
Axiomatic semantics
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2013–2014

Course 4
12 March 2014

Course 4 Axiomatic semantics Antoine Miné p. 1 / 55

Introduction

Operational semantics

Models precisely program execution as low-level transitions between
internal states
(transition systems, execution traces, big-step semantics)

Denotational semantics

Maps programs into objects in a mathematical domain
(higher level, compositional, domain oriented)

Aximoatic semantics (today)

Prove properties about programs

programs are annotated with logical assertions

a rule-system defines the validity of assertions (logical proofs)

clearly separates programs from specifications
(specification ' user-provided abstraction of the behavior, it is not unique)

enables the use of logic tools (partial automation)

Course 4 Axiomatic semantics Antoine Miné p. 2 / 55

Overview

Specifications (informal examples)

Floyd–Hoare logic

Dijkstra’s predicate transformers
(weakest precondition, strongest postcondition)

Verification conditions
(partially automated program verification)

Advanced topics

Auxiliary variables

Non-determinism

Total correctness (termination)

Arrays

Course 4 Axiomatic semantics Antoine Miné p. 3 / 55

Specifications

Specifications

Course 4 Axiomatic semantics Antoine Miné p. 4 / 55

Specifications

Example: function specification

example in C + ACSL

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 4 Axiomatic semantics Antoine Miné p. 5 / 55

Specifications

Example: function specification

example in C + ACSL

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 4 Axiomatic semantics Antoine Miné p. 5 / 55

Specifications

Example: function specification

example in C + ACSL

//@ requires A>=0 && B>=0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 4 Axiomatic semantics Antoine Miné p. 5 / 55

Specifications

Example: function specification

example in C + ACSL

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 4 Axiomatic semantics Antoine Miné p. 5 / 55

Specifications

Example: program annotations

example with full assertions

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

//@ assert A>=0 && B>0 && Q=0 && R==A;

while (R >= B) {

//@ assert A>=0 && B>0 && R>=B && A==Q*B+R;

R = R - B;

Q = Q + 1;

}

//@ assert A>=0 && B>0 && R>=0 && R<B && A==Q*B+R;

return R;

}

Assertions give detail about the internal computations
why and how contracts are fulfilled

(Note: r = a mod b means ∃q: a = qb + r ∧ 0 ≤ r < b)

Course 4 Axiomatic semantics Antoine Miné p. 6 / 55

Specifications

Example: ghost variables

example with ghost variables

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int R = A;

while (R >= B) {

R = R - B;

}

// ∃Q: A = QB + R and 0 ≤ R < B
return R;

}

Program annotations can be more complex than the program

Course 4 Axiomatic semantics Antoine Miné p. 7 / 55

Specifications

Example: ghost variables

example with ghost variables

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

//@ ghost int q = 0;

int R = A;

//@ assert A>=0 && B>0 && q=0 && R==A;

while (R >= B) {

//@ assert A>=0 && B>0 && R>=B && A==q*B+R;

R = R - B;

//@ ghost q = q + 1;

}

//@ assert A>=0 && B>0 && R>=0 && R<B && A==q*B+R;

return R;

}

Program annotations can be more complex than the program
and require reasoning on enriched states (ghost variables)

Course 4 Axiomatic semantics Antoine Miné p. 7 / 55

Specifications

Example: class invariants

example in ESC/Java

public class OrderedArray {

int a[];

int nb;

//@invariant nb >= 0 && nb <= 20

//@invariant (\forall int i; (i >= 0 && i < nb-1) ==> a[i] <= a[i+1])

public OrderedArray() { a = new int[20]; nb = 0; }

public void add(int v) {

if (nb >= 20) return;

int i; for (i=nb; i > 0 && a[i-1] > v; i--) a[i] = a[i-1];

a[i] = v; nb++;

}

}

class invariant: property of the fields true outside all methods
it can be temporarily broken within a method
but it must be restored before exiting the method

Course 4 Axiomatic semantics Antoine Miné p. 8 / 55

Specifications

Language support

Contracts (and class invariants):

built in few languages (Eiffel)

available as a library / external tool (C, Java, C#, etc.)

Contracts can be:

checked dynamically

checked statically (Frama-C, Why, ESC/Java)

inferred statically (CodeContracts)

In this course:
deductive methods (logic) to check (prove) statically (at compile-time)

partially automatically (with user help) that contracts hold

Course 4 Axiomatic semantics Antoine Miné p. 9 / 55

Floyd–Hoare logic

Floyd–Hoare logic

Course 4 Axiomatic semantics Antoine Miné p. 10 / 55

Floyd–Hoare logic

Hoare triples

Hoare triple: {P} prog {Q}
prog is a program fragment

P and Q are logical assertions over program variables
(e.g. P

def
= (X ≥ 0 ∧ Y ≥ 0) ∨ (X < 0 ∧ Y < 0))

A triple means:

if P holds before prog is executed

then Q holds after the execution of prog

unless prog does not terminates or encounters an error

P is the precondition, Q is the postcondition

{P} prog {Q} expresses partial correctness
(does not rule out errors and non-termination)

Hoare triples serve as judgements in a proof system
(introduced in [Hoare69])

Course 4 Axiomatic semantics Antoine Miné p. 11 / 55

Floyd–Hoare logic

Language

stat ::= X ← expr (assignment)

| skip (do nothing)

| fail (error)

| stat; stat (sequence)

| if expr then stat else stat (conditional)

| while expr do stat (loop)

X ∈ V: integer-valued variables

expr : integer arithmetic expressions

we assume that:

expressions are deterministic (for now)

expression evaluation do not cause error
for instance, to avoid division by zero, we can:
either define 1/0 to be a valid value, such as 0
or systematically guard divisions
(e.g.: if X = 0 then fail else · · · /X · · ·)

Course 4 Axiomatic semantics Antoine Miné p. 12 / 55

Floyd–Hoare logic

Hoare rules: axioms

Axioms:
{P} skip {P} {P} fail {Q}

any property true before skip is true afterwards

any property is true after fail

Course 4 Axiomatic semantics Antoine Miné p. 13 / 55

Floyd–Hoare logic

Hoare rules: axioms

Assignment axiom:
{P[e/X]} X ← e {P}

for P over X to be true after X ← e
P must be true over e before the assignment

P[e/X] is P where free occurrences of X are replaced with e

e must be deterministic

the rule is “backwards” (P appears as a postcondition)

examples: {true} X ← 5 {X = 5}
{Y = 5} X ← Y {X = 5}
{X + 1 ≥ 0} X ← X + 1 {X ≥ 0}
{false} X ← Y + 3 {Y = 0 ∧ X = 12}
{Y ∈ [0, 10]} X ← Y + 3 {X = Y + 3 ∧ Y ∈ [0, 10]}

Course 4 Axiomatic semantics Antoine Miné p. 14 / 55

Floyd–Hoare logic

Hoare rules: consequence

Rule of consequence:

P ⇒ P ′ Q ′ ⇒ Q {P ′} c {Q ′}
{P} c {Q}

we can weaken a Hoare triple by:
weakening its postcondition Q ⇐ Q ′

strengthening its precondition P ⇒ P ′

we assume a logic system to be available to prove formulas on assertions,
such as P ⇒ P ′ (e.g., arithmetic, set theory, etc.)

examples:

the axiom for fail can be replaced with
{true} fail {false}

(as P ⇒ true and false⇒ Q always hold)

{X = 99 ∧ Y ∈ [1, 10]} X ← Y + 10 {X = Y + 10 ∧ Y ∈ [1, 10]}
(as {Y ∈ [1, 10]} X ← Y + 10 {X = Y + 10 ∧ Y ∈ [1, 10]} and

X = 99 ∧ Y ∈ [1, 10]⇒ Y ∈ [1, 10])

Course 4 Axiomatic semantics Antoine Miné p. 15 / 55

Floyd–Hoare logic

Hoare rules: tests

Tests:
{P ∧ e} s {Q} {P ∧ ¬e} t {Q}
{P} if e then s else t {Q}

to prove that Q holds after the test
we prove that it holds after each branch (s, t)

under the assumption that it is executed (e, ¬e)

example:

{X < 0} X ← −X {X > 0}
{(X 6= 0) ∧ (X < 0)} X ← −X {X > 0}

{X > 0} skip {X > 0}
{(X 6= 0) ∧ (X ≥ 0)} skip {X > 0}

{X 6= 0} if X < 0 then X ← −X else skip {X > 0}

Course 4 Axiomatic semantics Antoine Miné p. 16 / 55

Floyd–Hoare logic

Hoare rules: sequences

Sequences:
{P} s {R} {R} t {Q}

{P} s; t {Q}

to prove a sequence s; t
we must invent an intermediate assertion R
implied by P after s, and implying Q after t

(often denoted {P} s {R} t {Q})

example:

{X = 1 ∧ Y = 1} X ← X + 1 {X = 2 ∧ Y = 1} Y ← Y − 1 {X = 2 ∧ Y = 0}

Course 4 Axiomatic semantics Antoine Miné p. 17 / 55

Floyd–Hoare logic

Hoare rules: loops

Loops:
{P ∧ e} s {P}

{P} while e do s {P ∧ ¬e}

P is a loop invariant
P holds before each loop iteration, before even testing e

Practical use:

actually, we would rather prove the triple: {P} while e do s {Q}
it is sufficient to invent an assertion I that:

holds when the loop start: P ⇒ I
is invariant by the body s: {I ∧ e} s {I}
implies the assertion when the loop stops: (I ∧ ¬e)⇒ Q

we can derive the rule:

P ⇒ I I ∧ ¬e ⇒ Q

{I ∧ e} s {I}
{I} while e do s {I ∧ ¬e}

{P} while e do s {Q}

Course 4 Axiomatic semantics Antoine Miné p. 18 / 55

Floyd–Hoare logic

Hoare rules: logical part

Hoare logic is parameterized by the choice of logical theory of assertions

the logical theory is used to:

prove properties of the form P ⇒ Q (rule of consequence)

simplify formulas
(replace a formula with a simpler one, equivalent in a logical sens: ⇔)

Examples: (generally first order theories)

booleans (B,¬,∧,∨)

bit-vectors (Bn,¬,∧,∨)

Presburger arithmetic (N,+)

Peano arithmetic (N,+,×)

linear arithmetic on R

Zermelo-Fraenkel set theory (∈, {})
theory of arrays (lookup, update)

theories have different expressiveness, decidability and complexity results
this is an important factor when trying to automate program verification

Course 4 Axiomatic semantics Antoine Miné p. 19 / 55

Floyd–Hoare logic

Hoare rules: summary

{P} skip {P} {true} fail {false} {P[e/X]} X ← e {P}

{P} s {R} {R} t {Q}
{P} s; t {Q}

{P ∧ e} s {Q} {P ∧ ¬e} t {Q}
{P} if e then s else t {Q}

{P ∧ e} s {P}
{P} while e do s {P ∧ ¬e}

P ⇒ P ′ Q ′ ⇒ Q {P ′} c {Q ′}
{P} c {Q}

Course 4 Axiomatic semantics Antoine Miné p. 20 / 55

Floyd–Hoare logic

Proof tree example

s
def
= while I < N do (X ← 2X ; I ← I + 1)

A B

C {P3} X ← 2X {P2} {P2} I ← I + 1 {P1}
{P1 ∧ I < N} X ← 2X ; I ← I + 1 {P1}

{P1} s {P1 ∧ I ≥ N}
{X = 1 ∧ I = 0 ∧ N ≥ 0} s {X = 2N ∧ N = I ∧ N ≥ 0}

P1
def
= X = 2I ∧ I ≤ N ∧ N ≥ 0

P2
def
= X = 2I +1 ∧ I +1 ≤ N ∧ N ≥ 0

P3
def
= 2X = 2I +1 ∧ I +1 ≤ N ∧ N ≥ 0 ≡ X = 2I ∧ I < N ∧ N ≥ 0

A : (X = 1 ∧ I = 0 ∧ N ≥ 0)⇒ P1

B : (P1 ∧ I ≥ N)⇒ (X = 2N ∧ N = I ∧ N ≥ 0)

C : P3 ⇐⇒ (P1 ∧ I < N)

Course 4 Axiomatic semantics Antoine Miné p. 21 / 55

Floyd–Hoare logic

Proof tree example

s
def
= while I 6= 0 do I ← I − 1

{true} I ← I − 1 {true}
{I 6= 0} I ← I − 1 {true}

{true} while I 6= 0 do I ← I − 1 {true ∧ ¬(I 6= 0)}
{true} while I 6= 0 do I ← I − 1 {I = 0}

in some cases, the program does not terminate
(if the program starts with I < 0)

the same proof holds for: {true} while I 6= 0 do J ← J − 1 {I = 0}

anything can be proven of a program that never terminates:

{I = 1 ∧ I 6= 0} J ← J − 1 {I = 1}
{I = 1} while I 6= 0 do J ← J − 1 {I = 1 ∧ I = 0}
{I = 1} while I 6= 0 do J ← J − 1 {false}

Course 4 Axiomatic semantics Antoine Miné p. 22 / 55

Floyd–Hoare logic

Invariants and inductive invariants

Example: we wish to prove:

{X = Y = 0} while X < 10 do (X ← X + 1; Y ← Y + 1) {X = Y = 10}

we need to find an invariant assertion P for the while rule

Incorrect invariant: P
def
= X ,Y ∈ [0, 10]

P indeed holds at each loop iteration (P is an invariant)

but {P ∧ (X < 10)} X ← X + 1; Y ← Y + 1 {P}
does not hold
P ∧ X < 10 does not prevent Y = 10
after Y ← Y + 1, P does not hold anymore

Course 4 Axiomatic semantics Antoine Miné p. 23 / 55

Floyd–Hoare logic

Invariants and inductive invariants

Example: we wish to prove:

{X = Y = 0} while X < 10 do (X ← X + 1; Y ← Y + 1) {X = Y = 10}

we need to find an invariant assertion P for the while rule

Correct invariant: P ′
def
= X ∈ [0, 10] ∧ X = Y

P ′ also holds at each loop iteration (P′ is an invariant)

{P ′ ∧ (X < 10)} X ← X + 1; Y ← Y + 1 {P ′} can be proven

P ′ is an inductive invariant
(passes to the induction, stable by a loop iteration)

=⇒ to prove a loop invariant
it is often necessary to find a stronger loop invariant

Course 4 Axiomatic semantics Antoine Miné p. 23 / 55

Floyd–Hoare logic

Soundness and completeness

Validity:

{P} c {Q} is valid
def⇐⇒ executions starting in a state satisfying P

and terminating
end in a state satisfying Q

(it is an operational notion)

soundness
a proof tree exists for {P} c {Q} =⇒ {P} c {Q} is valid

completeness
{P} c {Q} is valid =⇒ a proof tree exists for {P} c {Q}

(technically, by Gödel’s incompleteness theorem, P ⇒ Q is not always provable
for strong theories; hence, Hoare logic is incomplete; we consider relative
completeness by adding all valid properties P ⇒ Q on assertions as axioms)

Theorem (Cook 1974)

Hoare logic is sound (and relatively complete)

Completeness no longer holds for more complex languages (Clarke 1976)

Course 4 Axiomatic semantics Antoine Miné p. 24 / 55

Floyd–Hoare logic

Link with denotational semantics

Reminder: SJ stat K : P(E)→ P(E) where E def
= V 7→ I

SJ skip K R
def
= R

SJ fail K R
def
= ∅

SJ s1; s2 K def
= SJ s2 K ◦ SJ s1 K

SJ X ← e K R
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

SJ if e then s1 else s2 K R
def
= SJ s1 K { ρ ∈ R | true ∈ EJ e K ρ } ∪

SJ s2 K { ρ ∈ R | false ∈ EJ e K ρ }

SJ while e do s K R
def
= { ρ ∈ lfp F | false ∈ EJ e K ρ }

where F (X)
def
= R ∪ SJ s K { ρ ∈ X | true ∈ EJ e K ρ }

Theorem

{P} c {Q} def⇐⇒ ∀R ⊆ E : R |= P =⇒ SJ c K R |= Q

(A |= P means ∀ρ ∈ A, the formula P is true on the variable assignment ρ)

Course 4 Axiomatic semantics Antoine Miné p. 25 / 55

Floyd–Hoare logic

Link with denotational semantics

Hoare logic reasons on formulas

denotational semantics reasons on state sets

we can assimilate assertion formulas and state sets
(logical abuse: we assimilate formulas and models)

let [R] be any formula representing the set R, then:

{[R]} c {[SJ c K R]} is always valid

{[R]} c {[R ′]} ⇒ SJ c K R ⊆ R ′

=⇒ [SJ c K R] provides the best valid postcondition

Course 4 Axiomatic semantics Antoine Miné p. 26 / 55

Floyd–Hoare logic

Link with denotational semantics

Loop invariants

Hoare:
to prove {P} while e do s {P ∧ ¬e} we must prove {P ∧ e} s {P}
i.e., P is an inductive invariant

Denotational semantics:
we must find lfp F where F (X)

def
= R ∪ SJ s K { ρ ∈ X | ρ |= e }

lfp F = ∩ {X |F (X) ⊆ X } (Tarski’s theorem)

F (X) ⊆ X ⇐⇒ ([R]⇒ [X]) ∧ {[X ∧ e]} s {[X]}
R ⊆ X means [R]⇒ [X],
SJ s K { ρ ∈ X | ρ |= e } ⊆ X means {[X ∧ e]} s {[X]}

As a consequence:

any X such that F (X) ⊆ X gives an inductive invariant [X]

lfp F gives the best inductive invariant

any X such that lfp F ⊆ X gives an invariant
(not necessarily inductive)

(see [Cousot02])

Course 4 Axiomatic semantics Antoine Miné p. 27 / 55

Predicate transformers

Predicate transformers

Course 4 Axiomatic semantics Antoine Miné p. 28 / 55

Predicate transformers

Dijkstra’s weakest liberal preconditions

Principle:

calculus to derive preconditions from postconditions
order and mechanize the search for intermediate assertions
(easier to go backwards, mainly due to assignments)

Weakest liberal precondition wlp : (prog × Prop)→ Prop

wlp(c,P) is the weakest, i.e. most general, precondition

ensuring that {wlp(c,P)} c {P} is a Hoare triple

(greatest state set that ensures that the computation ends up in P)

formally: {P} c {Q} ⇐⇒ (P ⇒ wlp(c,Q))

“liberal” means that we do not care about termination and errors

Examples:

wlp(X ← X + 1, X = 1) =

wlp(while X < 0 X ← X + 1, X ≥ 0) =

wlp(while X 6= 0 X ← X + 1, X ≥ 0) =

(introduced in [Dijkstra75])
Course 4 Axiomatic semantics Antoine Miné p. 29 / 55

Predicate transformers

Dijkstra’s weakest liberal preconditions

Principle:

calculus to derive preconditions from postconditions
order and mechanize the search for intermediate assertions
(easier to go backwards, mainly due to assignments)

Weakest liberal precondition wlp : (prog × Prop)→ Prop

wlp(c,P) is the weakest, i.e. most general, precondition

ensuring that {wlp(c,P)} c {P} is a Hoare triple

(greatest state set that ensures that the computation ends up in P)

formally: {P} c {Q} ⇐⇒ (P ⇒ wlp(c,Q))

“liberal” means that we do not care about termination and errors

Examples:

wlp(X ← X + 1, X = 1) = (X = 0)

wlp(while X < 0 X ← X + 1, X ≥ 0) = true

wlp(while X 6= 0 X ← X + 1, X ≥ 0) = true

(introduced in [Dijkstra75])
Course 4 Axiomatic semantics Antoine Miné p. 29 / 55

Predicate transformers

A calculus for wlp

wlp is defined by induction on the syntax of programs:

wlp(skip, P)
def
= P

wlp(fail, P)
def
= true

wlp(X ← e, P)
def
= P[e/X]

wlp(s; t, P)
def
= wlp(s,wlp(t,P))

wlp(if e then s else t, P)
def
= (e ⇒ wlp(s,P)) ∧ (¬e ⇒ wlp(t,P))

wlp(while e do s, P)
def
= I ∧ ((e ∧ I)⇒ wlp(s, I)) ∧ ((¬e ∧ I)⇒ P)

e ⇒ Q is equivalent to Q ∨ ¬e
weakest property that matches Q when e holds
but says nothing when e does not hold

while loops require providing an invariant predicate I
intuitively, wlp checks that I is an inductive invariant implying P
if so, it returns I ; otherwise, it returns false

wlp is the weakest precondition only if I is well-chosen. . .

Course 4 Axiomatic semantics Antoine Miné p. 30 / 55

Predicate transformers

Alternate form for loops

Unrolling of the loop while e do s:

L0
def
= fail

Li+1
def
= if e then (s; Li) else skip

Li runs the loop and fails after i iterations

we have:

{
wlp(L0,P) = true

wlp(Li+1,P) = (e ⇒ wlp(s,wlp(Li ,P))) ∧ (¬e ⇒ P)

Alternate wlp for loops: wlp(while e do s,P)
def
= ∀i : Xi

where X0
def
= true

Xi+1
def
= (e ⇒ wlp(s,Xi)) ∧ (¬e ⇒ P)

Xi ⇐ Xi+1: sequence of assertions of increasing strength
(∀i : Xi) is the limit, with an arbitrary number of iterations

(∀i : Xi) is a closed form guaranteed to be the weakest precondition
(no need for a user-specified invariant)

(∀i : Xi) is the fixpoint of a second-order formula
=⇒ very difficult to handle

Course 4 Axiomatic semantics Antoine Miné p. 31 / 55

Predicate transformers

Wlp computation example

wlp(if X < 0 thenY ← −X else Y ← X , Y ≥ 10) =

(X < 0⇒ wlp(Y ← −X ,Y ≥ 10)) ∧ (X ≥ 0⇒ wlp(Y ← X ,Y ≥ 10))

(X < 0⇒ −X ≥ 10) ∧ (X ≥ 0⇒ X ≥ 10) =

(X ≥ 0 ∨ −X ≥ 10) ∧ (X < 0 ∨ X ≥ 10) =

X ≥ 10 ∨ X ≤ −10

wlp generates complex formulas

it is important to simplify them from time to time

Course 4 Axiomatic semantics Antoine Miné p. 32 / 55

Predicate transformers

Properties of wlp

wlp(c, false) ≡ false (excluded miracle)

wlp(c,P) ∧ wlp(d ,Q) ≡ wlp(c,P ∧ Q) (distributivity)

wlp(c,P) ∨ wlp(d ,Q) ≡ wlp(c,P ∨ Q) (distributivity)

(⇒ always true, ⇐ only true for deterministic, error-free programs)

if P ⇒ Q, then wlp(c,P)⇒ wlp(c,Q) (monotonicity)

A ≡ B means that the formulas A and B are equivalent
i.e., ∀ρ: ρ |= A ⇐⇒ ρ |= B

(stronger that syntactic equality)

Course 4 Axiomatic semantics Antoine Miné p. 33 / 55

Predicate transformers

Strongest liberal postconditions

we can define slp : (Prop × prog)→ Prop

{P} c {slp(P, c)} (postcondition)

{P} c {Q} ⇐⇒ (slp(P, c)⇒ Q) (strongest postcondition)

(corresponds to the smallest state set)

slp(P, c) does not care about non-termination (liberal)

allows forward reasoning

we have a duality:

(P ⇒ wlp(c,Q)) ⇐⇒ (slp(P, c)⇒ Q)

proof: (P ⇒ wlp(c,Q)) ⇐⇒ {P} c {Q} ⇐⇒ (slp(P, c)⇒ Q)

Course 4 Axiomatic semantics Antoine Miné p. 34 / 55

Predicate transformers

Calculus for slp

slp(P, skip)
def
= P

slp(P, fail)
def
= false

slp(P,X ← e)
def
= ∃v : P[v/X] ∧ X = e[v/X]

slp(P, s; t)
def
= slp(slp(P, s), t)

slp(P, if e then s else t)
def
= slp(P ∧ e, s) ∨ slp(P ∨ ¬e, t)

slp(P, while e do s)
def
= (P ⇒ I) ∧ (slp(I ∧ e, s)⇒ I) ∧ (¬e ∧ I)

(the rule for X ← e makes slp much less attractive than wlp)

Course 4 Axiomatic semantics Antoine Miné p. 35 / 55

Verification conditions

Verification conditions

Course 4 Axiomatic semantics Antoine Miné p. 36 / 55

Verification conditions

Verification condition approch to program verification

How can we automate program verification using logic?

Hoare logic: deductive system
can only automate the checking of proofs

predicate transformers: wlp, slp calculus
construct (big) formulas mechanically
invention is still needed for loops

verification condition generation
take as input a program with annotations
(at least contracts and loop invariants)

generate mechanically logic formulas ensuring the correctness
(reduction to a mathematical problem, no longer any reference to a program)

use an automatic SAT/SMT solver to prove (discharge) the formulas
or an interactive theorem prover

(the idea of logic-based automated verification appears as early as [King69])

Course 4 Axiomatic semantics Antoine Miné p. 37 / 55

Verification conditions

Language

stat ::= X ← expr
| skip
| stat; stat
| if expr then stat else stat
| while {Prop} expr do stat
| assert expr

prog ::= {Prop} stat {Prop}

loops are annotated with loop invariants

optional assertions at any point

programs are annotated with a contract
(precondition and postcondition)

Course 4 Axiomatic semantics Antoine Miné p. 38 / 55

Verification conditions

Verification condition generation algorithm

by induction on the syntax of statements

vcgp : prog → P(Prop)

vcgp({P} c {Q}) def
=

let (R,C) = vcgs (c, Q) in C ∪ {P ⇒ R}

vcgs : (stat × Prop)→ (Prop × P(Prop))

vcgs (skip, Q)
def
= (Q, ∅)

vcgs (X ← e, Q)
def
= (Q[e/X], ∅)

vcgs (s; t, Q)
def
=

let (R,C) = vcgs (t, Q) in let (P,D) = vcgs (s, R) in (P,C ∪ D)

vcgs (if e then s else t, Q)
def
=

let (S,C) = vcgs (s, Q) in let (T ,D) = vcgs (t, Q) in ((e ⇒ S) ∧ (¬e ⇒ T),C ∪ D)

vcgs (while {I} e do s, Q)
def
=

let (R,C) = vcgs (s, I) in (I ,C ∪ {(I ∧ e)⇒ R, (I ∧ ¬e)⇒ Q})
vcgs (assert e, Q)

def
= (e ⇒ Q, ∅)

we use wlp to infer assertions automatically when possible

vcgs (c,P) = (P′,C) propagates postconditions backwards (P into P′)
and accumulates into C verification conditions (from loops)

we could do the same using slp instead of wlp (symbolic execution)

Course 4 Axiomatic semantics Antoine Miné p. 39 / 55

Verification conditions

Verification condition generation example

Consider the program:

{N ≥ 0} X ← 1; I ← 0;
while {X = 2I ∧ 0 ≤ I ≤ N} I < N do

(X ← 2X ; I ← I + 1)
{X = 2N}

we get three verification conditions:

C1
def
= (X = 2I ∧ 0 ≤ I ≤ N) ∧ I ≥ N ⇒ X = 2N

C2
def
= (X = 2I ∧ 0 ≤ I ≤ N) ∧ I < N ⇒ 2X = 2I +1 ∧ 0 ≤ I + 1 ≤ N

(from (X = 2I ∧ 0 ≤ I ≤ N)[I + 1/I , 2X/X])

C3
def
= N ≥ 0⇒ 1 = 20 ∧ 0 ≤ 0 ≤ N

(from (X = 2I ∧ 0 ≤ I ≤ N)[0/I , 1/X])

which can be checked independently

Course 4 Axiomatic semantics Antoine Miné p. 40 / 55

Extensions

Extensions

Course 4 Axiomatic semantics Antoine Miné p. 41 / 55

Extensions

Auxiliary variables

Auxiliary variables:

mathematical variables that do not appear in the program
they are constant during program execution

Applications:

simplify proofs

express more properties (contracts, input-output relations)

achieve completeness on extended languages

Example: {X = x ∧ Y = y} if X < Y then Y ← X else skip {Y = min(x , y)}

x and y retain the values of X and Y from the program entry

Y = min(X ,Y) is much less useful as a specification of a min function

“{true} if X < Y then Y ← X else skip {Y = min(X ,Y)}” holds, but

“{true} X ← Y + 1 {Y = min(X ,Y)}” also holds

Course 4 Axiomatic semantics Antoine Miné p. 42 / 55

Extensions

Non-determinism

We model non-determinism with the statement X ← ?
meaning: X is assigned a random value

(X ← [a, b] can be modeled as: X ← ?; if X < a ∨ X > b then fail;)

Hoare axiom:
{∀X : P} X ← ? {P}

if P is true after assigning X to random
then P must hold whatever the value of X before

often, X does not appear in P and we get simply:
{P} X ← ? {P}

Example:

{X = x} Y ← X {Y = x}
{Y = x} X ← ? {Y = x} {Y = x} X ← Y {X = x}

{X = x} Y ← X ; X ← ?; X ← Y {X = x}

Course 4 Axiomatic semantics Antoine Miné p. 43 / 55

Extensions

Non-determinism

Predicate transformers:

wlp(X ← ?, P)
def
= ∀X : P

(P must hold whatever the value of X before the assignment)

slp(P, X ← ?)
def
= ∃X : P

(if P held for one value of X , P holds for all values of X after the assignment)

Link with operational semantics (as transition systems)

predicates P as sets of states P ⊆ Σ
commands c as transition relations c ⊆ Σ× Σ

we define: post[τ](P)
def
= {σ′ | ∃σ ∈ P: (σ, σ′) ∈ τ }

p̃re[τ](P)
def
= {σ | ∀σ′ ∈ Σ: (σ, σ′) ∈ τ =⇒ σ′ ∈ P }

then: slp(P, c) = post[c](P)
wlp(c,P) = p̃re[c](P)

Course 4 Axiomatic semantics Antoine Miné p. 44 / 55

Extensions

Total correctness

Hoare triple: [P] prog [Q]

if P holds before prog is executed

then prog always terminates

and Q holds after the execution of prog

Rules: we only need to change the rule for while

∀t ∈W : [P ∧ e ∧ u = t] s [P ∧ u ≺ t]

[P] while e do s [P ∧ ¬e]
((W ,≺) is well-founded)

(W ,≺) well-founded
def⇐⇒ every V ⊆W , V 6= ∅ has a minimal element for ≺

ensures that we cannot decrease infinitely by ≺ in W
generally, we simply use (N, <)
(also useful: lexicographic orders, ordinals)

in addition to the loop invariant P
we invent an expression u that strictly decreases by s

u is called a “ranking function”
often ¬e =⇒ u = 0: u counts the number of steps until termination

Course 4 Axiomatic semantics Antoine Miné p. 45 / 55

Extensions

Total correctness

To simplify, we can decompose a proof of total correctness into:

a proof of partial correctness {P} c {Q}
ignoring termination

a proof of termination [P] c [true]
ignoring the specification
(we must still include the precondition P
as the program may not terminate for all inputs)

indeed, we have:
{P} c {Q} [P] c [true]

[P] c [Q]

Course 4 Axiomatic semantics Antoine Miné p. 46 / 55

Extensions

Total correctness example

We use a simpler rule for integer ranking functions ((W ,≺)
def
= (N,≤))

using an integer expression r over program variables:

∀n: [P ∧ e ∧ (r = n)] s [P ∧ (r < n)] (P ∧ e)⇒ (r ≥ 0)

[P] while e do s [P ∧ ¬e]

Example: p
def
= while I < N do I ← I + 1; X ← 2X done

we use r
def
= N − I and P

def
= true

∀n: [I < N ∧ N − I = n] I ← I + 1; X ← 2X [N − I = n − 1]
I < N ⇒ N − I ≥ 0

[true] p [I ≥ N]

Course 4 Axiomatic semantics Antoine Miné p. 47 / 55

Extensions

Weakest precondition

Weakest precondition wp(prog ,Prop) : Prop

similar to wp, but also additionally imposes termination

[P] c [Q] ⇐⇒ (P ⇒ wp(c,Q))

As before, only the definition for while needs to be modified:

wp(while e do s, P)
def
= I ∧

(I ⇒ v ≥ 0) ∧
∀n: ((e ∧ I ∧ v = n)⇒ wp(s, I ∧ v < n)) ∧
((¬e ∧ I)⇒ P)

the invariant predicate I is combined with a variant expression v
v is positive (this is an invariant: I ⇒ v ≥ 0)

v decreases at each loop iteration

(and similarly for strongest postconditions)

Course 4 Axiomatic semantics Antoine Miné p. 48 / 55

Extensions

Arrays

We enrich our language with:

a set A of array variables

array access in expressions: A(expr), A ∈ A

array assignment: A(expr)← expr , A ∈ A
(arrays have unbounded size here, we do not care about overflow)

Issue:

a natural idea is to generalize the assignment axiom:

{P[f /A(e)]} A(e)← f {P}

but this is not sound, due to aliasing

example:

we would derive the invalid triple: {A(J) = 1 ∧ I = J} A(I)← 0 {A(J) = 1 ∧ I = J}
as (A(J) = 1)[0/A(I)] = (A(J) = 1)

Course 4 Axiomatic semantics Antoine Miné p. 49 / 55

Extensions

Arrays

Solution: use a specific theory of arrays (McCarthy 1962)

enrich the assertion language with expressions A{e 7→ f }
(meaning: the array equal to A except that index e maps to value f)

add the axiom
{P[A{e 7→ f }/A]} A(e)← f {P}

(intuitively, we use “functional arrays” in the logic world)

add logical axioms to reason about our arrays in assertions

A{e 7→ f }(e) = f (e 6= e′)⇒ (A{e 7→ f }(e′) = A(e′))

Course 4 Axiomatic semantics Antoine Miné p. 50 / 55

Extensions

Arrays: example

Example: swap

given the program p
def
= T ← A(I); A(I)← A(J); A(J)← T

we wish to prove: {A(I) = x ∧ A(J) = y} p {A(I) = y ∧ A(J) = x}

by propagating A(I) = y backwards by the assignment rule, we get
A{ J 7→ T }(I) = y
A{ I 7→ A(J) }{ J 7→ T }(I) = y
A{ I 7→ A(J) }{ J 7→ A(I) }(I) = y

we consider two cases:

if I = J, then A{ I 7→ A(J) }{ J 7→ A(I) } = A

so, A{ I 7→ A(J) }{ J 7→ A(I) }(I) = A(I) = A(J)

if I 6= J, then A{ I 7→ A(J) }{ J 7→ A(I) }(I) = A{ I 7→ A(J) }(I) = A(J)

in both cases, we get A(J) = y in the precondition

likewise, A(I) = x in the precondition

Course 4 Axiomatic semantics Antoine Miné p. 51 / 55

Extensions

What about real languages?

In a real language such as C, the rules are not so simple

Example: the assignment rule
{P[e/X]} X ← e {P}

requires that

e has no effect (memory write, function calls)

there is no pointer aliasing
e has no run-time error

moreover, the operators in the program and in the logic may not match:

integers: logic models Z, computers use Z/2nZ (wrap-around)

continuous:
logic models Q or R, programs use floating-point numbers
(rounding error)

a logic for pointers and dynamic allocation is also required
(separation logic)

(see for instance the tool Why, to see how some problems can be circumvented)

Course 4 Axiomatic semantics Antoine Miné p. 52 / 55

Conclusion

Conclusion

Course 4 Axiomatic semantics Antoine Miné p. 53 / 55

Conclusion

Conclusion

logic allows us to reason about program correctness

verification can be reduced to proofs of simple logic statements

Issue: automation

annotations are required (loop invariants, contracts)

verification conditions must be proven

to scale up to realistic programs, we need to automate as much as possible

Some solutions: in the following courses

automatic logic solvers to discharge proof obligations
SAT / SMT solvers

abstract interpretation to approximate the semantics

fully automatic
able to infer invariants

Course 4 Axiomatic semantics Antoine Miné p. 54 / 55

Conclusion

Bibliography

[Apt81] K. Apt. Ten Years of Hoare’s logic: A survey In ACM TOPLAS,
3(4):431–483, 1981.

[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. In TCS, 277(1–2):47–103, 2002.

[Dijkstra76] E.W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of program In Comm. ACM, 18(8):453–457, 1975.

[Floyd67] R. Floyd. Assigning meanings to programs In In Proc. Sympos. Appl.
Math., Vol. XIX, pages 19–32, 1967.

[Hoare69] C.A.R. Hoare. An axiomatic basis for computer programming In Commun.
ACM 12(10), 1969.

[King69] J.C. King. A program verifier In PhD thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1969.

[Owicki76] S. Owicki & D. Gries. An axiomatic proof technique for parallel programs
I In Acta Informatica, 6(4):319–340, 1976.

Course 4 Axiomatic semantics Antoine Miné p. 55 / 55

	Specifications
	Floyd–Hoare logic
	Predicate transformers
	Verification conditions
	Extensions
	Conclusion

