Add | Sub | Mul | Div | ...

- numeric type:
 - (we only use integers, but reals and floats are also possible)
 - type Texpr1.typ = Int | ...

- rounding direction:
 - (only useful for the division on integers; we use rounding to zero, i.e., truncation)
 - type Texpr1.round = Zero | ...
Expressions (cont.)

Internal expression form: type `Texpr1.t`

concrete expression trees must be converted to an internal form
to be used in abstract operations

- `Texpr1.of_expr`: `Environment.t -> Texpr1.expr -> Texpr1.t`
 (the environment is used to convert variable names to dimensions in \mathbb{R}^n)

Coefficients: type `Coeff.t`

can be either a **scalar** $\{c\}$ or an **interval** $[a, b]$

we can use the `Mpqf` module to convert from strings to arbitrary precision integers, before converting them into `Coeff.t`:

- **for scalars** $\{c\}$:

  ```
  Coeff.s_of_mpqf (Mpqf.of_string c)
  ```

- **for intervals** $[a, b]$:

  ```
  Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)
  ```
Constraints: type `Tcons1.t`

constructor `expr ⊀ 0:`

- `Tcons1.make`: `Texpr1.t -> TCons1.typ -> Tcons1.t`

where:

- `type Tcons1.typ = SUPEQ | SUP | EQ | DISEQ | ...`
- `≥ > = ≠`

Note: avoid using DISEQ directly, which is not very precise; but use a disjunction of two SUP constraints instead

Constraint arrays: type `Tcons1.earray`

Abstract operators do not use constraints, but constraint arrays instead

Example: constructing an array `ar` containing a single constraint:

```ml
let c = Tcons1.make texpr1 typ in
let ar = Tcons1.array_make env 1 in
Tcons1.array_set ar 0 c
```
Abstract operators

Abstract elements: type `Abstract1.t`

- **Abstract1.top:** `Manager.t -> Environment.t -> t`
 create an abstract element where variables have any value

- **Abstract1.env:** `t -> Environment.t`
 recover the environment on which the abstract element is defined

- **Abstract1.change_environment:** `Manager.t -> t -> Environment.t -> bool -> t`
 set the new environment, adding or removing variables if necessary
 the `bool` argument should be set to `false`: variables are not initialized

- **Abstract1.assign_texpr:** `Manager.t -> t -> Var.t -> Texpr1.t -> t option -> t`
 abstract assignment; the option argument should be set to `None`

- **Abstract1.forget_array:** `Manager.t -> t -> Var.t array -> bool -> t`
 non-deterministic assignment: forget the value of variables (when `bool` is `false`)

- **Abstract1.meet_tcons_array:** `Manager.t -> t -> Tcons1.earray -> t`
 abstract test: add one or several constraint(s)
Abstract operators (cont.)

- **Abstract1.join**: Manager.t -> t -> t -> t
 abstract union \(\cup \)

- **Abstract1.meet**: Manager.t -> t -> t -> t
 abstract intersection \(\cap \)

- **Abstract1.widen**: Manager.t -> t -> t -> t
 widening \(\nabla \)

- **Abstract1.is_leq**: Manager.t -> t -> t -> bool
 \(\subseteq \): return true if the first argument is included in the second

- **Abstract1.is_bottom**: Manager.t -> t -> t bool
 whether the abstract element represents \(\emptyset \)

- **Abstract1.print**: Format.formatter -> t -> unit
 print the abstract element

Contract:
- operators return a new, immutable abstract element (functional style)
- operators return over-approximations
 (not always optimal; e.g.: for non-linear expressions)
- predicates return true (definitely true) or false (don’t know)
Managers: type Manager.t

The manager denotes a choice of abstract domain.
To use the polyhedra domain, construct the manager with:

- let manager = Polka.manager_alloc_loose ()

the same manager variable is passed to all Abstract1 function.

to choose another domain, you only need to change the line defining manager.

Other libraries:

- Polka.manager_alloc_equalities (affine equalities)
- Polka.manager_alloc_strict (≥ and > affine inequalities over ℝ)
- Box.manager_alloc (intervals)
- Oct.manager_alloc (octagons)
- Ppl.manager_alloc_grid (affine congruences)
- PolkaGrid.manager_alloc (affine inequalities and congruences)
Argument compatibility: ensure that:

- the **same manager** is used when creating and using an abstract element
 - the type system checks for the compatibility between 'a Manager.t and 'a Abstract1.t
- expressions and abstract elements have the **same environment**
- assigned **variables exist** in the environment of the abstract element
- both abstract elements of binary operators (∪, ∩, ▽, ⊆) are defined on the **same environment**

Failure to ensure this results in a **Manager.Error** exception
open Apron

module RelationalDomain = (struct
 (* manager *)
 type man = Polka.loose Polka.t
 let manager = Polka.manager_alloc_loose ()

 (* abstract elements *)
 type t = man Abstract1.t

 (* utilities *)
 val expr_to_texpr: expr -> Texpr1.expr

 (* implementation *)
 ...

end: ENVIRONMENT_DOMAIN)

To compile: add to the Makefile:

OCamlInc = ... -I +zarith -I +apron -I +gmp
CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma
let rec expr_to_texpr = function
 | AST_binary (op, e1, e2) ->
 match op with
 | AST_PLUS -> Texpr1.Binop ⋯
 | ⋯
 | _ -> raise Top

let assign env var expr =
 try
 let e = expr_to_texpr expr in
 Abstract1.assign_texpr ⋯
 with Top -> Abstract1.forget_array ⋯

let compare abs e1 e2 =
 try
 ⋯
 Abstract1.meet_tcons_array ⋯
 with Top -> abs

Idea:
raise Top to abort a computation
catch it to fall-back to sound coarse assignments and tests