The Coq Proof Assistant

Semantics and applications to verification

Xavier Rival

Ecole Normale Supérieure

Xavier Rival The Coq Proof Assistant

1/13

Purpose of Coq and principle

Coq is a programming language
@ We can define data-types and write programs in Coq
@ Language similar to a pure functional language

@ Very expressive type system (more on this later)

(]

Programs can be ran inside Coq
Programming language of the year ACM Award...

(]

Coq is a proof assistant

(]

It allows to express theorems and proofs

(]

It can verify a proof

(]

It can also infer some proofs or proof steps

(]

Proof search is usually mostly manual and takes most of the time

Xavier Rival The Coq Proof Assistant 2/13

Overall workfklow

© Define the objects properties need be proved about
Data-structures, base types, programs written in the Coq (or
vernacular) language

@ Write and prove intermediate lemmas

» a theorem is defined by a formula in the Coq language.
» a proof requires a sequence of tactics applications
tactics are described as part of a separate language.
» at the end of the proof, a proof term is constructed and verified.

© Write and prove the main theorems

@ If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics]

Xavier Rival The Coq Proof Assistant 3/13

In Coq, everything is a term

@ The core of Coq is defined by a language of terms J

o Commands are used in order to manipulate terms

Examples of terms:
@ base values: 0, 1, true...
@ types: nat, bool, but also Prop...
o functions: fun (n: nat) =>n + 1
o function applications: (fun (n: nat) =>n + 1) 8
@ logical formulas:
exists p: nat, 8 = 2 * p,
forall a b: Prop, a/\b -> a
complex functions (more on this one later):
fun (a b : Prop) (H: a /\ b) =>
and_ind (fun (HO : a) (_ : b) => HO) H

Xavier Rival The Coq Proof Assistant 4 /13

In Coq, every term has a type

(4]

(4]

As observed, types are terms
Every term also has a type, denoted by term: type J

0: nat

nat: Set

Set: Type

Type: Type (caveat: not quite the same instance)

(fun (n: nat) => n + 1): nat -> nat

e © © ¢ ¢ ¢

more complex types get interesting:

fun (a b : Prop) (H: a /\ b) =>
and_ind (fun (HO : a) (_ : b) => HO) H
: forall a b: Prop, a /\ b -> a

Xavier Rival The Coq Proof Assistant 5 /13

Curry-Howard correspondence

The core principle of Coq
@ A proof of P can be viewed a term of type P

@ A proof of P = @ can be viewed a function transforming a proof of
P into a proof of Q, hence, a function of type P — Q...

Similarity between typing rules and proof rules:

MNx:PFu:Q MnPFQ

TFx-u:P—Q " TP—q "M
NMNwuv:Q N-=Q
, — app mp
rCFu:P—Q THvVv:P r’EP—Q THP
Correspondance:
program proof Search a proof of P
type theorem = search u of type P J

Xavier Rival The Coq Proof Assistant 6 /13

Defining a term

Two ways:
© Define it fully, with its type and its definition
Definition zero: nat := 0.
Definition incr (n: nat): nat :=n + 1.
© Provide only its type and search for a proof of it
Lemma lzero: nat.
exact O.
Save.

Definition lincr: forall n: nat, nat.
intro. exact (n + 1).

Save.
o Definition: Definition name u: t := def.
o Proof: Definition name u: t. or Lemma name u: t.

Xavier Rival The Coq Proof Assistant 7 /13

Inductive definition

@ A very powerful mechanism

@ In Coq, almost everything is actually an inductive definition
. examples: integers, booleans, equality, conjunction...

@ Syntax:
Inductive tree : Set :=
| leaf: tree
| node: tree -> tree -> tree.
@ Induction principles automatically provided by Coq, and to use in
induction proofs:
tree_ind: forall P : tree -> Prop,
P leaf
-> (forall t : tree, P t -> forall t0O : tree, P tO
-> P (node t t0))
-> forall t : tree, P t

Xavier Rival The Coq Proof Assistant 8 /13

Recursive functions

@ Very natural to work with inductive definitions

o Caveat: must provably terminate
this is usually checked with a strict sub-term condition

o Syntax:
Fixpoint size (t: tree) : nat :=
match t with
| leaf => 0
| node t0 t1 => 1 + (size t0) + (size t1)
end.
o Il formed definition, rejected by the system (termination issue):
Fixpoint f (t: tree): nat :=
match t with
| leaf | node leaf leaf => 0

| node => f (node leaf leaf)

AnA

Xavier Rival The Coq Proof Assistant 9/13

Proving a term

View in proof mode:

@ above the bar: current

a : Prop assumptions

b : Prop @ below the bar: current subgoal
H:a/\b (there may be several goals)

HO : a @ at the end: displays

Hi = b No more subgoals.

a @ command Save. stores the

term.

Progression towards a finished proof:
@ based on commands called tactics

@ in the background, Coq constructs the proof term

Xavier Rival The Coq Proof Assistant 10 / 13

A few tactics, and their effect

@ Each tactic performs a basic operation on the current goal
@ In the background, Coq constructs the proof term

@ At the end, the term is independantly checked (very reliable !)

@ Introduction of an assumption (proof tree and term):
NnPHQ Nx:PFu:Q@
NEP=Q NEXx-u:P—Q
o Application of an implication:
MN-Q N-uvv:@
rTEP—Q THP rM-u:P—Q THv:P

o Immediate conclusion of a subgoal:

NLPHP MNx:PFEx:P

Xavier Rival The Coq Proof Assistant 11 / 13

A glimpse at the tactic language

Most common tactics:

Tactic Effect

intro. Introduce one assumption

intros. Introduce as many assumptions as possible

apply H. Applies assumption H (should be of the form A->B)
elim H. Decomposes assumption H

exact t. Provides a proof term for current sub-goal

trivial. Conclude immediately very simple proofs.
induction t. | Perform induction proof over term t

rewrite H. Rewrite assumption H (should be of the form t0=t1)
tauto. Decision procedure in propositional logic

Do not hesitate to look at the online manual !

Xavier Rival The Coq Proof Assistant 12 / 13

A glimpse at the command language

Most common tactics (should be enough for a TD):

Command Meaning

Check t. Prints the type of term t

Print t. Prints the type and definition of term t
Definition u: t := [term]. | Full definition of term u

Lemma t. Start a proof of term t

Theorem t.

Definition t.

Save. Exit proof mode and save proof term

Xavier Rival The Coq Proof Assistant 13 / 13

