The Coq Proof Assistant
Semantics and applications to verification

Xavier Rival
École Normale Supérieure
Purpose of Coq and principle

Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)

- Programs can be ran inside Coq
- Programming language of the year ACM Award...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps

- Proof search is usually mostly manual and takes most of the time
Overall workflow

1. Define the objects properties need be proved about Data-structures, base types, programs written in the Coq (or vernacular) language

2. Write and prove intermediate lemmas
 - a theorem is defined by a formula in the Coq language.
 - a proof requires a sequence of tactics applications tactics are described as part of a separate language.
 - at the end of the proof, a proof term is constructed and verified.

3. Write and prove the main theorems

4. If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics
In Coq, everything is a term

- The **core of Coq** is defined by a language of **terms**
- **Commands** are used in order to manipulate terms

Examples of terms:

- **base values:** 0, 1, true...
- **types:** nat, bool, but also Prop...
- **functions:** fun (n: nat) => n + 1
- **function applications:** (fun (n: nat) => n + 1) 8
- **logical formulas:**
 - exists p: nat, 8 = 2 * p,
 - forall a b: Prop, a/\b -> a
- **complex functions** (more on this one later):
 - fun (a b : Prop) (H : a /\ b) =>
 - and_ind (fun (H0 : a) (_ : b) => H0) H
In Coq, every term has a type

- As observed, **types are terms**
- Every term also **has a type**, denoted by `term : type`

- `0 : nat`
- `nat : Set`
- `Set : Type`
- `Type : Type (caveat: not quite the same instance)`
- `(fun (n : nat) => n + 1) : nat -> nat`
- more complex types get interesting:
  ```latex
  \begin{align*}
  \text{fun (a b : Prop) (H : a \land b) =>} \\
  \quad \text{and_ind (fun (H0 : a) (_, b) \Rightarrow H0) H} \\
  \quad : \text{forall a b : Prop, a \land \ b \Rightarrow a}
  \end{align*}
  ```
Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a **term of type** P
- A proof of $P \Rightarrow Q$ can be viewed a **function** transforming a proof of P into a proof of Q, hence, a **function of type** $P \rightarrow Q$...

Similarity between **typing** rules and **proof** rules:

$$
\Gamma, \chi : P \vdash u : Q \\
\Gamma \vdash \lambda \chi \cdot u : P \rightarrow Q \\
\Gamma \vdash u \: v : Q \\
\Gamma \vdash u : P \rightarrow Q \quad \Gamma \vdash v : P
$$

fun

$$
\Gamma, P \vdash Q \\
\Gamma \vdash P \Rightarrow Q
$$

implic

$$
\Gamma \vdash Q \\
\Gamma \vdash P
$$

mp

Correspondance:

<table>
<thead>
<tr>
<th>program</th>
<th>proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>theorem</td>
</tr>
</tbody>
</table>

Search a proof of P

\equiv search u of type P
Defining a term

Two ways:

1. **Define it fully**, with its type and its definition

 Definition zero: nat := 0.

2. **Provide only its type** and search for a proof of it

 Lemma lzero: nat.
 exact 0.
 Save.
 Definition lincr: forall n: nat, nat.
 intro. exact (n + 1).
 Save.

Definition: Definition name u: t := def.

Proof: Definition name u: t. or Lemma name u: t.
Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition
 ... examples: integers, booleans, equality, conjunction...

Syntax:

Inductive tree : Set :=
 | leaf: tree
 | node: tree -> tree -> tree.

Induction principles automatically provided by Coq, and to use in induction proofs:

tree_ind: forall P : tree -> Prop,
 P leaf
 -> (forall t : tree, P t -> forall t0 : tree, P t0
 -> P (node t t0))
 -> forall t : tree, P t
Recursive functions

- Very natural to work with inductive definitions
- **Caveat: must provably terminate**
 - this is usually checked with a **strict sub-term condition**

Syntax:

```coq
Fixpoint size (t: tree) : nat :=
  match t with
  | leaf => 0
  | node t0 t1 => 1 + (size t0) + (size t1)
end.
```

Ill formed definition, rejected by the system (termination issue):

```coq
Fixpoint f (t: tree): nat :=
  match t with
  | leaf | node leaf leaf => 0
  | node _ _ => f (node leaf leaf)
end.
```
Proving a term

View in proof mode:

\[a : \text{Prop} \]
\[b : \text{Prop} \]
\[H : a \land b \]
\[H_0 : a \]
\[H_1 : b \]

\[\text{above the bar: current assumptions} \]
\[\text{below the bar: current subgoal} \]
\[\text{(there may be several goals)} \]
\[\text{at the end: displays} \]
\[\text{No more subgoals.} \]
\[\text{command Save. stores the term.} \]

Progression towards a finished proof:

\[\text{based on commands called tactics} \]
\[\text{in the background, Coq constructs the proof term} \]
A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independantly checked (very reliable !)

Introduction of an assumption (proof tree and term):

\[
\begin{align*}
\Gamma, P \vdash Q & \quad \Rightarrow \\
\Gamma, x : P \vdash u : Q & \quad \Rightarrow \\
\Gamma \vdash \lambda x \cdot u : P \rightarrow Q & \quad \Rightarrow
\end{align*}
\]

Application of an implication:

\[
\begin{align*}
\Gamma \vdash Q & \quad \Rightarrow \\
\Gamma \vdash P \rightarrow Q & \quad \Rightarrow \\
\Gamma \vdash P & \quad \Rightarrow \\
\Gamma \vdash u \cdot v : Q & \quad \Rightarrow \\
\Gamma \vdash u : P & \quad \Rightarrow \\
\Gamma \vdash v : P & \quad \Rightarrow
\end{align*}
\]

Immediate conclusion of a subgoal:

\[
\begin{align*}
\Gamma, P \vdash P & \quad \Rightarrow \\
\Gamma, x : P \vdash x : P & \quad \Rightarrow
\end{align*}
\]
A glimpse at the tactic language

Most common tactics:

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro.</td>
<td>Introduce one assumption</td>
</tr>
<tr>
<td>intros.</td>
<td>Introduce as many assumptions as possible</td>
</tr>
<tr>
<td>apply H.</td>
<td>Applies assumption H (should be of the form A→B)</td>
</tr>
<tr>
<td>elim H.</td>
<td>Decomposes assumption H</td>
</tr>
<tr>
<td>exact t.</td>
<td>Provides a proof term for current sub-goal</td>
</tr>
<tr>
<td>trivial.</td>
<td>Conclude immediately very simple proofs.</td>
</tr>
<tr>
<td>induction t.</td>
<td>Perform induction proof over term t</td>
</tr>
<tr>
<td>rewrite H.</td>
<td>Rewrite assumption H (should be of the form t0=t1)</td>
</tr>
<tr>
<td>tauto.</td>
<td>Decision procedure in propositional logic</td>
</tr>
</tbody>
</table>

Do not hesitate to look at the online manual!
A glimpse at the command language

Most common tactics (should be enough for a TD):

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check (t).</td>
<td>Prints the type of term (t)</td>
</tr>
<tr>
<td>Print (t).</td>
<td>Prints the type and definition of term (t)</td>
</tr>
<tr>
<td>Definition (u: t := \text{[term]}).</td>
<td>Full definition of term (u)</td>
</tr>
<tr>
<td>Lemma (t).</td>
<td>Start a proof of term (t)</td>
</tr>
<tr>
<td>Theorem (t).</td>
<td></td>
</tr>
<tr>
<td>Definition (t).</td>
<td></td>
</tr>
<tr>
<td>Save.</td>
<td>Exit proof mode and save proof term</td>
</tr>
</tbody>
</table>