
Satisfiability Modulo Theories

(SMT)

Sylvain Conchon

Cours 7 / 9 avril 2014

1

Road map

I The SMT problem

I Modern efficient SAT solvers

I CDCL(T)

I Examples of decision procedures: equality (CC) and difference
logic (NCCD)

I (Combining decision procedures)

2

What is the SMT problem ?

3

SMT

Satisfiability Modulo Theories
=

SAT solver + Decision Procedures

Checking satisfiability of formulas in a decidable combination of
first-order theories (e.g. arithmetic, uninterpreted functions, etc.)

4

SMT Solving

Input: a (quantifier-free) first-order formula F

Output: the status of F (sat or unsat), and optionally a model
(when sat) or a proof (when unsat)

5

Basic SMT Solving

Given a quantifier-free formula F

x+ y ≥ 0 ∧ (x = z ⇒ y + z = −1) ∧ z > 3t satisfiable ?

1. Convert F to CNF form

2. Replace every literal by a Boolean variable

3. Ask a SAT solver for a Boolean model M

4. Convert back M and call a decision procedure for the union of
theories

if M is satisfiable modulo theories, then so is F

otherwise, add ¬M to F and go to step 2

6

Basic SMT Solving : Example

x+ y ≥ 0 ∧ (x = z ⇒ y + z = −1) ∧ z > 3t

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

x+ y ≥ 0 ∧ (x = z ⇒ y + z = −1) ∧ z > 3t

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

x+ y ≥ 0 ∧ (x 6= z ∨ y + z = −1) ∧ z > 3t

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

x+ y ≥ 0 ∧ (x 6= z ∨ y + z = −1) ∧ z > 3t

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

p1 ∧ (p2 ∨ p3) ∧ p4

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

p1 ∧ (p2 ∨ p3) ∧ p4

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

M = {p1 = true, p2 = false, p3 = true, p4 = true}

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

M = {p1 = true, p2 = false, p3 = true, p4 = true}

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

M = {x+ y ≥ 0, x = z, y + z = −1, z > 3t}

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

M = {x+ y ≥ 0, x = z, y + z = −1, z > 3t}

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

M is unsatisfiable modulo arithmetic!

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

M is unsatisfiable modulo arithmetic!

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Basic SMT Solving : Example

x+ y ≥ 0 ∧ (x 6= z ∨ y + z = −1) ∧ z > 3t∧
¬(x+ y ≥ 0 ∧ x = z ∧ y + z = −1 ∧ z > 3t)

1. CNF conversion

2. Replace arithmetic constraints by Boolean variables

3. Ask the SAT solver for a model

4. Convert the model back to arithmetic

5. Check its consistency with the appropriate decision procedure
for arithmetic

6. Add ¬M to F and go back to step 2

7

Main Issues

I Size of formulas

I Complex Boolean structure

I Combination of theories

I Efficient decision procedures

I (Quantifiers)

8

SMT-Lib

The Satisfiability Modulo Theory Library

http://www.smtlib.org/

International initiative:

I Rigorous description of background theories

I Common input and output languages for SMT solvers

I Large benchmarks

9

The SMT Revolution

70’s: Stanford Pascal Verifier (Nelson-Oppen combination)
1984: Shostak algorithm
1992: Simplify
1995: SVC
2001: ICS
2002: CVC, haRVey
2004: CVC Lite
2005: Barcelogic, MathSAT
2005: Yices
2006: CVC3, Alt-Ergo
2007: Z3, MathSAT4
2008: Boolector, OpenSMT, Beaver,Yices2
2009: STP, VeriT
2010: MathSAT5, SONOLAR
2011: STP2, SMTInterpol
2012: CVC4

10

SMT : Building Blocks

Three main blocks:

I SAT Solver

I Decision Procedures

I Combining Decision Procedures framework (CDP)

11

Modern SAT solvers

12

SAT Solvers

Is (p ∨ q ∨ ¬r) ∧ (r ∨ ¬p) satisfiable?

I Truth tables

I Resolution-based procedure (DP [1960])

I Backtracking-based procedure (DPLL [1962])

I 80’s - 90’s: focus on variable selection heuristics

I Search-pruning techniques: Non-chronological backtracking,
Learning clauses (Grasp [1996]) CDCL

I Indexing: two-watched literals (Zchaff, 2001)

I Scoring: deletion of bad learning clauses (Glucose, 2009)

13

Propositional Logic : Notations

p, q, r, s are propositional variables or atoms

l is a literal (p or ¬p)

¬l =

{
¬p if l is p
p if l is ¬p

A disjunction of literals l1 ∨ . . . ∨ ln is a clause

The empty clause is written ⊥

A conjunction of clauses is a CNF

To improve readability, we sometime

I denote atoms by natural numbers and negation by overlining
I write CNF as sets of clauses

e.g. (¬l1 ∨L2 ∨¬l3)∧ (l4 ∨¬2) is simply written {1̄∨ 2∨ 3̄, 4∨ 2̄}
14

Propositional Logic : Assignments

An assignment M is a set of literals such that if l ∈M then
¬l 6∈M

A literal l is true in M if l ∈M , and false if ¬l ∈M

A literal l is defined in M if it is either true or false in M

A clause is true in M if at least one of its literal is true in M , it is
false if all its literals are false in M , it is undefined otherwise

The empty clause ⊥ is not satisfiable

A clause C ∨ l is a unit clause in M if C is false in M and l is
undefined in M

15

Propositional Logic : Satisfiability

A CNF F is satisfied by M (or M is a model of F), written
M |= F , if all clauses of F are true in M

If F has no model then it is unsatisfiable

F ′ is entailed by F , written F |= F ′, if F ′ is true in all models of F

F and F ′ are equivalent when F |= F ′ and F ′ |= F

F and F ′ are equisatisfiable when
F is satisfiable if and only if F ′ is satisfiable

F is valid if and only if ¬F is unsatisfiable

16

Resolution

I Proof-finder procedure

I Works by saturation until the empty clause is derived

Exhaustive resolution is not practical:

exponential amount of memory

17

Resolution : State of the Procedure

The state of the procedure is represented by a variable (imperative
style) F containing a set of clauses (CNF)

18

Resolution : Algorithm

Resolve
C ∨ l ∈ F D ∨ ¬l ∈ F C ∨D 6∈ F

F := F ∪ {C ∨D}

Empty
l ∈ F ¬l ∈ F
F := F ∪ ⊥

Tauto
F = F ′] {C ∨ l ∨ ¬l}

F := F ′

Subsume
F = F ′] {C ∨D} C ∈ F ′

F := F ′

Fail
⊥ ∈ F

returnUnsat

19

Resolution : Example

F = {1̄ ∨ 2̄ ∨ 3, 1̄ ∨ 2, 1 ∨ 3, 3̄}

20

Resolution : Example

Resolve
1̄ ∨ 2̄ ∨ 3 ∈ F 1 ∨ 3 ∈ F

F := F ∪ {2̄ ∨ 3}

F = {1̄ ∨ 2̄ ∨ 3, 1̄ ∨ 2, 1 ∨ 3, 3̄}

20

Resolution : Example

Resolve
1̄ ∨ 2̄ ∨ 3 ∈ F 1 ∨ 3 ∈ F

F := F ∪ {2̄ ∨ 3}

F = {1̄ ∨ 2̄ ∨ 3, 1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3}

20

Resolution : Example

Subsume
F = F ′] {1̄ ∨ 2̄ ∨ 3} 2̄ ∨ 3 ∈ F ′

F := F ′

F = {1̄ ∨ 2̄ ∨ 3, 1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3}

20

Resolution : Example

Subsume
F = F ′] {1̄ ∨ 2̄ ∨ 3} 2̄ ∨ 3 ∈ F ′

F := F ′

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3}

20

Resolution : Example

Resolve
1̄ ∨ 2 ∈ F 1 ∨ 3 ∈ F

F := F ∪ {2 ∨ 3}

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3}

20

Resolution : Example

Resolve
1̄ ∨ 2 ∈ F 1 ∨ 3 ∈ F

F := F ∪ {2 ∨ 3}

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3, 2 ∨ 3}

20

Resolution : Example

Resolve
2̄ ∨ 3 ∈ F 2 ∨ 3 ∈ F

F := F ∪ {3}

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3, 2 ∨ 3}

20

Resolution : Example

Resolve
2̄ ∨ 3 ∈ F 2 ∨ 3 ∈ F

F := F ∪ {3}

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3, 2 ∨ 3, 3}

20

Resolution : Example

Empty
3 ∈ F 3̄ ∈ F
F := F ∪ {⊥}

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3, 2 ∨ 3, 3}

20

Resolution : Example

Empty
3 ∈ F 3̄ ∈ F
F := F ∪ {⊥}

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3, 2 ∨ 3, 3,⊥}

20

Resolution : Example

Fail
⊥ ∈ F

return Unsat

F = {1̄ ∨ 2, 1 ∨ 3, 3̄, 2̄ ∨ 3, 2 ∨ 3, 3,⊥}

20

DPLL

DPLL is a model-finder procedure that builds incrementally a
model M for a CNF formula F by

I deducing the truth value of a literal l from M and F by
Boolean Constraint Propagations (BCP)

If C ∨ l ∈ F and M |= ¬C then l must be true

I guessing the truth value of an unassigned literal

If M ∪ {l} leads to a model for which F is unsatisfiable
then backtrack and try M ∪ {¬l}

21

DPLL : State of the Procedure

The state of the procedure is represented by

I a variable F containing a set of clauses (CNF)

I a variable M containing a list of literals

22

DPLL : Algorithm

Success
M |= F

return Sat

Unit
C ∨ l ∈ F M |= ¬C l is undefined in M

M := l :: M

Decide
l is undefined in M l (or ¬l) ∈ F

M := l@ :: M

Backtrack

C ∈ F M |= ¬C M = M1 :: l@ :: M2

M1 contains no decision literals

M := ¬l :: M2

Fail
C ∈ F M |= ¬C M contains no decision literals

return Unsat
23

DPLL : Example

M = []

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
1 is undefined in M 1̄ ∈ F

M := 1@ :: M

M = []

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
1 is undefined in M 1̄ ∈ F

M := 1@ :: M

M = [1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
1̄ ∨ 2 ∈ F M |= 1 2 is undefined in M

M := 2 :: M

M = [1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
1̄ ∨ 2 ∈ F M |= 1 2 is undefined in M

M := 2 :: M

M = [2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
3 is undefined in M 3̄ ∈ F

M := 3@ :: M

M = [2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
3 is undefined in M 3̄ ∈ F

M := 3@ :: M

M = [3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
3̄ ∨ 4 ∈ F M |= 3 4 is undefined in M

M := 4 :: M

M = [3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
3̄ ∨ 4 ∈ F M |= 3 4 is undefined in M

M := 4 :: M

M = [4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5@ :: M

M = [4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5@ :: M

M = [5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄ :: M

M = [5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄ :: M

M = [6̄; 5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

6 ∨ 5̄ ∨ 2̄ ∈ F
M |= 6̄ ∧ 5 ∧ 2 M = [6] :: 5@ :: [4; 3@; 2; 1@]

M := 5̄ :: [4; 3@; 2; 1@]

M = [6̄; 5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

6 ∨ 5̄ ∨ 2̄ ∈ F
M |= 6̄ ∧ 5 ∧ 2 M = [6] :: 5@ :: [4; 3@; 2; 1@]

M := 5̄ :: [4; 3@; 2; 1@]

M = [5̄; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [5̄; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [7; 5̄; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

5 ∨ 7̄ ∨ 2̄ ∈ F
M |= 5̄ ∧ 7 ∧ 2 M = [7; 5̄; 4] :: 3@ :: [2; 1@]

M := 3̄ :: [2; 1@]

M = [7; 5̄; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

5 ∨ 7̄ ∨ 2̄ ∈ F
M |= 5̄ ∧ 7 ∧ 2 M = [7; 5̄; 4] :: 3@ :: [2; 1@]

M := 3̄ :: [2; 1@]

M = [3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5@ :: M

M = [3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5@ :: M

M = [5@; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄ :: M

M = [5@; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄ :: M

M = [6̄; 5@; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

6 ∨ 5̄ ∨ 2̄ ∈ F
M |= 6̄ ∧ 5 ∧ 2 M = [6̄] :: 5@ :: [3̄; 2; 1@]

M := 5̄ :: [3̄; 2; 1@]

M = [6̄; 5@; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

6 ∨ 5̄ ∨ 2̄ ∈ F
M |= 6̄ ∧ 5 ∧ 2 M = [6̄] :: 5@ :: [3̄; 2; 1@]

M := 5̄ :: [3̄; 2; 1@]

M = [5̄; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [5̄; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [7; 5̄; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

5 ∨ 7̄ ∨ 2̄ ∈ F
M |= 5̄ ∧ 7 ∧ 2 M = [7; 5; 3̄; 2] :: 1@ :: []

M := 1̄ :: []

M = [7; 5̄; 3̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Backtrack

5 ∨ 7̄ ∨ 2̄ ∈ F
M |= 5̄ ∧ 7 ∧ 2 M = [7; 5; 3̄; 2] :: 1@ :: []

M := 1̄ :: []

M = [1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
3̄ is undefined in M 3̄ ∈ F

M := 3̄@ :: M

M = [1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
3̄ is undefined in M 3̄ ∈ F

M := 3̄@ :: M

M = [3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
5̄ is undefined in M 5̄ ∈ F

M := 5̄@ :: M

M = [3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Decide
5̄ is undefined in M 5̄ ∈ F

M := 5̄@ :: M

M = [5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7̄ ∨ 2̄ ∈ F M |= 5̄ ∧ 7 2̄ is undefined in M

M := 2̄ :: M

M = [7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Unit
5 ∨ 7̄ ∨ 2̄ ∈ F M |= 5̄ ∧ 7 2̄ is undefined in M

M := 2̄ :: M

M = [2̄; 7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

DPLL : Example

Success
M |= F

return Sat

M = [2̄; 7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

24

Backjumping

I The clause 6 ∨ 5̄ ∨ 2̄ is false in [6̄; 5@; 4; 3@; 2; 1@]

I It is also false in [6̄; 5@; ; 2; 1@]

I Instead of backtracking to M = [5̄; 4; 3@; 2; 1@], we would
prefer to backjump directly to M = [5̄; 2; 1@]

25

Backjump Clauses

Conflict are reflected by backjump clauses

For instance, we have the following backjump clauses in the
previous example:

F |= 1̄ ∨ 5̄
F |= 2̄ ∨ 5̄

Given a backjump clause C ∨ l, backjumping can undo several
decisions at once: it goes back to the assignment M where
M |= ¬C and add l to M

26

DPLL + Backjumping

We just replace Backtrack by

Backjump

C ∈ F M |= ¬C M = M1 :: l@ :: M2

F |= C ′ ∨ l′ M2 |= ¬C ′
l′ is undefined in M2 l′ (or ¬l′) ∈ F

M := l′ :: M2

where C ′ ∨ l′ is a backjump clause

27

Backjumping : Example

M = []

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
1 is undefined in M 1̄ ∈ F

M := 1@ :: M

M = []

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
1 is undefined in M 1̄ ∈ F

M := 1@ :: M

M = [1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
1̄ ∨ 2 ∈ F M |= 1 2 is undefined in M

M := 2 :: M

M = [1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
1̄ ∨ 2 ∈ F M |= 1 2 is undefined in M

M := 2 :: M

M = [2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
3 is undefined in M 3̄ ∈ F

M := 3@ :: M

M = [2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
3 is undefined in M 3̄ ∈ F

M := 3@ :: M

M = [3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
3̄ ∨ 4 ∈ F M |= 3 4 is undefined in M

M := 4 :: M

M = [3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
3̄ ∨ 4 ∈ F M |= 3 4 is undefined in M

M := 4 :: M

M = [4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5@ :: M

M = [4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5@ :: M

M = [5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄ :: M

M = [5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄ :: M

M = [6̄; 5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Backjump

6 ∨ 5̄ ∨ 2̄ ∈ F M |= 6̄ ∧ 5 ∧ 2

M = [6; 5@; 4] :: 3@ :: [2; 1@] F |= 2̄ ∨ 5̄

[2; 1@] |= 2 5̄ is undefined in [2; 1@]

M := 5̄ :: [2; 1@]

M = [6̄; 5@; 4; 3@; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Backjump

6 ∨ 5̄ ∨ 2̄ ∈ F M |= 6̄ ∧ 5 ∧ 2

M = [6; 5@; 4] :: 3@ :: [2; 1@] F |= 2̄ ∨ 5̄

[2; 1@] |= 2 5̄ is undefined in [2; 1@]

M := 5̄ :: [2; 1@]

M = [5̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [5̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [7; 5̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Backjump

5 ∨ 7̄ ∨ 2̄ ∈ F
M |= 5̄ ∧ 7 ∧ 2 M = [7; 5̄; 2] :: 1@ :: []
F |= 1̄ [] |= true 1̄ is undefined in []

M := 1̄ :: []

M = [7; 5̄; 2; 1@]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Backjump

5 ∨ 7̄ ∨ 2̄ ∈ F
M |= 5̄ ∧ 7 ∧ 2 M = [7; 5̄; 2] :: 1@ :: []
F |= 1̄ [] |= true 1̄ is undefined in []

M := 1̄ :: []

M = [1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
3̄ is undefined in M 3̄ ∈ F

M := 3̄@ :: M

M = [1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
3̄ is undefined in M 3̄ ∈ F

M := 3̄@ :: M

M = [3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
5̄ is undefined in M 5̄ ∈ F

M := 5̄@ :: M

M = [3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Decide
5̄ is undefined in M 5̄ ∈ F

M := 5̄@ :: M

M = [5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5 ∨ 7 ∈ F M |= 5̄ 7 is undefined in M

M := 7 :: M

M = [7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5 ∨ 7̄ ∨ 2̄ ∈ F M |= 5̄ ∧ 7 2̄ is undefined in M

M := 2̄ :: M

M = [7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Unit
5 ∨ 7̄ ∨ 2̄ ∈ F M |= 5̄ ∧ 7 2̄ is undefined in M

M := 2̄ :: M

M = [2̄; 7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

Backjumping : Example

Success
M |= F

return Sat

M = [2̄; 7; 5̄@; 3̄@; 1̄]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

28

CDCL

Conflict-Driven Clause Learning SAT solvers (CDCL) add
backjump clauses to M as learned clauses (or lemmas) to prevent
future similar conflicts.

Learn
F |= C each atom of C occurs in F or M

F := F ∪ {C}

Lemmas can also be removed from M

Forget
F = F ′] C F ′ |= C

F := F ′

29

How to Find Backjump Clauses?

1. Build an implication graph that captures the way propagation
literals have been derived from decision literals

2. Use the implication graph to explain a conflict (by a specific
cutting technique) and extract backjump clauses

30

Implication Graph

An implication graph G is a DAG that can be built during the run
of DPLL as follows:

1. Create a node for each decision literal

2. For each clause l1 ∨ . . . ∨ ln ∨ l such that ¬l1, . . . ,¬ln are
nodes in G, add a node for l (if not already present in the
graph), and add edges ¬li → l, for 1 ≤ i ≤ n (if not already
present)

31

Implication Graph : Example

(Partial) implication graph for the following state of DPLL

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

6

9

¬7

¬8

4

¬5

¬1

2

¬3

32

Cutting the Implication Graph

To extract backjump clauses, we first cut the implication graph in
two parts:

I the first part must contains (at least) all the nodes with no
incoming arrows

I the second part must contains (at least) all the nodes with no
outgoing arrows

The literals whose outgoing edges are cut form a backjump clause
provided that exactly one of these literals belongs to the current
decision level.

33

Cutting the Implication Graph: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

6

9

¬7

¬8

4

¬5

¬1

2

¬3

34

Cutting the Implication Graph: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

6

9

¬7

¬8

4

¬5

¬1

2

¬3

34

Cutting the Implication Graph: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

6

9

¬7

¬8

4

¬5

¬1

2

¬3

34

Cutting the Implication Graph: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

6

9

¬7

¬8

4

¬5

¬1

2

¬3

¬6 v 8 v 7

34

Cutting the Implication Graph : Other Example

In the first example, Backjump is applied for the first time when

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

M = [6̄; 5@; 4; 3@; 2; 1@]

1

2
¬6

5

35

Cutting the Implication Graph : Other Example

In the first example, Backjump is applied for the first time when

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

M = [6̄; 5@; 4; 3@; 2; 1@]

1

2
¬6

5 ¬2 v ¬5

35

Cutting the Implication Graph : Other Example

In the first example, Backjump is applied for the first time when

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

M = [6̄; 5@; 4; 3@; 2; 1@]

1

2
¬6

5 ¬2 v ¬5 ¬1 v ¬5

35

Cutting the Implication Graph : Other Example

When Backjump is applied for the second time, we have

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

M = [7; 5̄; 2; 1@]

1 2 ¬7¬5

¬2

36

Cutting the Implication Graph : Other Example

When Backjump is applied for the second time, we have

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

M = [7; 5̄; 2; 1@]

1 2 ¬7¬5

¬2

36

Cutting the Implication Graph : Other Example

When Backjump is applied for the second time, we have

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

M = [7; 5̄; 2; 1@]

1 2 ¬7¬5

¬2¬1

36

Backward Conflict Resolution

Backjump clauses can also be obtained by successive application of
resolution steps

Starting from the conflict clause, the (negation of) propagation
literals are resolved away in the reverse order with the respective
clauses that caused their propagations

We stop when the resolvent contains only one literal in the current
decision level

37

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

R = 1 ∨ 2̄ ∨ 3

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 1 ∨ 2̄ ∨ 3 5 ∨ 7 ∨ 3̄ ∈ F

R := 5 ∨ 7 ∨ 1 ∨ 2̄

R = 1 ∨ 2̄ ∨ 3

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 1 ∨ 2̄ ∨ 3 5 ∨ 7 ∨ 3̄ ∈ F

R := 5 ∨ 7 ∨ 1 ∨ 2̄

R = 5 ∨ 7 ∨ 1 ∨ 2̄

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 5 ∨ 7 ∨ 1 ∨ 2̄ 4̄ ∨ 5 ∨ 2 ∈ F

R := 4̄ ∨ 5 ∨ 7 ∨ 1

R = 5 ∨ 7 ∨ 1 ∨ 2̄

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 5 ∨ 7 ∨ 1 ∨ 2̄ 4̄ ∨ 5 ∨ 2 ∈ F

R := 4̄ ∨ 5 ∨ 7 ∨ 1

R = 4̄ ∨ 5 ∨ 7 ∨ 1

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 4̄ ∨ 5 ∨ 7 ∨ 1 4̄ ∨ 1̄ ∈ F

R := 5 ∨ 7 ∨ 4̄

R = 4̄ ∨ 5 ∨ 7 ∨ 1

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 4̄ ∨ 5 ∨ 7 ∨ 1 4̄ ∨ 1̄ ∈ F

R := 5 ∨ 7 ∨ 4̄

R = 5 ∨ 7 ∨ 4̄

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 5 ∨ 7 ∨ 4̄ 6̄ ∨ 8 ∨ 4 ∈ F

R := 6̄ ∨ 8 ∨ 7 ∨ 5

R = 5 ∨ 7 ∨ 4̄

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 5 ∨ 7 ∨ 4̄ 6̄ ∨ 8 ∨ 4 ∈ F

R := 6̄ ∨ 8 ∨ 7 ∨ 5

R = 6̄ ∨ 8 ∨ 7 ∨ 5

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 6̄ ∨ 8 ∨ 7 ∨ 5 8 ∨ 7 ∨ 5̄ ∈ F

R := 8 ∨ 7 ∨ 6̄

R = 6̄ ∨ 8 ∨ 7 ∨ 5

38

Backward Conflict Resolution: Example

F = {9̄∨ 6̄∨ 7∨ 8̄, 8∨ 7∨ 5̄, 6̄∨ 8∨ 4, 4̄∨ 1̄, 4̄∨ 5∨ 2, 5∨ 7∨ 3̄, 1∨ 2̄∨ 3}

M = [3̄; 2; 1̄; 4; 5̄; 8̄; 9@; . . . ; 7̄; . . . ; 6; . . .]

Resolve
R = 6̄ ∨ 8 ∨ 7 ∨ 5 8 ∨ 7 ∨ 5̄ ∈ F

R := 8 ∨ 7 ∨ 6̄

R = 8 ∨ 7 ∨ 6̄

38

CDCL + Resolution + Learning + Restart

When Mode = search

Success
M |= F

return Sat

Unit
C ∨ l ∈ F M |= ¬C l is undefined in M

M := lC∨l :: M

Decide
l is undefined in M l (or ¬l) ∈ F

M := l :: M

Conflict
C ∈ F M |= ¬C

R := C; Mode := resolution

39

CDCL + Resolution + Learning + Restart

When Mode = resolution

Fail
R = ⊥

return Unsat

Resolve
R = C ∨ ¬l lD∨l ∈M

R := C ∨D

Backjump

R = C ∨ l M = M1 :: l′ :: M2

M2 |= ¬C l is undefined in M2

M := lC∨l :: M2; Mode := search

40

CDCL + Resolution + Learning + Restart

When Mode = resolution

Learn
R 6∈ F

F := F ∪ {R}

When Mode = search

Forget
C is a learned clause

F := F \ {C}

Restart
M := ∅

41

CDCL + Resolution : Example

Mode = search

M = []

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Decide
1 is undefined in M 1̄ ∈ F

M := 1 :: M

Mode = search

M = []

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Decide
1 is undefined in M 1̄ ∈ F

M := 1 :: M

Mode = search

M = [1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Unit
1̄ ∨ 2 ∈ F M |= 1 2 is undefined in M

M := 21̄∨2 :: M

Mode = search

M = [1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Unit
1̄ ∨ 2 ∈ F M |= 1 2 is undefined in M

M := 21̄∨2 :: M

Mode = search

M = [21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Decide
3 is undefined in M 3̄ ∈ F

M := 3 :: M

Mode = search

M = [21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Decide
3 is undefined in M 3̄ ∈ F

M := 3 :: M

Mode = search

M = [3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Unit
3̄ ∨ 4 ∈ F M |= 3 4 is undefined in M

M := 43̄∨4 :: M

Mode = search

M = [3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Unit
3̄ ∨ 4 ∈ F M |= 3 4 is undefined in M

M := 43̄∨4 :: M

Mode = search

M = [43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5 :: M

Mode = search

M = [43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Decide
5 is undefined in M 5̄ ∈ F

M := 5 :: M

Mode = search

M = [5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄5̄∨6̄ :: M

Mode = search

M = [5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

Unit
5̄ ∨ 6̄ ∈ F M |= 5 6̄ is undefined in M

M := 6̄5̄∨6̄ :: M

Mode = search

M = [65̄∨6̄; 5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}
R =

42

CDCL + Resolution : Example

Conflict
6 ∨ 5̄ ∨ 2̄ ∈ F M |= 6̄ ∧ 5 ∧ 2

R := 6 ∨ 5̄ ∨ 2̄;Mode := resolution

Mode = search

M = [65̄∨6̄; 5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}
R =

42

CDCL + Resolution : Example

Conflict
6 ∨ 5̄ ∨ 2̄ ∈ F M |= 6̄ ∧ 5 ∧ 2

R := 6 ∨ 5̄ ∨ 2̄;Mode := resolution

Mode = resolution

M = [65̄∨6̄; 5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R = 6 ∨ 5̄ ∨ 2̄

42

CDCL + Resolution : Example

Resolve
R = 6 ∨ 5̄ ∨ 2̄ 65̄∨6̄ ∈M

R := 2̄ ∨ 5̄

Mode = resolution

M = [65̄∨6̄; 5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R = 6 ∨ 5̄ ∨ 2̄

42

CDCL + Resolution : Example

Resolve
R = 6 ∨ 5̄ ∨ 2̄ 65̄∨6̄ ∈M

R := 2̄ ∨ 5̄

Mode = resolution

M = [65̄∨6̄; 5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R = 2̄ ∨ 5̄

42

CDCL + Resolution : Example

Backjump

R = 2̄ ∨ 5̄
M = [65̄∨6̄; 5; 43̄∨4] :: 3 :: [21̄∨2; 1]

[21̄∨2; 1] |= 2
5̄ undefined in [21̄∨2; 1]

M := 5̄2̄∨5̄ :: [21̄∨2; 1];Mode := search

Mode = resolution

M = [65̄∨6̄; 5; 43̄∨4; 3; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R = 2̄ ∨ 5̄

42

CDCL + Resolution : Example

Backjump

R = 2̄ ∨ 5̄
M = [65̄∨6̄; 5; 43̄∨4] :: 3 :: [21̄∨2; 1]

[21̄∨2; 1] |= 2
5̄ undefined in [21̄∨2; 1]

M := 5̄2̄∨5̄ :: [21̄∨2; 1];Mode := search

Mode = search

M = [5̄2̄∨5̄; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

CDCL + Resolution : Example

etc.

Mode = search

M = [5̄2̄∨5̄; 21̄∨2; 1]

F = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6̄, 6 ∨ 5̄ ∨ 2̄, 5 ∨ 7, 5 ∨ 7̄ ∨ 2̄}

R =

42

Strategies

The inference rules given for DPLL and CDCL are flexible

Basic strategy :

I apply Decide only if Unit or Fail cannot be applied

Conflict resolution :

I Learn only one clause per conflict (the clause used in
Backjump)

I Use Backjump as soon as possible (FUIP)

I When applying Resolve, use the literals in M in the reverse
order they have been added

43

Decision heuristic : VSIDS

The Variable State Independent Decaying Sum (VSIDS) heuristic
associates a score to each literal in order to select the literal with
the highest score when Decide is used

I Each literal has a counter, initialized to 0
I Increase the counters of

I the literal l when Resolve is used
I the literals of the clause in R when Backjump is used

I Counters are divided by a constant, periodically

44

Scoring Learned Clauses

CDCL performances are tightly related to their learning clause
management

I Keeping too many clauses decrease the BCP efficiency

I Cleaning out too many clauses break the overall learning
benefit

Quality measures for learning clauses are based on scores
associated with learned clauses

I VSIDS (dynamic): increase the score of clauses involved in
Resolve

I LBD (static): number of different decision levels in a learned
clause

45

Indexing

BCP = 80% of SAT-solver runtime

How to implement efficiently M |= C (in Unit and Conflict) ?

Two watched literals technique:

I assign two non-false watched literals per clause
I only if one of the two watched literal becomes false, the

clause is inspected :
I if the other watched literal is assigned to true, then do nothing
I otherwise, try to find another watched literal
I if no such literal exists, then apply Backjump
I if the only possible literal is the other watched literal of the

clause, then apply Unit

Main advantages :

I clauses are inspected only when watched literal are assigned
I no updating when backjumping

46

CDCL(T)

47

First-Order Logic : Signature and Terms

I A signature Σ is a finite set of function and predicate symbols
with an arity

I Constants are just function symbols of arity 0

I We assume that Σ contains the binary predicate =

I We assume a set V of variables, distinct from Σ

I T (Σ,V) is the set of terms, i.e. the smallest set which
contains V and such that f(t1, . . . , tn) ∈ T (Σ,V) whenever
t1, . . . , tn ∈ T (Σ,V) and f ∈ Σ

I T (Σ, ∅) is the set of ground terms

I Terms are just trees. Given a term t and a position π in a
tree, we write tπ for the sub-term of t at position π. We also
write t[π 7→ t′] for the replacement of the sub-term of t at
position π by the term t′

48

First-Order Logic : Formulas

I An atomic formula is P (t1, . . . , tn), where t1, . . . , tn are terms
in T (Σ,V) and P is a predicate symbol of Σ

I Literals are atomic formulas or their negation

I Formulas are inductively constructed from atomic formulas
with the help of Boolean connectives and quantifiers ∀ and ∃

I Ground formulas contain only ground terms

I A variable is free if it is not bound by a quantifier

I A sentence is a formula with no free variables

49

First-Order Logic : Models

A model M for a signature Σ is defined by

I a domain DM

I an interpretation fM for each function symbol f ∈ Σ

I a subset PM of DnM for each predicate P ∈ Σ of arity n

I an assignment M(x) for each variable x ∈ V

The cardinality of model M is the the cardinality of DM

50

First-Order Logic : Semantics

Interpretation of terms:

M[x] = M(x)
M[f(t1, . . . , tn)] = fM(M[t1], . . . ,M[tn])

Interpretation of formulas:

M |= t1 = t2 = M[t1] =M[t2]
M |= P (t1, . . . , tn) = (M[t1], . . . ,M[tn]) ∈ PM
M |= ¬F = M 6|= F
M |= F1 ∧ F2 = M |= F1 and M |= F2

M |= F1 ∨ F2 = M |= F1 or M |= F2

M |= ∀x.F = M{x 7→ v} |= F for all v ∈ DM
M |= ∃x.F = M{x 7→ v} |= F for some v ∈ DM

51

First-Order Logic : Validity

I A formula F is satisfiable if there a model M such that
M |= F , otherwise F is unsatisfiable

I A formula F is valid if ¬F is unsatisfiable

52

First-Order Logic : Theories

A first-order theory T over a signature Σ is a set of sentences

A theory is consistent if it has (at least) a model

A formula F is satisfiable in T (or T -satisfiable) if there exists a
model M for T ∧ F , written M |=T F

A formula F is T -validity, denoted |=T F , if ¬F is T-unsatisfiable

53

Decision Procedures

A decision procedure is an algorithm used to determine whether a
formula F in a theory T is satisfiable

Many decision procedures work on conjunctions of (ground) literals

54

CDCL(T)

We assume a fix theory T

The state of the procedure is similar to CDCL

I F contains quantifier-free clauses in T

I M is a list of literals in T

55

CDCL(T) : Rules

CDCL(T) has the same rules than CDCL, augmented with

T-conflict

Mode = search
l1, . . . , ln ∈M l1, . . . , ln |=T ⊥

R := ¬l1 ∨ . . . ∨ ¬ln;Mode = resolution

T-propagate

Mode = search
l(or¬l) ∈ F l is undefined in M
l1, . . . , ln ∈M l1, . . . , ln |=T l

M := l¬l1∨...∨¬ln∨l :: M

56

CDCL(T) : Example

Mode = search

M = []

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

Unit
3 < x ∈ F 3 < x is undefined in M

M := 3 < x3<x :: M

Mode = search

M = []

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

Unit
3 < x ∈ F 3 < x is undefined in M

M := 3 < x3<x :: M

Mode = search

M = [3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

T-Propagate

x < 0 ∈ F is undefined in M
3 < x ∈M 3 < x |=T x ≥ 0

M := x ≥ 0(3≥x∨x≥0) :: M

Mode = search

M = [3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

T-Propagate

x < 0 ∈ F is undefined in M
3 < x ∈M 3 < x |=T x ≥ 0

M := x ≥ 0(3≥x∨x≥0) :: M

Mode = search

M = [x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

Unit

x < 0 ∨ x < y ∈ F
M |=T x ≥ 0 x < y is undefined in M

M := x < y(x<0∨x<y) :: M

Mode = search

M = [x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

Unit

x < 0 ∨ x < y ∈ F
M |=T x ≥ 0 x < y is undefined in M

M := x < y(x<0∨x<y) :: M

Mode = search

M = [x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

Unit

y < 0 ∨ x ≥ y ∈ F
M |=T x < y y < 0 is undefined in M

M := y < 0(y<0∨x≥y) :: M

Mode = search

M = [x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

Unit

y < 0 ∨ x ≥ y ∈ F
M |=T x < y y < 0 is undefined in M

M := y < 0(y<0∨x≥y) :: M

Mode = search

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

T-Conflict

3 < x, x < y, y < 0 ∈M
3 < x, x < y, y < 0 |=T ⊥

R := 3 ≥ x ∨ x ≥ y ∨ y ≥ 0; Mode := resolution

Mode = search

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R =

57

CDCL(T) : Example

T-Conflict

3 < x, x < y, y < 0 ∈M
3 < x, x < y, y < 0 |=T ⊥

R := 3 ≥ x ∨ x ≥ y ∨ y ≥ 0; Mode := resolution

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = 3 ≥ x ∨ x ≥ y ∨ y ≥ 0

57

CDCL(T) : Example

Resolve
R = 3 ≥ x ∨ x ≥ y ∨ y ≥ 0 y < 0(y<0∨x≥y) ∈M

R := 3 ≥ x ∨ x ≥ y

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = 3 ≥ x ∨ x ≥ y ∨ y ≥ 0

57

CDCL(T) : Example

Resolve
R = 3 ≥ x ∨ x ≥ y ∨ y ≥ 0 y < 0(y<0∨x≥y) ∈M

R := 3 ≥ x ∨ x ≥ y

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = 3 ≥ x ∨ x ≥ y

57

CDCL(T) : Example

Resolve
R = 3 ≥ x ∨ x ≥ y x < y(x<0∨x<y) ∈M

R := 3 ≥ x

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = 3 ≥ x ∨ x ≥ y

57

CDCL(T) : Example

Resolve
R = 3 ≥ x ∨ x ≥ y x < y(x<0∨x<y) ∈M

R := 3 ≥ x

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = 3 ≥ x

57

CDCL(T) : Example

Resolve
R = 3 ≥ x 3 < x3<x ∈M

R := ⊥

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = 3 ≥ x

57

CDCL(T) : Example

Resolve
R = 3 ≥ x 3 < x3<x ∈M

R := ⊥

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = ⊥

57

CDCL(T) : Example

Resolve
R = ⊥

return Unsat

Mode = resolution

M = [y < 0(y<0∨x≥y); x < y(x<0∨x<y); x ≥ 0(3≥x∨x≥0); 3 < x3<x]

F = {3 < x, x < 0 ∨ x < y, y < 0 ∨ x ≥ y)}

R = ⊥

57

Explanations

How to find efficiently l1, . . . , ln ∈M such that l1, . . . , ln |= ⊥ ?

I In practice, we check for M |= ⊥ and, if that’s true, then we
ask the theory solver to produce an explanation, that is, a set
of literals {l1, . . . , ln} ⊆M such that {l1, . . . , ln} |= ⊥

I There may be several explanations and some of them may
contain irrelevant literals

I Decision procedures try to produce minimal explanations

58

Theory Propagation

I Similarly to rule Unit, rule T-propagate is optional

I Contrary to rule Unit, the implementation of rule
T-propagate can be very costly

How to find efficiently l and l1, . . . , ln ∈M s.t l1, . . . , ln |= l ?

I Theory solver are instrumented to find a literal l implied by M
and to return an explanation of the unsatisfiability of M ∧ ¬l

I The explanation is also expected to be minimal

I In practice, decision procedures find some implied literals, not
all as this can be very costly

59

Decision Procedures for SMT

Decision procedures found in articles or textbooks need usually to
be adapted for being used in SMT solvers

I Incrementally : decision procedures are called successively on
set of literals M0 ⊂M1 ⊂ . . . ⊂Mk

To gain for efficiency, we don’t want to restart from scractch
for each Mi but try to reuse work done for Mi when
processing Mi+1

I Backtracking : operations for going back to a previous state
of the decision procedure should be very efficient

I Propagation : find the good tradeoff between precision and
performance

I Explanations : find an efficient generation mechanism that
removes irrelevant literals (decidability issues)

60

Examples of decision procedures

61

The Free Theory of Equality with Uninterpreted Symbols

Axioms:

I Reflexivity ∀x.x = x

I Symmetry ∀x, y.x = y ⇒ y = x

I Transitivity ∀x, y, z.x = y ∧ y = z ⇒ x = z

I Congruence

∀x1, . . . , xn, y1, . . . , yn.
x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Examples:

g(y, x) = y ∧ g(g(y, x), x) 6= y

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) 6= a

62

Congruence Closure

Let R an equivalence relation on terms. The domain of R,
denoted by dom(R), is the set of all terms and subterms of R

I Congruence
Two terms t and u are congruent by R if they are respectively
of the form f(t1, . . . , tn) and f(u1, . . . , un) and (ti, ui) ∈ R
for all i

R is closed by congruence if for all terms t, u ∈ dom(R)
congruent par R we have (t, u) ∈ R

I Congruence Closure
The congruence closure of R is the smallest relation
containing R and which is closed by congruence

63

Representation of Terms and Equality Relation

1. Terms are represented by DAG (directed acyclic graphs)

For instance, f(f(a, b), b) is represented by the following
graph

f

a b

f

2. R is represented by dotted lines

For instance, f(f(a, b), b) = a is represented by a dotted line
between f and a

3. DAG associated with an equivalence relation are called E-DAG
(equality DAG)

64

Representation of Terms and Equality Relation

1. Terms are represented by DAG (directed acyclic graphs)

For instance, f(f(a, b), b) is represented by the following
graph

f

a b

f

2. R is represented by dotted lines

For instance, f(f(a, b), b) = a is represented by a dotted line
between f and a

3. DAG associated with an equivalence relation are called E-DAG
(equality DAG)

64

Representation of Terms and Equality Relation

1. Terms are represented by DAG (directed acyclic graphs)

For instance, f(f(a, b), b) is represented by the following
graph

f

a b

f

2. R is represented by dotted lines

For instance, f(f(a, b), b) = a is represented by a dotted line
between f and a

3. DAG associated with an equivalence relation are called E-DAG
(equality DAG)

64

Naive Congruence Closure

The equivalent relation R (the dotted lines) is implemented as a
union-find data structure on the nodes of the DAG

find(n) returns the representative of the node n

union(n,m) merges the equivalence classes of n and m

Naive congurence closure algorithm:

For every nodes n and m such that find(n) 6= find(m),

if n and m are labeled with the same symbol and

they have the same number of children and

find(ni) = find(mi) for every children ni and mi of n and m

then, merge the classes of n and m by union(n,m)

65

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Example

g(g(g(a))) = a ∧ g(g(g(g(g(a))))) = a ∧ g(a) 6= a satisfiable?

g

g

g

g

g

a

g(a) = a is implied by the E-DAG

66

Difference logic

67

Difference Logic (DL)

x− y ≤ c where x, y, c ∈ (Q or Z)

Strict inequalities

I in Z, x− y < c is replaced x− y ≤ c− 1
I in Q, x− y < c is replaced x− y ≤ c− δ where δ is a

symbolic sufficiently small parameter

Equalities

I x = y is the same as x− y ≤ c ∧ y − x ≤ −c

One variable constraints

I x ≤ c is replaced by x− xzero ≤ c, where xzero is a fresh
variable whose value must be 0 in any solution

68

DL : Graph Interpretation

Given a set of difference constraints M , we construct a weighted
directed graph GM (V,E) as follows :

I the set of vertices V contains the variables of the problem
plus an extra variable s

I the set of weighted edges E contains an edge y
c−→ x for

each constraint x− y ≤ c, plus an edge s
0−→ x for each

variable x of the problem

69

DL : Example

x1 − x2 ≤ 0

x1 − x5 ≤ −1

x2 − x5 ≤ 1

x3 − x1 ≤ 5

x4 − x1 ≤ 4

x4 − x3 ≤ −1

x5 − x3 ≤ −3

x5 − x4 ≤ −3

x5

x1

x4

0

-3
0

x3

x2

s

0

0

0
-1

4

1

-1 0

5
-3

70

DL : Satisfiability and Models

A negative cycle in GM (V,E) is a path

x0
c0−→ x1

c1−→ . . .
cn−1−→ xn

cn−→ x0

such that c0 + c1 + · · ·+ cn−1 + cn < 0

Theorem

If GM (V,E) has a negative cycle then M is unsatisfiable, otherwise
a solution is

x1 = δ(s, x1), . . . , xn = δ(s, xn)

where δ(s, xi) is the shortest-path weight from s to xi

71

DL : Correctness

Proof.

Any negative-weight cycle v1
c1−→ v2

c2−→ . . .
cn−1−→ vn

cn−→ v1

corresponds to a set of difference constraints

v2 − v1 ≤ c1

v3 − v2 ≤ c2

. . .
v1 − vn ≤ cn

If we sum them all, we get 0 ≤ c1 + c2 + · · ·+ cn which is
impossible since a negative cycle implies c1 + c2 + · · ·+ cn < 0

Now, if GM (V,E) has no negative cycle, for any edge xi
c1−→ xj we

have δ(s, xj) ≤ δ(s, xi) + c, or equivalently δ(s, xj)− δ(s, xi) ≤ c.
Thus, letting xi = δ(s, xi) and xj = δ(s, xj) satifies the
constraints xj − xi ≤ c

72

DL : Example (cont)

x1 − x2 ≤ 0

x1 − x5 ≤ −1

x2 − x5 ≤ 1

x3 − x1 ≤ 5

x4 − x1 ≤ 4

x4 − x3 ≤ −1

x5 − x3 ≤ −3

x5 − x4 ≤ −3

x5

x1

x4

0

-3
0

x3

x2

s

0

0

0
-1

4

1

-1 0

5
-3

73

DL : Example (cont)

x1 − x2 ≤ 0

x1 − x5 ≤ −1

x2 − x5 ≤ 1

x3 − x1 ≤ 5

x4 − x1 ≤ 4

x4 − x3 ≤ −1

x5 − x3 ≤ −3

x5 − x4 ≤ −3

x5

x1

x4

0

-3
0

x3

x2

s

0

0

0
-1

4

1

-1 0

5
-3

-5

-3

0
-1

-4

0

73

DL : Example (cont)

x1 = −5

x2 = −3

x3 = 0

x4 = −1

x5 = −4

x5

x1

x4

0

-3
0

x3

x2

s

0

0

0
-1

4

1

-1 0

5
-3

-5

-3

0
-1

-4

0

73

Negative Cycle Detection

Negative cycle can be detected with shortest path algorithms

Most algorithms are based on the technique of relaxation

I For each vertex x, we maintain an upper bound d[x] on the
weight of a shortest path from s to x

I Relaxing an edge x
c−→ y consists in testing whether we can

improve the shortest path to y found so far by going through x

I Additionally, shortest paths are saved in an array π that gives
the predecessor of each vertex

if d[y] > d[x] + c then

d[y] := d[x] + c

π[y] := x

74

Bellman-Ford Algorithm

for each xi ∈ V do d[xi] :=∞ done

d[s] := 0

for i := 1 to |V | − 1 do

for each xi
c−→ xj ∈ E do

if d[xj] > d[xi] + c then

d[xj] := d[xi] + c

π[xj] := u
done

done

for each xi
c−→ xj ∈ E do

if d[xj] > d[xi] + c then

return Negative Cycle Detected
Follow π to reconstruct the cycle

done

75

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that GM (V,E) contains a negative cycle

x0
c0−→ x1

c1−→ . . .
ck−1−→ xk with x0 = xk. Assume Bellman-Ford

does not find the cycle. Thus, d[xi] ≤ d[xi−1] + ci−1 for all
i = 1, 2, . . . , k. Summing these inequalities, we get

k∑
i=1

d[xi] ≤
k∑
i=1

d[xi−1] +

k∑
i=1

ci−1

76

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that GM (V,E) contains a negative cycle

x0
c0−→ x1

c1−→ . . .
ck−1−→ xk with x0 = xk. Assume Bellman-Ford

does not find the cycle. Thus, d[xi] ≤ d[xi−1] + ci−1 for all
i = 1, 2, . . . , k. Summing these inequalities, we get

k∑
i=1

d[xi]−
k∑
i=1

d[xi−1] ≤
k∑
i=1

ci−1

76

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that GM (V,E) contains a negative cycle

x0
c0−→ x1

c1−→ . . .
ck−1−→ xk with x0 = xk. Assume Bellman-Ford

does not find the cycle. Thus, d[xi] ≤ d[xi−1] + ci−1 for all
i = 1, 2, . . . , k. Summing these inequalities, we get

k∑
i=1

d[xi]−
k∑
i=1

d[xi−1] ≤
k∑
i=1

ci−1

but, since x0 = xk, we have

k∑
i=1

d[xi] =

k∑
i=1

d[xi−1]

76

Bellman-Ford Algorithm : Correctness

Proof.

Suppose that GM (V,E) contains a negative cycle

x0
c0−→ x1

c1−→ . . .
ck−1−→ xk with x0 = xk. Assume Bellman-Ford

does not find the cycle. Thus, d[xi] ≤ d[xi−1] + ci−1 for all
i = 1, 2, . . . , k. Summing these inequalities, we get

0 ≤
k∑
i=1

ci−1

which is impossible since the cycle is negative

76

Bellman-Ford Algorithm (cont)

I Checking satisfiability can be performed in time O(|V |.|E|)

I Inconsistency explanations are negative cycles (irredundant
but not minimal explanations)

I Incremental and backtrackable extensions exist

77

Combining decision procedures

78

Combination of Theories

In CDCL(T), the theory T is usually combination of theories

For instance,

x+ 2 = y ⇒ f(read(write(a, x, 3), y − 2)) = f(y − x+ 1)

79

Union of theories

Given two signatures Σ1 and Σ2, and two consistent theories T1

and T2 over Σ1 and Σ2, respectively

I Is the union T1 ∪ T2 consistent?

Undecidable in the general case

I Can we build a decision procedure for T1 ∪ T2 from decision
procedures of T1 and T2?

Methods exist only for restricted classes of theories

80

Union of theories

Given two signatures Σ1 and Σ2, and two consistent theories T1

and T2 over Σ1 and Σ2, respectively

I Is the union T1 ∪ T2 consistent?

Undecidable in the general case

I Can we build a decision procedure for T1 ∪ T2 from decision
procedures of T1 and T2?

Methods exist only for restricted classes of theories

80

Union of theories

Given two signatures Σ1 and Σ2, and two consistent theories T1

and T2 over Σ1 and Σ2, respectively

I Is the union T1 ∪ T2 consistent?

Undecidable in the general case

I Can we build a decision procedure for T1 ∪ T2 from decision
procedures of T1 and T2?

Methods exist only for restricted classes of theories

80

Union of theories

Given two signatures Σ1 and Σ2, and two consistent theories T1

and T2 over Σ1 and Σ2, respectively

I Is the union T1 ∪ T2 consistent?

Undecidable in the general case

I Can we build a decision procedure for T1 ∪ T2 from decision
procedures of T1 and T2?

Methods exist only for restricted classes of theories

80

Union of theories

Given two signatures Σ1 and Σ2, and two consistent theories T1

and T2 over Σ1 and Σ2, respectively

I Is the union T1 ∪ T2 consistent?

Undecidable in the general case

I Can we build a decision procedure for T1 ∪ T2 from decision
procedures of T1 and T2?

Methods exist only for restricted classes of theories

80

Robinson Joint Consistency Theorem

Given two consistent theories T1 and T2 over Σ1 and Σ2,
respectively

Theorem:

T1 ∪ T2 is not consistent if there exists a formula ϕ over Σ1 ∩ Σ2

such that T1 |= ϕ and T2 |= ¬ϕ

81

Union of Disjoint Theories

When Σ1 and Σ2 are disjoints signatures

Theorem [Tinelli]:

T1 ∪ T2 is consistent if T1 and T2 have a infinite model

82

Lowenheim-Skolem Upward Theorem

Given a signature Σ and a theory T over Σ.

Theorem:

If T has an infinite model of cardinality κ, then T has a model of
cardinality κ′, for any κ′ ≥ κ

I used to align cardinalities of models

I useful to prove completeness of combination methods

83

Union of Disjoint Theories

Proof. Let A1 and A2 models of T1 and T2, respectively

By the Lowenheim-Skolem Upward theorem, if T1 and T2 have an
infinite model then they also have models of any infinite cardinality.
We can thus assume that A1 and A2 have the same cardinality.

By the Joint Consistency theorem, if T1 ∪ T2 is not consistent then
there exists a formula ψ such that A1 |= ψ et A2 |= ¬ψ (1).

Now, as Σ1 and Σ2 are disjoint, T1 ∩ T2-formulas can only be
equational formulas, that is ψ only contains literals of the form
x = y or x 6= y.

It is a well-known result in model theory that the reducts of any
two models to the empty signature are isomorphic when they have
the same cardinality (any one-to-one correspondence works)

Consequently, either A1 and A2 are model of ψ or neither of them
does, which contradicts (1).

84

Union of Disjoint Theories

Proof. Let A1 and A2 models of T1 and T2, respectively

By the Lowenheim-Skolem Upward theorem, if T1 and T2 have an
infinite model then they also have models of any infinite cardinality.
We can thus assume that A1 and A2 have the same cardinality.

By the Joint Consistency theorem, if T1 ∪ T2 is not consistent then
there exists a formula ψ such that A1 |= ψ et A2 |= ¬ψ (1).

Now, as Σ1 and Σ2 are disjoint, T1 ∩ T2-formulas can only be
equational formulas, that is ψ only contains literals of the form
x = y or x 6= y.

It is a well-known result in model theory that the reducts of any
two models to the empty signature are isomorphic when they have
the same cardinality (any one-to-one correspondence works)

Consequently, either A1 and A2 are model of ψ or neither of them
does, which contradicts (1).

84

Union of Disjoint Theories

Proof. Let A1 and A2 models of T1 and T2, respectively

By the Lowenheim-Skolem Upward theorem, if T1 and T2 have an
infinite model then they also have models of any infinite cardinality.
We can thus assume that A1 and A2 have the same cardinality.

By the Joint Consistency theorem, if T1 ∪ T2 is not consistent then
there exists a formula ψ such that A1 |= ψ et A2 |= ¬ψ (1).

Now, as Σ1 and Σ2 are disjoint, T1 ∩ T2-formulas can only be
equational formulas, that is ψ only contains literals of the form
x = y or x 6= y.

It is a well-known result in model theory that the reducts of any
two models to the empty signature are isomorphic when they have
the same cardinality (any one-to-one correspondence works)

Consequently, either A1 and A2 are model of ψ or neither of them
does, which contradicts (1).

84

Union of Disjoint Theories

Proof. Let A1 and A2 models of T1 and T2, respectively

By the Lowenheim-Skolem Upward theorem, if T1 and T2 have an
infinite model then they also have models of any infinite cardinality.
We can thus assume that A1 and A2 have the same cardinality.

By the Joint Consistency theorem, if T1 ∪ T2 is not consistent then
there exists a formula ψ such that A1 |= ψ et A2 |= ¬ψ (1).

Now, as Σ1 and Σ2 are disjoint, T1 ∩ T2-formulas can only be
equational formulas, that is ψ only contains literals of the form
x = y or x 6= y.

It is a well-known result in model theory that the reducts of any
two models to the empty signature are isomorphic when they have
the same cardinality (any one-to-one correspondence works)

Consequently, either A1 and A2 are model of ψ or neither of them
does, which contradicts (1).

84

Union of Disjoint Theories

Proof. Let A1 and A2 models of T1 and T2, respectively

By the Lowenheim-Skolem Upward theorem, if T1 and T2 have an
infinite model then they also have models of any infinite cardinality.
We can thus assume that A1 and A2 have the same cardinality.

By the Joint Consistency theorem, if T1 ∪ T2 is not consistent then
there exists a formula ψ such that A1 |= ψ et A2 |= ¬ψ (1).

Now, as Σ1 and Σ2 are disjoint, T1 ∩ T2-formulas can only be
equational formulas, that is ψ only contains literals of the form
x = y or x 6= y.

It is a well-known result in model theory that the reducts of any
two models to the empty signature are isomorphic when they have
the same cardinality (any one-to-one correspondence works)

Consequently, either A1 and A2 are model of ψ or neither of them
does, which contradicts (1).

84

Union of Disjoint Theories

Proof. Let A1 and A2 models of T1 and T2, respectively

By the Lowenheim-Skolem Upward theorem, if T1 and T2 have an
infinite model then they also have models of any infinite cardinality.
We can thus assume that A1 and A2 have the same cardinality.

By the Joint Consistency theorem, if T1 ∪ T2 is not consistent then
there exists a formula ψ such that A1 |= ψ et A2 |= ¬ψ (1).

Now, as Σ1 and Σ2 are disjoint, T1 ∩ T2-formulas can only be
equational formulas, that is ψ only contains literals of the form
x = y or x 6= y.

It is a well-known result in model theory that the reducts of any
two models to the empty signature are isomorphic when they have
the same cardinality (any one-to-one correspondence works)

Consequently, either A1 and A2 are model of ψ or neither of them
does, which contradicts (1). 84

Naive Combination of Decision Procedures

Assume T1 is the theory of (integer) arithmetic and T2 the theory
of arrays, defined by the following axioms

v[i← e][i] = e
i 6= j ⇒ v[i← e][j] = v[i]

Is the following formula ψ (T1 ∪ T2)-satisfiable?

v[i← v[j]][i] 6= v[i] ∧ i+ j ≤ 2j ∧ j + 4i ≤ 5i

85

Naive Combination of Decision Procedures

First step : decompose ψ in two pure formulas ψ1 and ψ2 of T1

and T2

ψ1 = v[i← v[j]][i] 6= v[i]
ψ2 = i+ j ≤ 2j ∧ j + 4i ≤ 5i

86

Naive Combination of Decision Procedures

ψ1 = v[i← v[j]][i] 6= v[i]
ψ2 = i+ j ≤ 2j ∧ j + 4i ≤ 5i

Second step : use the decision procedures of T1 and T2 to
determine the satisfiability of ψ1 and ψ2, respectively

I ψ1 is satisfiable

I ψ2 is satisfiable

But is ψ satisfiable?

87

Naive Combination of Decision Procedures

ψ1 = v[i← v[j]][i] 6= v[i]
ψ2 = i+ j ≤ 2j ∧ j + 4i ≤ 5i

Second step : use the decision procedures of T1 and T2 to
determine the satisfiability of ψ1 and ψ2, respectively

I ψ1 is satisfiable

I ψ2 is satisfiable

But is ψ satisfiable?

87

Naive Combination of Decision Procedures

ψ1 = v[i← v[j]][i] 6= v[i]
ψ2 = i+ j ≤ 2j ∧ j + 4i ≤ 5i

Second step : use the decision procedures of T1 and T2 to
determine the satisfiability of ψ1 and ψ2, respectively

I ψ1 is satisfiable

I ψ2 is satisfiable

But is ψ satisfiable?

87

Naive Combination of Decision Procedures

ψ1 = v[i← v[j]][i] 6= v[i]
ψ2 = i+ j ≤ 2j ∧ j + 4i ≤ 5i

Second step : use the decision procedures of T1 and T2 to
determine the satisfiability of ψ1 and ψ2, respectively

I ψ1 is satisfiable

I ψ2 is satisfiable

But is ψ satisfiable?

87

Naive Combination of Decision Procedures

ψ = v[i← v[j]][i] 6= v[i] ∧ i+ j ≤ 2j ∧ j + 4i ≤ 5i

ψ is unsatifiable

Proof.

i+ j ≤ 2j ∧ j + 4i ≤ 5i implies i = j

v[i← v[j]][i] 6= v[i] ∧ i = j implies v[i] 6= v[i]

The problem is that ψ1 and ψ2 are not independent, they are
sharing variables and the equality predicate

Solution: compute the implied formula i = j

88

Naive Combination of Decision Procedures

ψ = v[i← v[j]][i] 6= v[i] ∧ i+ j ≤ 2j ∧ j + 4i ≤ 5i

ψ is unsatifiable

Proof.

i+ j ≤ 2j ∧ j + 4i ≤ 5i implies i = j

v[i← v[j]][i] 6= v[i] ∧ i = j implies v[i] 6= v[i]

The problem is that ψ1 and ψ2 are not independent, they are
sharing variables and the equality predicate

Solution: compute the implied formula i = j

88

Naive Combination of Decision Procedures

ψ = v[i← v[j]][i] 6= v[i] ∧ i+ j ≤ 2j ∧ j + 4i ≤ 5i

ψ is unsatifiable

Proof.

i+ j ≤ 2j ∧ j + 4i ≤ 5i implies i = j

v[i← v[j]][i] 6= v[i] ∧ i = j implies v[i] 6= v[i]

The problem is that ψ1 and ψ2 are not independent, they are
sharing variables and the equality predicate

Solution: compute the implied formula i = j

88

Craig Interpolation Theorem

Given two pure formulas ϕ1 and ϕ2 over Σ1 and Σ2, respectively

Theorem:

If ϕ1 ∧ ϕ2 is T1 ∪ T2-unsatisfiable then there exists a sentence ψ
over Σ1 ∩ Σ2 such that

1) |=T1 ϕ1 ⇒ ψ

2) ϕ2 ∧ ψ is T2-unsatisfiable

I ψ is an interpolant

Computing interpolants is the basis of combination methods like
Nelson-Oppen

89

Craig Interpolation Theorem

Given two pure formulas ϕ1 and ϕ2 over Σ1 and Σ2, respectively

Theorem:

If ϕ1 ∧ ϕ2 is T1 ∪ T2-unsatisfiable then there exists a sentence ψ
over Σ1 ∩ Σ2 such that

1) |=T1 ϕ1 ⇒ ψ

2) ϕ2 ∧ ψ is T2-unsatisfiable

I ψ is an interpolant

Computing interpolants is the basis of combination methods like
Nelson-Oppen

89

Nelson-Oppen (NO) Combination Methods

Let Σ1 and Σ2 two disjoint signatures

Input. ψ a conjunction of literals over Σ1 ∪ Σ2

Step 1. Purify ψ into a equisatisfiable formula ψ1 ∧ ψ2 such that
ψi ∈ Σi

Step 2. Guess a partition of the variables of ψ1 and ψ2. Express it
as a conjunction of literals ϕ.

Example. The partition {x1}, {x2, x3}, {x4} is represented
as x1 6= x2, x1 6= x4, x2 6= x4, x2 = x3

Step 3. Decide whether ψi ∧ ϕ is satisfiable by using individual
decision procedures

Output. yes if all the decision procedures return yes, no otherwise

90

NO in Practice

A simple and elegant correctness proof of NO has been given by
Tinelli and Harandi in 1996

Correctness becomes an issue for deterministic and efficient
implementations

I purification with term sharing

I deducing the equalities to be shared

I theory state normalization

I deduction by lookup

I Relevant equation selection

I etc.

91

