Abstract Interpretation-Based
Certification of Assembly Code

Xavier Rival

Ecole Normale Supérieure
45, rue d’Ulm, 75230, Paris cedex 5, France *

rival@di.ens.fr

Abstract. We present a method for analyzing assembly programs based
on source program analysis and invariant translation. It is generic in the
choice of an abstract domain for representing stores. This method is
adapted to the design of certification tools for assembly programs gener-
ated by compiling programs written in an imperative language, without
writing a specific compiler or modifying an existing one since invariant
translation only uses standard debugging information. A prototype was
developed for a procedural subset of the C language.

Keywords: Static program analysis; compilation; Abstract Interpretation.

1 Introduction

Critical software is concerned with safety and analyzing source programs may
not be considered a sufficient guarantee. Indeed, compilers are complex pieces
of software and may contain bugs. Therefore, there is a need for extending the
certification to the assembly code itself, especially when dealing with highly
critical software (as in aeronautics).

Moreover, the safety properties usually checked concern the actual execution
of the program, that is, the assembly code. For instance, checking that a C pro-
gram does not contain any out-of-bound array access is useful to know that the
compiled program will not access a wrong part of the memory. Furthermore,
the definition of the undesirable behaviors could also be architecture or compiler
dependent, as is often the case for overflows. Indeed, the specification of lan-
guages like C often leaves these behaviors unspecified, for the sake of execution
speed (this avoids handling what could be considered errors and may simplify
the design of compilers). Therefore, certifying the assembly code provides much
a better confidence in the code as it allows to make no more assumption on the
semantics of the source language and on the correctness of the compiler.

Nevertheless, certifying assembly code is quite a hard task. It requires ana-
lyzing high-level properties (like state reachability) which is rather involved at

* This work was supported by the RTD project IST-1999-20527 "DAEDALUS” of the
European FP5 program.

the assembly level, since part of the structure of the program is lost at compile
time: the control structure is rather terse (branching to program points stored
in registers), the data structure is difficult to reconstruct (various addressing
modes like relative addressing). Proving the compiler formally and relying on
the analysis of the source code would be a satisfactory solution but it would be
too expensive since proving a compiler like in [2] is a huge amount of work and
modifying the compiler forces to adapt the proof.

The solution proposed in this paper is to use the results of an analysis of
the source code and the debugging information (information about the way the
compilation is done, about the correspondence between source and assembly
variables, program points) in order to reduce the task to handle at the assembly
code level to the checking of a translated invariant. This process should not de-
pend on the compiler itself but on the debugging information which is standard.
We can imagine designing a certifying tool for a given language and a given
architecture but generic in the compiler. This tool would prove the correctness
of an assembly program P, obtained by compiling a program P; as follows: it
would infer an invariant I, for P;, translate it to an invariant I, verify that
I, actually is an invariant for P, and check that I, entails correctness of P,.
The compiler itself is never proved which is a source of flexibility. The method
presented here was formalized inside the Abstract Interpretation framework [5,
6], that provides an integrated view in a single framework of both static analysis
[4,3] and program transformations [7] (hence, compilation).

The implementation of a prototype gave encouraging results.

Related works: As an example of translation of invariants at compile time we
can cite the Proof Carrying Code approach [13]: in this case the translation is
handled by the compiler itself which has therefore to be adapted. Moreover the
target language is also modified so as to be type-safe [12]. So, this approach
is restricted to type-safe programming languages (excluding C, used in many
critical systems). The VOC approach [18] generates proof obligations at compile
time and then solves it, so as to prove each instance of compilation: the generated
proof obligations entail the correctness of the transformation. This approach also
requires the compiler to be instrumented. The method proposed in [14] is similar.
Among direct analyses of assembly code we can cite some works that aim at
determining low level execution properties like memory usage, cache behavior or
worst case execution time [1,8,16,17].

Section 2 formalizes compilation. Section 3 states the soundness of the invari-
ant translation method. Section 4 details aspects of invariant checking. Section
5 presents implementation results ; Section 6 concludes.

2 Compilation as a program transformation

2.1 Abstract Interpretation and program transformations

Cousot and Cousot developed Abstract Interpretation [5,6] as a way of deriv-
ing relationships between different semantics so as to provide approximate but

computable answers to undecidable (or costly) problems. Note that approxima-
tions are always sound: if an abstract analyzer claims that a program satisfies a
property, then it actually satisfies it.

Practically, the concrete semantics [P] € D (for instance the collecting se-
mantics of all the states of a transition system) of a program P provides the most
precise description of the behavior of P. It can be expressed as the least fixpoint
of a monotone semantic function F' in a lattice D. Given a Galois connection
D % D*, the abstract semantics of P is [P]* = a([P]). Provided there exists

a monotone abstract semantic function F* such that F¥oa = a.o F the abstract
semantics can also be expressed as a least fixpoint IfpF* in the lattice D¥ (thanks
to the fixpoint transfer theorem of [15]). Most of the time the abstract semantics
itself is not computable, so a computable and sound approximation of [P]* is
derived by computing the least fixpoint of a function F* such that ao F C Ffoa
and by using a widening operator [5] to enforce convergence.

Program transformations can also be handled in this framework [7]. A pro-
gram transformation is a process that inputs a program P and outputs a program
P’ whose semantics can be expressed as a transformation of the semantics of P.
A convenient semantics for defining the semantic transformation ¢ (which may
be an isomorphism) associated to the syntactic transformation ¢ can be obtained
by abstract interpretation of the standard semantics as shown below:

p semantics [P] = 'Y, [Pt

1l T

v
P P — [P #
semantics [~ o [~

Formalizing compilation and some class of program analyses in this same
framework will enable us to make them commute in some sense.

2.2 Source and assembly programs
A (source or assembly) program P is defined by the data of:

- its store: Sp is the set of the possible values for the store of P. We write
R for the range of values for variables and Vp for the set of store locations
(that is wariables or memory locations) of P. In this setting, Sp = Vp — R.

- its control structure (Lp,ip,Tp) where Lp is a set of program points,ip € Lp
is the entry program point and 7p C (Lp X Sp) X (Lp X Sp) is the transition
relation of P: ((x,s),(y,t)) € 7p if and only if, the execution of P after having
reached program point x with store s, may continue at program point y, with
store t. Non-determinism is allowed since 7p is a relation.

Note that the notion of program point does not necessarily correspond to syn-
tactic program points: a program point may be defined by a pair (I, s) where [
is a syntactic point and a s is a stack in the case of procedural programs).

In the following, if £ is a set, we note £* for the set of sequences of elements
of £ and P(€) for the powerset of £. The concrete semantics [P] of a program P

is the set of the partial execution traces of P. It can be defined as a least fixpoint
in the lattice (P((Lp x Sp)*), C) by: [P] = lfp%Fp where Fp : P((Lp x Sp)*) —
P((Lp x Sp)*) is the semantic function:

Fp(X) ={((ir,s)) | s € Sp}
U {{(z0,50)s--- , (@n,5n); (Tnt+1,Sn+1)) | ((Zo,80),--- 5 (Tn,sn)) € X
AN(Zn,8n), (Tnt1,5n41)) € TP}

The two following sections present a simple imperative source language and a
simple assembly language that can be described in this setting.

2.3 A simple imperative language

The syntax of the simple source language £ is shown in Fig. 1. Variables (v € V)
are all supposed to be globals. Statements (S) are affectations, conditionals and
loops. Blocks (B) are lists of statements. Expressions (E) all have integer type.
Conditions (C) represent conditional expressions and have type boolean. A store
(or environment) maps the variables of a program to integer values.

Since this is a model, overflows are not taken into account. An erroneous
execution of a program is a trace that is stopped at a non-exit program point
(typically because of a division by 0). An erroneous special state {2 is introduced
for that purpose. The initial value of variables is not determined.

Ex=n (n€eZ) S:u=v:=E (vev)
| v (vev) | skip | if C then B else B
| —E|E+E|E—E|EXE|E/E | while C do B

C ::= true | false | =C B:=8S8]S;B

| E==E|E<E|CAC|CVC
Fig. 1. The simple language L.

2.4 A simple assembly language

Since we restrict to the compilation of a simple language without arrays or proce-
dures we consider a simplified assembly language A, without relative addressing.
The abstract machine provides the following store locations:

- registers: R; (0<i<r—1);

- memory cells (which are indexed by integers): M[i] (i € N);

- a condition register CR: when a test is handled this flag is set. Branching
may occur later, according to the value of the condition register (LT for less
than, EQ for equal, GT for greater than).

An assembly program is defined by a set of instructions labeled by distinct
integers. A label [is intuitively the value of the program counter when the
instruction I; is executed. The instructions and their semantics are detailed in
Fig. 2. After the execution of a non branching instruction I; the execution flows
to I;+1. As above an erroneous state (2 is introduced to handle blocking error
case (division by 0).

Syntax |Instruction Semantics (sketched)

1i R,n load integer stores integer n in register R
load R,n |load from mem. [stores M[n] in register R
store R,n |store in the stores the value contained in register R
memory in the memory location M|n]

add Ry, R1, R»|addition (and adds the values contained in R; and R»
(mul, div...) |other arith. ops.)|and stores the result in register Ro
cmp Ro, R1 |comparison reads no in Ro, n1 in R; and compares them:
if ng < m1, then CR is set to LT
if no = m1, then CR is set to EQ
if no > m1, then CR is set to GT

bl branching branches to label [
be(C) 1 condit. branch. |branches to [if the content of CR
(Cis =, <..) corresponds to condition C

Fig. 2. Assembly instructions

2.5 Compilation

The compilation of the source program P; into the assembly program P, is
correct if the semantics of these two programs are somewhat tied: the execution
of a statement of P, should be simulated by the execution of one or several steps
of P, and conversely, a step of execution of P, should lead to a state s, such
that an assembly state s’ related to a state of the source code P; should be
reachable in zero or several execution steps from s. This relation between source
and assembly programs semantics is defined by relations between subsets of
source and assembly program points and memory locations. Not all the program
points of a compiled program correspond to a point in the source since one
source statement might be compiled into a sequence of assembly statements.
Similarly not all the store locations of the assembly program correspond to a
store location of the source program: for instance a register may correspond to
no variable. Reciprocally, a source program point may correspond to no assembly
program point in case of dead-code elimination (and the same for store locations
in case of variable elimination).

Most compilers provide debugging information that contain the mapping
between subsets of source and assembly locations and program points.

Fig. 3 shows a very simple example of compilation without any optimization
of a small piece of code. Variable z is associated to M[0] ; point 1 of Ps is mapped
to point 2 of P,... The correctness of the compilation expresses that execution
traces of P, correspond to execution traces of P,: if has value v at point 1 for
some run r of P,, then there exists a “corresponding” run r’ of P, that reaches
point 2, and such that at that point, M[0] contains value v. Note that registers are
excluded from this mapping: information about equalities between the content
of assembly memory locations will be needed for the invariant checking step (in
Sect. 4.2).

0: 1i Ro, 0
1: store Ro,0 source | asm. prog.
Ve, = {z} 2: load Ro,0 Store locations

3: 1i Rl, 100 z | M[O]
0: z:=0; 4: cmp Ro, R Program points
1: while z < 100 5: be(<) 7 0 0
2: { 6: exit 1 3
3: r:=x+1; 7: load Ry,0
4: } 8: 1i Ry, 1 3 U
5 exit 9: add Rs, Ro, R1 4 11

10: store R»,0 5 6

(a) source code P. 11: b 2

(c) translation information.
(b) compiled code P,.

Fig. 3. An example of compilation.

The relation between the semantics of the source and the compiled program
is built in two steps: we first restrict both semantics and then we assume a
bijection between the restricted semantics. Let P, be a source program and P,
an assembly program, defined by their sets of store locations V; and V, (as
above we note S; = Vs — R and S, = V, — R for the corresponding sets of
stores) and their control structures (Ls,is,7s) and (Lg, 44, 7,)- We first consider
the case of the assembly program. Let L}, C L, and V] C V, be subsets of
the program points and of the store locations of P,. We write S, for the set of
restricted stores V; — R. The store projection operator p, : S, = S; is defined
by Vs € (Vo = R), pa(s) = s |y where s |y- denotes the restriction of the
function s to V. The trace restriction operator @, is defined as follows:

dsd(((x(h 50)7 et (.Z'n, Sn))) = <(wkoapa(sko))’ ER) ('Tkupa(skt)))

where xp,,... , 2z, are exactly the program points belonging to L] in the se-
quence g, ... ,Z, in the same order as they appear in ((zg, S0),--- , (Zn,Sn))-

Trace restriction defines an abstraction of the semantics of programs. We
define the restricted semantics of P, as the set of traces [P,], = a&([P,]) where
alh (&) = {P,(t) | t € E}. The function «af, defines a Galois connection:

r

(P((La % Sa)¥),) =5 (P((L] % S5)*),C) -

aa

In the same way, a restricted semantics can be defined for the source program
P, as an abstraction of the concrete trace semantics [P;], by choosing V" C V;
and L} C L,. In most cases we do not wish to abstract away any variable of
the source program and therefore V] = V; (except in case of dead variable
elimination). For generality, this abstraction «/ is defined as for the assembly

code (we note as above ST = V! — R):

r

[P] = af([B]) where (P((Ls x S,)*), C) &= (B((L] x $)*),C) -

as

In the following, if f is a function f : A — B, we note ffor the function
P(A) = P(B), [(€ C A) = {f(z) |z € £}].

The correctness of the compilation is defined as a correspondence between
some source program points and some assembly program points (that is between
L7 and L) and a correspondence between part of the store locations (that is
between V] and V). Generally, the relation between store locations depends on
the program point. For the sake simplicity, we consider it does not.

Definition 1 (Correctness of compilation). With the same notations as
above, let m; : L, — L7 a bijection between source and assembly restricted pro-
gram points and 75 : ST — S, a bijection between source and assembly restricted
stores (usually given by a bijection m, : V] — V| between store locations).

Let w be the function defined by:

T (LT x ST)* — (LT x ST)*
((z0,80)5--- 5 (Tn,8n)) = {(m1(x0),7s(80)), - - - » (W (Tn), Ts(sn))) -

Then the compilation ¢ of P, into P, is correct with respect to the translation
information (m;,ms) if and only if T is a bijection between [P;], and [Py,].

s
P, (7] —= [P
‘| o i
Pa |IPa <—r> [[Pa]]r

Remark 1 (Optimizations). As mentioned above, code or variable elimination
based optimizations are handled by choosing 7, and 7; so as to get rid with the
removed entities.

Many optimizations that change the structure can also be handled in this
framework by defining program points in a non syntactic way. For instance in
case of an unrolling of a loop L, a syntactic program point z of the source
program in the loop L is mapped to two points in the assembly program: one
for odd numbers of iterations and one for even numbers of iterations. Handling
the optimization reduces to split = into two program points z,qq and Zeyen-

The formalization of compilation presented above is comparable to the tran-
sition systems of [18]. The advantage of formalizing compilation inside the Ab-
stract Interpretation framework is to bring both static analysis and compilation
(and possibly optimizations) into a single framework, which makes reasoning
about the process more simple.

3 Analysis, compilation and invariant translation

3.1 Static program analysis and program transformation

This subsection introduces a class of static program analyses, practically large
enough to answer many questions such as run-time errors detection. Roughly
speaking a program analysis will be defined by an abstraction of the trace se-
mantics of programs (in practice an over-approximation of the abstract semantics
is computed). We also prove that the abstraction defining such a static analysis
is orthogonal to the ”restriction” abstraction done in the previous section.

Let us consider a program P whose store ranges in S = V' — R and of control
flow graph (L,%, 7). We keep the previous notations: we note L" and V" for the
restricted sets of program points and variables, p for the store projection, a” for
the restriction abstraction. We suppose we are given an abstraction on the store,

that is a Galois connection (P(S), C) = (D*,C) .

as

The abstract semantics [P]* of the program P is obtained by partitioning
[P] by the program points L and abstracting the sets of stores at each program
point using . Formally, this amounts to computing the abstraction of:

t .
[PT* = o*([P]) where (B(L x 8)*),C) == (L + D)
«
and a(€)=[zel)—a*{s|(...,(z,s),...) EE})] .

In some cases, the abstract semantics [P]* may also be computed directly as
a least fixpoint of an abstract semantic function F}u:,. However a static analyzer
usually computes a sound approximation of [P]* by iterating a sound monotonic
function Fﬁ; and using widening to enforce convergence. Fig. 4(a) presents the
result of a classical interval analysis [5] of the program of Fig. 3(a).

program point x program point M][0]
0 T 0 T
1 [0 100] 2 [0 100]
3 [0;99] 7 [0;99]
4 [1; 100] i1 [1; 100]
5 [100 ; 100] 6 [100 ; 100]
(a) Source analysis. (b) Translated invariant.

Fig. 4. Source analysis and invariant translation.

We now come to the second point of this subsection: the trace restriction
abstraction used to define correctness of the compilation and the abstraction a!
corresponding to the program analysis are independent and can be commuted.

The first step to reach that goal is to design a restricted abstract domain D"
for S* = V™ — R and a projection p* of D¥ on D™ such that the abstraction

and the projection commute, that is a Galois connection

(P(57),C) &1y (D™%,) such that a*” 0 p = poa
(e

This is in general easy. In the case of non relational domains, a® is the pointwise
abstraction of functions in V' — R to functions in V — R!. The same point-
wise abstraction of functions in V" — R to functions in V" — R* commutes
with domain restriction of functions. The case of most relational domains (like
the octagons of [11] or the linear inequalities of [10]) is similar: forgetting the
information about the variables of V' \ V" is sufficient.

Then an abstraction on restricted traces can be defined as above by parti-
tioning [P], by L" and abstracting the sets of stores at each program point:

tc

[Pi = a**([P],) where (P((L" x S")*),C) &= (L" - D'},

tc

and a'*(&) =[x € L") = o ({s | (..., (z,8),...) € EV)] .

Moreover a program invariant I € (L — D*) can be abstracted to an invariant
I" =a"(I) € (L" — D™), o™ being the abstract counterpart of a”:
Vo € L7, I"(z) = am(I)(x) = pH(I())

(L — D}, L) &= (L" - D™,L) .
(e

2

The relationship between the program analysis and the trace restriction used
for formalizing the correctness of the compilation is stated by the theorem:

Theorem 1. With the above notations (o denotes the restriction abstraction
and ot the program analysis abstraction), ot o o = o™ o of. In other words,
the restricted semantics [P]% satisfies: [P] = at¢ o a"([P]) = " o a*([P]).

In other words analyzing the program and then restricting the results of the anal-
ysis by forgetting the abstract store at some program points and the information
about some store locations amounts to first restricting the sets of program points
and of locations and then abstracting traces.

3.2 Invariant translation

We stated above the abstractions corresponding to the compilation and to the
program analysis. We now define sound invariant translation procedures and
show that they output sound invariants in presence of sound compilers and
analyzers.

We instantiate the notations and results of Sect. 3.1 on a source program P;
and on an assembly program P,. For i € {s,a},

- a; is the restriction abstraction in the sense of Sect. 2.5,
- a! is the abstraction corresponding to the static analysis as in Sect. 3.1,
- al° is the invariant restriction abstraction (introduced in Sect. 3.1),

- al¢ corresponds to static analysis from restricted semantics (Sect. 3.1).

Let (m;,7s) be translation information in the sense of Def. 1. An invariant trans-
lation procedure is a function 7f : D% — DT#_ It is sound if and only if it is the
abstract counterpart of the concrete 7,:

Definition 2 (Sound invariant translation procedure). The invariant
translation function ¢ is sound with respect to T4 if and only if:

VS C ST, whoalT(S) = aim o 7(S) .

For instance, in case of non relational domains the pointwise invariant trans-

lation (guided by the memory locations mapping) is sound. Fig. 4(b) presents
the translated invariant corresponding to the invariant of Fig. 4(a) (example of
Fig. 3(a)).
Theorem 2 (Soundness of invariant translation). If I, is a sound abstract
invariant for the source program Py (i.e. [P,]* C I,), if the compilation of P,
into P, is correct with respect to (m,ms) and if the invariant translation function
7wt is correct, then the translated invariant I, = 7% o a’°(I,) is sound, that is:
[Pa]f E L -

The proof of this result is done by composing the diagrams and applying
straightforwardly the definitions, and twice Theorem 1. We first fix I; = [Ps]*:

c

P ~ P,
[P] —2 s [P], == [P.], ~—2— [P.]

T N N
HPS]]ﬂ s HPS]]gv . Wg(lIPs]]g')g [Paﬂg — |IPa]]ﬁ .

The general result of Theorem 2 follows: the translation functions and the ab-
straction functions are monotone ; soundness of I entails [[Ps]]ﬁ C I,.

The inequality [P,]# C 47¢ o 7t 0 a°(I,) is a direct consequence of the theo-
rem (same hypotheses). Nevertheless the resulting approximation of [P,]* is not
precise enough, given Yz € L, \ L%, v o7 0o al¢(I;) = T.

Sect. 4 addresses the problem of refining I’ = v7¢om!0a%¢(I;) = 75¢(I,) into
an invariant I/ by invariant propagation and of checking that I is sound apart
from any hypothesis about the correctness of the compiler or of the translator
or even of the analyzer used for the source program.

4 Invariant checking

4.1 Invariant propagation and checking

We suppose here that an approximate abstract semantic function Fi for the
assembly program can be computed. Such a function defines an analyzer for

the assembly program: iterating it starting from L (using widening to enforce
convergence) would lead to a sound invariant (which may be imprecise since
direct analyses of assembly code are made difficult by the absence of a control
structure adapted to efficient iteration). Anyway this function being monotone,

it has a least fixpoint, which is also an approximation of [P.]: [Pu]t C UfpF".

Invariant checking. Checking that the translated invariant is sound reduces to
verifying that I’ is a post-fixpoint of Fi : (Ly = D%) — (L, — D%). The choice
of the abstract domain for assembly programs may be crucial (as in Sect. 4.2),

to tackle the specificities of the assembly language and make sure Fi can be
defined so that I’ indeed is a post-fixpoint. The checking could fail even if I is

sound, for instance if the verifier Fi was too imprecise or if the assembly code
contained some statement that would be very difficult to analyze precisely.

Invariant propagation. A common technique to refine a sound invariant is to
iterate the semantic function starting from it: if it is a post-fixpoint then we get
a decreasing sequence (which means we improve precision).

If the invariant I’ computed in Sect. 3.2. is a post-fixpoint of Fi then, the

iterates of 72 starting from I form a decreasing sequence. Therefore computing
a given number of iterates of this sequence leads to a more precise invariant.

Practical solution. The way of propagating the invariant and checking it we
adopted is slightly different. The translated invariant I, provides precise infor-
mation for the points contained in L’ . In practice every branch of the assembly
control flow graph contains at least one point z such that 2 € L7; in particu-

lar every cycle contains such a point. Therefore we define an element J, of the
abstract domain L, — D! by

7 z €Ll — I,(x)
“Tlezéglh- L ’

and then we compute in one iteration a post-fixpoint of @ starting from J,, where

@ is defined by #(X) = X U Fi(X). In practice, we compute a local invariant
for each node in the graph, by propagating local invariants forwards, using a
work-list algorithm: the set of nodes a local invariant is known for (the so-called
treated nodes) is initialized to L’; then a local invariant can be computed for a
node when a local invariant has already been determined for all its predecessors.
When the process finishes a local invariant has been determined for any point
in L, since every cycle of the assembly control flow contains at least one point
belonging to L],. When all nodes got a local invariant, checking that the invariant
is sound reduces to checking that for every node z, the local invariant of z is
”implied” by the local invariants of the predecessors of z. This property should
only be checked for the nodes of L7, since local invariants at the other nodes have
been computed so as to achieve this property.

Theorem 2 shows that invariant translation yields a sound ”restricted” invari-
ant under some soundness hypotheses (that should be realized). This subsection
showed how an invariant for the assembly program is reconstructed from the
"restricted” one and how it is finally checked. Checking allows this invariant to
be considered safe apart from any other hypothesis than the correctness of the
checker, which is much a stronger guarantee. Indeed if the invariant checker is
correct and claims the invariant is stable then the invariant is sound even if the
compilation is not correct.

Note the checking may fail (for instance if some aspects of the assembly lan-
guage are not analyzed precisely), which would not mean the restricted trans-
lated invariant would be incorrect.

4.2 Practical aspects of invariant propagation and checking

As mentioned above, invariant checking may require the use of a refined domain
so as to handle the assembly language specificities. This section shows two of
these together with their application to the example of Fig. 3.

Partitioning by the values of the CR : Conditional branching is commonly done
in two steps in assembly languages (as in the language of Fig. 2): testing with
modification of the condition register value according to the result of the compar-
ison and branching according to the value of the condition register at branching
time. Therefore the checker should propagate information about the condition
register. In particular the local invariant at a point « should describe for any
possible value ¢ € C of the condition register (where C = {LT,EQ,GT}) a precise
over-approximation of the set S, of stores that can be encountered at program
point z and that map the condition register to the value c¢. With the notations of
Sect. 3, this amounts to choosing D¥ of the form C — D' ‘i: an abstract value is a
function that associates to each possible C R value v an abstract representation
of a set of assembly stores whose C'R is positioned to v. The abstract transition
functions for testing and branching are given below:

- testing: we suppose a guard operator guard : D! x E — D! is provided.
If P, contains the instruction [: cmp Ro,Ri, I € L, — D! and 7 is the
contribution of the other predecessors of [+ 1:

— LT — guard(I(l), Ry < R1)
F,(I)(1+1)=TU{ EQw guard(I(l),Ry = R)
GT — guard(I(l), Ro > R1)

- branching: we suppose that P, contains the instruction [: b(<)!’ and that
I € L, — D!, Then, if we define Z and Z' as above,

LT+ L LT — I(I)(LT)
F)(I+1)=TU{EQm L F ()(1") = 7' U { EQ— I(1)(EQ)
GT — I(1)(GT) GT > L

Partitioning by the condition register value at each program point is not
necessary (and would be prohibitively costly since common architectures pro-
vides several condition registers): information about the condition register (that
is partitioning over condition register values) is only necessary ”between” tests
and branching nodes.

Equalities between assembly locations : A test on the value of a variable z stored
in M{[¢] is done in two steps: the value of the variable is copied into a register R;
and then the test is done on the register. Checking the invariant requires to take
into consideration the fact that the value contained in M[i] should be affected
by the test. This can be done either by doing backwards iteration (which would
be costly) or by using a domain precise enough to provide information of the
form a = b where a and b are memory locations. When implementing, we chose
the last solution and implemented a domain whose abstract elements are the
partitions of P(V) as in [9], where an element of a partition is a set of variables
that store the same value for any execution at a given point.

Results : Fig. 5 displays the final stable invariant produced for the example of
Fig. 3.

Beginning of line| Equalities (CR| Ro R R M]0]
0 none T T T T T
1 none T | [0;0] T T T
2 none T | [0;99] T T 0; 100
3 Ro = MJ0]| T | [0;100 T T 0; 100
4 Ro = M[0]| T | [0;100] |[100;100]| T 0; 100
5 Ro = M[0]| LT | [0;99] |[100;100]] T | [0;99]
5 Ro = MI0]| EQ |[100; 100]|[100; 100]] T |[100; 100]
5 Ry = M[0]| GT L L L L
6 Ro = MJ0]| T |[100; 100]|[100; 100]] T |[100; 100]
7 Ro = MJ[0]| T | [0;99] {[100;100 T 0;99
8 Ro = MJ0]| T | [0;99] |[100;100 T 0;99
9 Ro = MJ0]| T | [0;99 1;1 T 0;99
10 Ro = M[0]| T | [0;99 1;1] |[1;100]| [0;99
11 R> = MI0]| T | [0;99 1,1] |[1;100]] [1; 100]

Fig. 5. Reconstructed and checked invariant.

5 Implementation

A prototype was implemented for certifying Motorola PowerPC assembly code
obtained by compiling C programs. Most features of the C language are handled
(excluding pointers and recursion which should not be used in highly critical
software), including functions, procedures, structures and arrays, standard in-
teger and floating point data types (a restricted form of alias is permitted for
arrays passed by reference to functions).

The analyzer is similar to the analyzer presented in [3]. The basic abstract
domain is non relational (based on the domains of intervals for the floating point
numbers and the integers and on the domain of constants for the booleans) but
the expressiveness of the domain is notably improved by partitioning (by the
values of variables as is the case of the condition register in assembly programs
or by control paths-based criteria). At the assembly code level, various addressing
modes are handled (absolute, relative) thanks to a symbolic representation of
addresses and to the representation of the stack in the assembly abstract domain.

After an invariant has been proved to be sound at the assembly program
level by the checker, the prototype attempts to certify the code by checking it
cannot cause any of the following “runtime errors”: division by 0, integer or
floating point overflow, erroneous memory access (dereferencing of a wrong ad-
dress). This prototype successfully certified assembly programs of thousands of
instructions issued from the compilation of C programs of hundreds of lines in-
cluding representative fragments of embedded systems. We can expect to certify
much larger programs (the current version of the prototype stores one abstract
store at each program point for the sake of programming simplicity and testing;
this causes a huge memory requirement and is not necessary in a certifying tool,
given propagation and safety checking could be done in one pass).

6 Conclusion and future work

We proposed a method for certifying assembly code produced by compilation
from a language we have an analyzer for. The method is generic with respect to
the compiler and to the choice of an abstract domain. Invariant propagation and
checking may require a precise treatment of some assembly language aspects.

The approach proved to be successful in practice. Note that the final checking
of the invariant is a strong guarantee: analyzing programs is a complex task, and
checking at the end the result apart from any hypothesis on the correctness of
the rest of the process is a good point. Moreover the distinct steps of the process
are independent: the source analysis, the translation of the invariants and their
checking can be done separately. Existing tools can be used which reduces the
cost of the analysis of assembly programs.

A first extension of this work would be to turn the existing prototype into a
true certifying tool, for instance by extending the abstract domain to relational
domains. Another more challenging goal would be to define a class of transfor-
mations (optimizations...) the method would work for. A last direction would
be to use similar methods to analyze programs generated automatically from
a specification: the specification could be used to compute an invariant on the
program; checking the invariant on the program being simpler than inferring an
invariant from the generated program alone.

Acknowledgments. We would like to thank Bruno Blanchet, Patrick and Radhia
Cousot, Jérome Feret, Charles Hymans, Laurent Mauborgne, Antoine Miné, and
David Monniaux for comments, suggestions and stimulating discussions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache Behavior Prediction by
Abstract Interpretation. In Static Analysis Symposium, LNCS, 1996.

Y. Bertot. A certified compiler for an imperative language. Technical Report
RR-3488, INRIA, 1998.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static pro-
gram analyzer for safety-critical real-time embedded software, invited chapter. In
T. Mogensen, D. Schmidt, and I. Sudborough, editors, The Essence of Compu-
tation: Complexity, Analysis, Transformation, LNCS. Springer-Verlag, 2002. To
appear.

P. Cousot. Semantic foundations of program analysis. In S. Muchnick and N. Jones,
editors, Program Flow Analysis: Theory and Applications, chapter 10. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1981.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the 4th Symposium on Principles of Programming Languages, 1977.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the 6th Symposium on Principles of Programming Languages.
ACM Press, New York, NY, 1979.

P. Cousot and R. Cousot. Systematic design of program transformation frame-
works by abstract interpretation. In Conference Record of the 29th Symposium on
Principles of Programming Languages. ACM Press, New York, NY, 2002.

C. Ferdinand, F. Martin, and R. Wilhelm. Applying Compiler Techniques to
Cache Behavior Prediction. In Workshop on Languages, Compilers and Tools for
Real-Time Systems (LCT-RTS), 1997.

J. Feret. Dependency analysis of mobile systems. In European Symposium on
Programming (ESOP’02), 2002.

M. Karr. Affine relationships among variables of a program. Acta Informatica,
pages 133-151, 1976.

A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, 2001.
G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The TIL/ML
Compiler: Performance and Safety Through Types. In Workshop on Compiler
Support for Systems Software, 1996.

G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL ’97), 1997.
G. C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN
Notices, 35(5):83-94, 2000.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 1955.

H. Theiling and C. Ferdinand. Combining Abstract Interpretation and ILP for
Microarchitecture Modelling and Program Path Analysis. In Proceedings of the
19th IEEE Real-Time Systems Symposium, 1998.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and Precise WCET Prediction
by Seperate Cache and Path Analyses. Real-Time Systems, 2000.

L. Zuck, A. Pnuelli, Y. Fang, and B. Goldberg. VOC: A translation validator for
optimizing compilers. In J. Knoop and W. Zimmermann, editors, Electronic Notes
in Theoretical Computer Science, volume 65. Elsevier Science Publishers, 2002.

