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Introduction

Operational semantics

Models precisely program execution as low-level transitions between
internal states
(transition systems, execution traces, big-step semantics)

Denotational semantics

Maps programs into objects in a mathematical domain

(higher level, compositional, domain oriented)

Aximoatic semantics  (today)
Prove properties about programs

@ programs are annotated with logical assertions

@ a rule-system defines the validity of assertions  (logical proofs)

clearly separates programs from specifications

(specification ~ user-provided abstraction of the behavior, it is not unique)

@ enables the use of logic tools  (partial automation)
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Overview

Specifications (informal examples)

Floyd—Hoare logic

Dijkstra's predicate transformers

(weakest precondition, strongest postcondition)

@ Verification conditions

(partially automated program verification)

@ Advanced topics
@ Auxiliary variables
@ Non-determinism
@ Total correctness (termination)
@ Arrays
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Specifications




Specifications

Example: function specification

example in C + ACSL

int mod(int A, int B) {
int Q@ = 0;
int R = A;
while (R >= B) {
R =R - B;
Q=Q+1;
}

return R;
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Specifications

Example: function specification

example in C + ACSL

//@ ensures \result == A mod B;
int mod(int A, int B) {
int Q = 0;
int R = A;
while (R >= B) {
R =R - B;
Q=Q+1;
}

return R;

@ express the intended behavior of the function (returned value)
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Specifications

Example: function specification

example in C + ACSL

//@ requires A>=0 && B>=0;

//@ ensures \result == A mod B;

int mod(int A, int B) {
int Q@ = 0;
int R = A;
while (R >= B) {
R =R - B;
Q=Q+1;
}

return R;

v

@ express the intended behavior of the function

@ add requirements for the function to actually behave as intended

(a requires/ensures pair is a function contract)
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Specifications

Example: function specification

example in C + ACSL

//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
int Q = 0;
int R = A;
while (R >= B) {
R =R - B;
Q=Q+1;
}

return R;

v

@ express the intended behavior of the function (returned value)

@ add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

@ strengthen the requirements to ensure termination
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Specifications

Example: program annotations

example with full assertions

//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
int Q = 0;
int R = A;
//@ assert A>=0 && B>0 && Q=0 && R==A;
while (R >= B) {
//@ assert A>=0 && B>0 && R>=B && A==Q*B+R;
R =R - B;
Q=0Q+1;
}
//@ assert A>=0 && B>0 && R>=0 && R<B && A==Q*B+R;

return R;

Assertions give detail about the internal computations
why and how contracts are fulfilled
(Note: r =a mod b means 3qg:a=qgb+rA0<r<b)
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Specifications

Example: ghost variables

example with ghost variables

//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {

int R = A;

while (R >= B) {

R =R - B;
¥
// AQ:A= QB+ R and 0< R< B
return R;
}

Program annotations can be more complex than the program
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Specifications

Example: ghost variables

example with ghost variables

//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
//@ ghost int q = 0;
int R = A;
//@ assert A>=0 && B>0 && q=0 && R==A;
while (R >= B) {
//@ assert A>=0 && B>0 && R>=B && A==q*B+R;
R =R - B;
//@ ghost q = q + 1;

}
//@ assert A>=0 && B>0 && R>=0 && R<B && A==q*B+R;

return R;

Program annotations can be more complex than the program
and require reasoning on enriched states (ghost variables)
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Specifications

Example: class invariants

example in ESC/Java

public class OrderedArray {
int a[];
int nb;
//@invariant nb >= 0 && nb <= 20

//@invariant (\forall int i; (i >= 0 && i < nb-1) ==> a[i] <= a[i+1])

public OrderedArray() { a = new int[20]; nb = 0; }

public void add(int v) {
if (nb >= 20) return;
int i; for (i=nb; i > 0 && ali-1] > v; i--) al[i]l = al[i-1];
al[i] = v; nb++;
}
}

class invariant: property of the fields true outside all methods

it can be temporarily broken within a method
but it must be restored before exiting the method
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Specifications

Language support

Contracts (and class invariants):
@ built in few languages (Eiffel)

@ available as a library / external tool (C, Java, C#, etc.)

Contracts can be:
@ checked dynamically
@ checked statically (Frama-C, Why, ESC/Java)

@ inferred statically (CodeContracts)

In this course:
deductive methods (logic) to check (prove) statically (at compile-time)
partially automatically (with user help) that contracts hold
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Floyd—Hoare logic

Hoare triples

Hoare triple: {P} prog {Q}
@ prog is a program fragment

@ P and @ are logical assertions over program variables

(eg. PE(X>0AY>0)V(X<0AY <0))

A triple means:
o if P holds before prog is executed
@ then @ holds after the execution of prog

@ unless prog does not terminates or encounters an error

P is the precondition, @ is the postcondition

{P} prog {Q} expresses partial correctness

(does not rule out errors and non-termination)

Hoare triples serve as judgements in a proof system
(introduced in [Hoare69])
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Floyd—Hoare logic

Language

stat X  expr

skip

fail

stat; stat

if expr then stat else stat

while expr do stat

@ X € V: integer-valued variables

@ expr: integer arithmetic expressions

we assume that:

e expressions are deterministic (for now)

e expression evaluation do not cause error

assignment)
do nothing)
error)
sequence)
conditional)

(
(
(
(
(
(loop)

for instance, to avoid division by zero, we can:
either define 1/0 to be a valid value, such as 0

or systematically guard divisions
(e.g.: if X =0 then failelse --- /X ---)
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Floyd—Hoare logic

Hoare rules: axioms

Axioms:

{P} skip {P} {P} fail {Q}

@ any property true before skip is true afterwards

@ any property is true after fail
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Floyd—Hoare logic

Hoare rules: axioms

Assignment axiom:

{Ple/X]} X « e {P}

for P over X to be true after X < e
P must be true over e before the assignment

Pl[e/X] is P where free occurrences of X are replaced with e
e must be deterministic

the rule is “backwards” (P appears as a postcondition)

examples: {true} X <— 5 {X =5}
{Y =5} X+ Y {X=5}
(X+1>0} X« X+1{X >0}
{false} X +~ Y4+ 3{Y =0AX =12}
(Y0, 10} X« Y +3{X =Y +3AY e[0,10]}
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Floyd—Hoare logic

Hoare rules: consequence

Rule of consequence:
P=P Q=0 {P}c{Q}
{P} c{Q}

we can weaken a Hoare triple by:
weakening its postcondition @ < Q'
strengthening its precondition P = P’

we assume a logic system to be available to prove formulas on assertions,
such as P = P’ (e.g., arithmetic, set theory, etc.)

examples:

@ the axiom for fail can be replaced with

{true} fail {false}
(as P = true and false = Q always hold)

@ {(X=99AY c[,10} X « Y+10{X =Y +10A Y € [1,10]}
(as{Y €[L,10]} X+~ Y +10{X =Y +10A Y € [1,10]} and
X=99AY €[1,10] = Y € [1,10])
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Floyd—Hoare logic

Hoare rules: tests

{Prets{Q}  {PA-e}t{Q}
{P} if e then s else t {Q}

Tests:

to prove that @ holds after the test
we prove that it holds after each branch (s, )
under the assumption that it is executed (e, —e)

example:

{X <0} X+ —-X{X>0} {X > 0} skip {X > 0}
{(X#0)A(X<0)} X+ —X{X>0} {(X #£0) A (X >0)} skip {X > 0}

{X # 0} if X < 0then X «+— —X else skip {X > 0}
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Floyd—Hoare logic

Hoare rules: sequences

{Pys{R} {R}t{Q}
{P}sit{Q}

Sequences:

to prove a sequence s;t
we must invent an intermediate assertion R
implied by P after s, and implying Q after t
(often denoted {P} s {R} t {Q})

example:

(X=1AY =1} X X+1{X=2AY=1} Y+ Y-1{X=2AY=0}
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Floyd—Hoare logic

Hoare rules: loops

{PNe}s{P}
{P} while edo s {P A —e}

Loops:

P is a loop invariant
P holds before each loop iteration, before even testing e

Practical use:
actually, we would rather prove the triple: {P} while e do s {Q}
it is sufficient to invent an assertion / that:

holds when the loop start: P =/

is invariant by the body s: {/ Ae} s {/}

implies the assertion when the loop stops: (I A —e) = Q

{Ine}s{l}
P=1 IN—e=Q {I} while e do s {/ A —e}
we can derive the rule: {P} while e do s {Q}
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Floyd—Hoare logic

Hoare rules: logical part

Hoare logic is parameterized by the choice of logical theory of assertions

the logical theory is used to:
@ prove properties of the form P = @ (rule of consequence)

@ simplify formulas
(replace a formula with a simpler one, equivalent in a logical sens: <)

Examples:  (generally first order theories)
@ booleans (B, —, A, V)
@ bit-vectors (B", -, A, V)
@ Presburger arithmetic (N, +)
@ Peano arithmetic (N, +, x)
@ linear arithmetic on R
@ Zermelo-Fraenkel set theory (€,{})
@ theory of arrays (lookup, update)

theories have different expressiveness, decidability and complexity results
this is an important factor when trying to automate program verification
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Floyd—Hoare logic

Hoare rules: summary

{P} skip {P} {true} fail {false} {Ple/X]} X <+ e {P}
{Pys{R} {R}t{Q} {Preps{Qt {PAr-e}t{Q}
{P} s t{Q} {P} if e then s else t {Q}
{PAe}s{P}

{P} while e do s {P A —e}

P=P  @=0Q {P}c{Q)
Py e (@)
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Floyd—Hoare logic

Proof tree example

s & while | < Ndo (X + 2X; | + [ +1)

C  {P}Xe2X{P} (P}« I+1{P}
{PLAT<NYX 2X; |+ I+1{P;}
A B {Pi}s{PiAI> N}
{(X=1AI=0AN>0}s{X=2NAN=1IAN>0}

def

PLEX=2AI<NAN>O0

P, & X =2+ A+ < NAN >0

Py ©oX =2 IAJFI<NAN>O =X=2'Al<NAN>O0
A:(X=1AI=0AN>0)= P,
B:(PLAI>N)=(X=2NAN=IAN>O0)

C:P; « (PLAI<N)
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Floyd—Hoare logic

Proof tree example

s < while/ £0do/ + [ —1

{true} I < I — 1 {true}
{I #0} I + | —1 {true}
{true} while / #0do | < | — 1 {true A =(/ # 0)}
{true} while / #0do / < [ —1 {/ =0}

@ in some cases, the program does not terminate
(if the program starts with / < 0)

@ the same proof holds for: {true} while / #0do J <+ J—1{/ =0}

@ anything can be proven of a program that never terminates:

{I=1A1#0}JJ—1{I=1}
{I =1} while | #0do J« J—1{/ =1A[=0}
{I' =1} while | # 0do J « J— 1 {false}
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Floyd—Hoare logic

Invariants and inductive invariants

Example: we wish to prove:
{X=Y =0}whileX <10do (X« X+1; Y+ Y+1){X =Y =10}
we need to find an invariant assertion P for the while rule

Incorrect invariant: P £ XY € [0,10]

@ P indeed holds at each loop iteration (P is an invariant)

@ but {(PA(X<10)} X+ X+1, Y+ Y+1{P}
does not hold

P A X < 10 does not prevent Y =10
after Y <~ Y + 1, P does not hold anymore
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Floyd—Hoare logic

Invariants and inductive invariants

Example: we wish to prove:

{X=Y =0}while X <10do (X + X +1; Y+ Y +1){X =Y =10}

we need to find an invariant assertion P for the while rule

Correct invariant: P < X €[0,10]AX =Y

@ P’ also holds at each loop iteration (P’ is an invariant)
@ {PPA(X<10)} X+ X+1, Y+« Y +1{P'} can be proven

@ P’ is an inductive invariant
(passes to the induction, stable by a loop iteration)

—> to prove a loop invariant
it is often necessary to find a stronger loop invariant

Course 4 Axiomatic semantics Antoine Miné p. 23 / 55



Floyd—Hoare logic

Soundness and completeness

Validity:

{P} c {Q} is valid <L executions starting in a state satisfying P
and terminating
end in a state satisfying @

(it is an operational notion)

e soundness

a proof tree exists for {P} ¢ {Q} = {P} ¢ {Q} is valid
@ completeness

{P} c {Q} is valid = a proof tree exists for {P} c {Q}

(technically, by Gédel's incompleteness theorem, P = Q is not always provable
for strong theories; hence, Hoare logic is incomplete; we consider relative
completeness by adding all valid properties P = Q on assertions as axioms)

Theorem (Cook 1974)

Hoare logic is sound (and relatively complete)

Completeness no longer holds for more complex languages (Clarke 1976)
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Floyd—Hoare logic

Link with denotational semantics

Reminder:  S[stat] : P(E) — P(E) where & & Vi |
S[skip] R & R
S[fail [ R &' ¢
S[si;2] & S[s2] oS[s1]
def

S[X<+e]R={p[X—V]lpeR, veE[e]p}

S[if ethens; else ] R & S[s;]{p€c R|truec E[e]p} U
S[s:]{p € R|false cE[e] p}

S[while edo s]R & {p e Ifp F|false € E[e] p}

def

where F(X) = RUS[s][{pe X|true c E[e]p}

{P}c{Q} <5 YVRCEREP = S[c]REQ l

(A = P means Vp € A, the formula P is true on the variable assignment p)
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Floyd—Hoare logic

Link with denotational semantics

@ Hoare logic reasons on formulas

@ denotational semantics reasons on state sets

we can assimilate assertion formulas and state sets

(logical abuse: we assimilate formulas and models)

let [R] be any formula representing the set R, then:
o {[R]} c {[S[c]R]} is always valid
o {[Rl} c{[R} = S[c]RC K

= [S[ ¢] R] provides the best valid postcondition
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Floyd—Hoare logic

Link with denotational semantics

Loop invariants

@ Hoare:
to prove {P} while e do s {P A —e} we must prove {P A e} s {P}
i.e., P is an inductive invariant

@ Denotational semantics:
we must find Ifp F where F(X) £ RUS[s]{peX|ple}
o lfp F=N{X|F(X)C X} (Tarski's theorem)
o F(X) S X = (IRl = X)) A{[X nel} s {[X]}
R C X means [R] = [X],
S[s]{peX|plEe} C X means {[X Ae]} s {[X]}
As a consequence:
e any X such that F(X) C X gives an inductive invariant [X]
o Ifp F gives the best inductive invariant
e any X such that Ifp F C X gives an invariant

(not necessarily inductive)

(see [Cousot02])
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Predicate transformers

Dijkstra’s weakest liberal preconditions

Principle:
@ calculus to derive preconditions from postconditions
@ order and mechanize the search for intermediate assertions

(easier to go backwards, mainly due to assignments)

Weakest liberal precondition  wip : (prog x Prop) — Prop

wip(c, P) is the weakest, i.e. most general, precondition
ensuring that {wip(c, P)} ¢ {P} is a Hoare triple

(greatest state set that ensures that the computation ends up in P)

formally: {P} c{Q} = (P = wip(c, Q))
“liberal” means that we do not care about termination and errors

Examples:
wip(X + X+1, X=1)=
wip(while X <0 X < X +1, X >0) =
wip(while X #0 X <+ X +1, X > 0) =
(introduced in [Dijkstra75])
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Predicate transformers

Dijkstra’s weakest liberal preconditions

Principle:
@ calculus to derive preconditions from postconditions
@ order and mechanize the search for intermediate assertions

(easier to go backwards, mainly due to assignments)

Weakest liberal precondition  wip : (prog x Prop) — Prop

wip(c, P) is the weakest, i.e. most general, precondition
ensuring that {wip(c, P)} ¢ {P} is a Hoare triple

(greatest state set that ensures that the computation ends up in P)

formally: {P} c{Q} = (P = wip(c, Q))
“liberal” means that we do not care about termination and errors

Examples:
wlp(X +~ X +1, X =1)=(X =0)
wip(while X <0 X <~ X +1, X > 0) = true
wip(while X #0 X < X + 1, X > 0) = true
(introduced in [Dijkstra75])
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Predicate transformers

A calculus for wlp

wip is defined by induction on the syntax of programs:

wip(skip, P) = “p

wip(fail, P) £ true

Ple/X]

def

(
(
wip(X < e, P) =
wip(s; t, P) &f wip(s, wip(t, P))
(

wip(if e then s else t, P) = (e = wip(s, P)) A (—e = wip(t, P))
wip(while e do s, P) & I A ((e A1) = wip(s, 1)) A ((—e A1) = P)

@ e = Q is equivalent to Q V —e
weakest property that matches Q when e holds
but says nothing when e does not hold

@ while loops require providing an invariant predicate /
intuitively, wip checks that / is an inductive invariant implying P
if so, it returns /; otherwise, it returns false

wlp is the weakest precondition only if / is well-chosen. . .
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Predicate transformers

Alternate form for loops

Unrolling  of the loop while e do s:

o Lo & fail

o L &1 if e then (s; L;) else skip

@ L; runs the loop and fails after / iterations

wip(Lo, P) = true

W/p(Li+17 P) = (6 = W/,D(S, W/,D(L,, 'D))) A (_‘e = 'D)

we have:

Alternate wip for loops: wip(while e do s, P) £ vi: X;

where Xy ' true
Xiy1 = (e = wip(s, X;)) A (—e = P)

Xi <= Xj11: sequence of assertions of increasing strength
(Vi: X;) is the limit, with an arbitrary number of iterations

(Vi: X;) is a closed form guaranteed to be the weakest precondition
(no need for a user-specified invariant)

(Vi: Xj) is the fixpoint of a second-order formula
= very difficult to handle
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Predicate transformers

WIlp computation example

wip(if X < 0thenY <+~ —X else Y + X, Y > 10) =
(X <0= wip(Y « —X,Y >10)) A (X > 0= wip(Y « X, Y >10))
(X<0=-X>10)A(X>0=X>10)=
(X>20V-X2>10)A (X <0V X >10)=
X>10v X <-10

wip generates complex formulas
it is important to simplify them from time to time
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Predicate transformers

Properties of wlp

o W/,D(C7 false) = false (excluded miracle)
e wip(c, P) Awlp(d, Q) = wip(c, P A Q) (distributivity)
e wip(c, P)V wip(d, Q) = wip(c, PV Q) (distributivity)

(= always true, < only true for deterministic, error-free programs)

e if P= Q, then wip(c, P) = wip(c, Q) (monotonicity)

A = B means that the formulas A and B are equivalent
ie,VoipEA < pEB
(stronger that syntactic equality)
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Predicate transformers

Strongest liberal postconditions

we can define slp : (Prop x prog) — Prop

] {P} Cc {S/p(P, C)} (postcondition)
] {P} Cc {Q} — (S/p(P, C) = Q) (strongest postcondition)

(corresponds to the smallest state set)
@ sIp(P, c) does not care about non-termination (liberal)

o allows forward reasoning

we have a duality:

(P = wip(c, Q)) < (slp(P,c)= Q)

proof: (P = wip(c,Q)) <= {P} c{Q} < (slp(P,c) = Q)

Course 4 Axiomatic semantics Antoine Miné p. 34 / 55



Predicate transformers

Calculus for slp

def

sip(P, skip) = P

slp(P, fail) & false

sip(P, X « €) & 3v: P[v/X] A X = e[v/X]

sip(P, s;t) & slp(slp(P, s), t)

sip(P, if e then s else t) & sip(P A e,s) V slp(P V —e, t)
(

sip(P, while edo s) £ (P = ) A (slp(/ A e,s) = 1) A (me A )

(the rule for X <— e makes slp much less attractive than wip)
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Verification conditions

Verification condition approch to program verification

How can we automate program verification using logic?

@ Hoare logic: deductive system
can only automate the checking of proofs

@ predicate transformers: wip, slp calculus
construct (big) formulas mechanically
invention is still needed for loops

@ verification condition generation
take as input a program with annotations
(at least contracts and loop invariants)

generate mechanically logic formulas ensuring the correctness
(reduction to a mathematical problem, no longer any reference to a program)

use an automatic SAT/SMT solver to prove (discharge) the formulas
or an interactive theorem prover

(the idea of logic-based automated verification appears as early as [King69])
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Verification conditions

Language

stat = X < expr

|  skip

|  stat; stat

| if expr then stat else stat
|  while {Prop} expr do stat
|

assert expr

prog = {Prop} stat {Prop}

@ loops are annotated with loop invariants

@ optional assertions at any point

@ programs are annotated with a contract

(precondition and postcondition)
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Verification conditions

Verification condition generation algorithm

by induction on the syntax of statements
veg,, : prog — P(Prop)

veg,({P) e {Q}) &
let (R, C) = vegs(c, Q) in CU{P = R}

veg, : (stat x Prop) — (Prop x P(Prop))

veg,(skip, Q) = def (Q,0)
vegs(X e, Q) = = (Qle/X],0)
veg(sit, Q) £

let (R C) = veg,(t, Q) in let (P, D) = veg(s, R) in (P,CUD)

veg,(if e then s else t, Q) &f

let (S, C) = vcgs( Q) inlet (T, D) = vegs(t, Q) in ((e = S)A(—e=T),CUD)

veg (while {/} edo s, Q) = %
let (R,C) = vcgs(s Nin(I,CU{(Ine)=R,(I N—e)= Q})

veg,(assert e, Q) def (e= Q,0)

@ we use wip to infer assertions automatically when possible
@ vcg,(c, P) = (P, C) propagates postconditions backwards (P into P’)
and accumulates into C verification conditions (from loops)
@ we could do the same using slp instead of wip (symbolic execution)
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Verification conditions

Verification condition generation example

Consider the program:
{N>0} X+«1,/1+0;
while {X =2/ A0 </ <N} < Ndo
(X «2X; I+ 1+1)
{Xx = 2"}

we get three verification conditions:

G (X=2'A0<I<N)AI>N= X =2V

G (X=2A0<I<N)AI<N=2X=2+1A0</+1<N
(from (X =2/ A0 < T < N[l +1/1,2X/X])

GE¥ N>0=>1=20A0<0<N

(from (X =2/ A0 <1 < N)[0/1,1/X])

which can be checked independently
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Extensions

Auxiliary variables

Auxiliary variables:

mathematical variables that do not appear in the program
they are constant during program execution

Applications:

@ simplify proofs
@ express more properties (contracts, input-output relations)
@ achieve completeness on extended languages

Example: {X =xAY =y} if X < Y then Y < X else skip {Y = min(x, y)}
@ x and y retain the values of X and Y from the program entry

@ Y =min(X,Y) is much less useful as a specification of a min function
“{true} if X < Y then Y « X else skip {Y = min(X, Y)}" holds, but
“{true} X <= Y + 1 {Y = min(X, Y)}" also holds
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Extensions

Non-determinism

We model non-determinism with the statement X « ?
meaning: X is assigned a random value

(X < [a, b] can be modeled as: X «+ 7;if X < aV X > b then fail;)

Hoare axiom: X PIX < 7 (P}

if P is true after assigning X to random
then P must hold whatever the value of X before

often, X does not appear in P and we get simply: m

Example:
{X=x} Y+ X{Y=x}
{Y=x} X+ ?2{Y=x} {Y=x} X+ Y {X=x}
{X=x} Y+ X; X+, X+ Y{X=x}
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Extensions

Non-determinism

Predicate transformers:

def

o wip(X + 7, P) £ vyx:P
(P must hold whatever the value of X before the assignment)
o sip(P, X+ 7) ¥ 3x:P

(if P held for one value of X, P holds for all values of X after the assignment)

Link with operational semantics  (as transition systems)

predicates P as sets of states P C &
commands c¢ as transition relations ¢ C ¥ x ¥

we define: post[r](P) £ {¢' |30 € P:(0,0') €T}
pre[r](P) £ {5 |Vo' € L:(0,0') €T = o’ € P}

then: slp(P, c) = post[c](P)
wip(c, P) = pre[c](P)
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Extensions

Total correctness

Hoare triple: [P] prog [Q]
@ if P holds before prog is executed
@ then prog always terminates

@ and @ holds after the execution of prog

Rules:  we only need to change the rule for while

Vte W:[PANeAu=t]s[PAu=<t]
[P] while e do s [P A —e]

((W, <) is well-founded)

@ (W, <) well-founded & every V. C W, V # (0 has a minimal element for <

ensures that we cannot decrease infinitely by < in W
generally, we simply use (N, <)
(also useful: lexicographic orders, ordinals)

@ in addition to the loop invariant P

we invent an expression u that strictly decreases by s
u is called a “ranking function”
often me = u = 0: u counts the number of steps until termination
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Extensions

Total correctness

To simplify, we can decompose a proof of total correctness into:

@ a proof of partial correctness {P} ¢ {Q}
ignoring termination

@ a proof of termination [P] c [true]
ignoring the specification
(we must still include the precondition P
as the program may not terminate for all inputs)

{P} c{Q} [P] c [true]
[P] c [Q]

indeed, we have:
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Extensions

Total correctness example

def

We use a simpler rule for integer ranking functions ((W, <) = (N, <))

using an integer expression r over program variables:

Vn:[PANeA(r=n)]s[PA(r<n) (PAe)=(r>0)
[P] while e do s [P A —é]

Example: p & while /] < Ndo !+ I +1; X + 2X done

def def
weuse r = N—/and P = true

Vo[l <NAN—I=n]l<+ 141 X<+ 2X[N—-1I]=n-1]
I<N=N-1>0
[true] p [I > N]
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Extensions

Weakest precondition

Weakest precondition  wp(prog, Prop) : Prop

@ similar to wp, but also additionally imposes termination

° [Plc[Q] < (P= wp(c,Q))

As before, only the definition for while needs to be modified:

wp(while edo s, P) & | A
(I=v>0)A
Vn:((e NI Av=n)= wp(s,| Av<n))A

((menl)=P)
the invariant predicate / is combined with a variant expression v

v is positive  (this is an invariant: | = v > 0)
v decreases at each loop iteration

(and similarly for strongest postconditions)
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Extensions

Arrays

We enrich our language with:
@ a set A of array variables
@ array access in expressions: A(expr), A € A

@ array assignment: A(expr) < expr, A€ A
(arrays have unbounded size here, we do not care about overflow)

Issue:
a natural idea is to generalize the assignment axiom:

{PIf/A(e)]} Ale) < f {P}
but this is not sound, due to aliasing

example:
we would derive the invalid triple: {A(J) =1A1=J} A(l) < 0{A(J)=1AI=J}
as (A(J) = D[0/A(N)] = (A(J) = 1)
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Extensions

Arrays

Solution:  use a specific theory of arrays (McCarthy 1962)

@ enrich the assertion language with expressions A{e > f}

(meaning: the array equal to A except that index e maps to value f)

@ add the axiom {P[A{e = F1/AI} Ale) — f {P}

(intuitively, we use “functional arrays” in the logic world)

@ add logical axioms to reason about our arrays in assertions

Ale— fi(e)=f (e #¢€') = (A{e— f}() = A(€))

Course 4 Axiomatic semantics Antoine Miné

p. 50 / 55



Extensions

Arrays: example

Example:  swap

given the program p & T « ANy A(D) « A(J); A(N)« T
we wish to prove: {A(/) =xANA(J) =y} p{Al)=y NAJ) =

by propagating A(/) = y backwards by the assignment rule, we get

AT TY(I) =y

A{l AN HI—TH) =y

All = AN H I = AN =y
we consider two cases:

if I = J, then A{I — A(J)H{J—> A(l)}=A

so, A{ 1 — A(J) H{ J— A() }(I) = A(l) = A(J)

if 1 £ J, then A{ I — A(J)H J— A I = ALl — A(J) }(I) = A(J)
in both cases, we get A(J) = y in the precondition

likewise, A(l) = x in the precondition
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Extensions

What about real languages?

In a real language such as C, the rules are not so simple

Example: the assignment rule [Ple/XT} X — e (P} requires that

@ e has no effect (memory write, function calls)
@ there is no pointer aliasing
@ e has no run-time error

moreover, the operators in the program and in the logic may not match:
@ integers: logic models Z, computers use Z/2"Z (wrap-around)

@ continuous:

logic models Q or R, programs use floating-point numbers
(rounding error)

@ a logic for pointers and dynamic allocation is also required
(separation logic)

(see for instance the tool Why, to see how some problems can be circumvented)
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Conclusion

Conclusion

@ logic allows us to reason about program correctness

@ verification can be reduced to proofs of simple logic statements

Issue: automation
@ annotations are required (loop invariants, contracts)
@ verification conditions must be proven

to scale up to realistic programs, we need to automate as much as possible

Some solutions: in the following courses

@ automatic logic solvers to discharge proof obligations
SAT / SMT solvers
@ abstract interpretation to approximate the semantics
o fully automatic
e able to infer invariants
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