
Understanding the Origin of Alarms in Astrée

Xavier Rival

École Normale Supérieure
45, rue d’Ulm,

75230, Paris cedex 5, France

Abstract. Static analyzers like Astrée are incomplete, hence, may pro-
duce false alarms. We propose a framework for the investigation of the
alarms produced by Astrée, so as to help classifying them as true errors
or false alarms that are due to the approximation inherent in the static
analysis. Our approach is based on the computation of an approximation
of a set of traces specified by an initial and a (set of) final state(s). More-
over, we allow for finer analyses to focus on some execution patterns or
on some possible inputs. The underlying algorithms were implemented
inside Astrée and used successfully to track alarms in large, critical
embedded applications.

1 Introduction

The risk of failure due to software bugs is no longer considered acceptable in the
case of critical applications (as in aerospace, energy, automotive systems). There-
fore, sound program analyzers have been developed in the last few years, that
aim at proving safety properties of critical, embedded software such as memory
properties [24], absence of runtime errors [5], absence of buffer overruns [13], cor-
rectness of pointer operations [31]. These tools attempt to prove automatically
the correctness of programs, even though this is not decidable; they are sound
(they never claim the property of interest to hold even though it does not) and
always terminate; hence, they are incomplete: they may produce false alarms,
i.e. report not being able to prove the correctness of some critical operation even
though no concrete execution of the program fails at this point.

Alarms are a major issue for end-users. Indeed, in case the analyzer reports an
alarm, it could either be a false alarm or a real bug that should be fixed. Ideally,
a report for a true error should come with an error scenario. Currently, the alarm
investigation process in Astrée [5] mainly relies on the manual inspection of
invariants, partly with a graphical interface [12]; this process turns out to be
cumbersome, since even simple alarms may take days to classify.

A false alarm might either be due to an imprecision of some abstract op-
erations involved in the analysis (e.g. the abstract join operator usually loses
precision) as in Fig. 1(a) (simplified version of an alarm formerly reported by
Astrée) or to a lack of expressiveness of the domain (checking the example of
Fig. 1(c) requires proving a very deep arithmetic theorem). In the former case,
we may expect a (semi)-automatic refinement process to prove the alarm to be

l0 : input(x);
l1 : if (x > 0){y = x; }

else{y = −x; }
l2 : b = (y > 10);
l3 : assert(b ⇒ (x < −10 ∨ 10 < x));

(a)

l0 : x = 1; y = 1;
while(true){

li : input(x);
ld : assert(y > 0);

y = x; }

(b)

x, y, z are integer variables
input(x); input(y); input(z);
if(x > 0 ∧ y > 0 ∧ z > 0){

assert(x4 6= y4 + z4);
}

(c)

Fig. 1: three example programs

false; in the latter, the design of a refined domain can hardly be automated, so
we can only hope for a refined alarm description.

Our goal is to provide some support in the alarm investigation process. We
propose to resort to automatic, sound static analysis techniques so as to refine
an initial static analysis into an approximation of a subset of traces that actu-
ally lead to an error. If a combination of forward and backward refining analyses
allows to prove that this set is empty, we can conclude the alarm is false (as in
Fig. 1(a)); otherwise, we get a refined characterization of the (possibly fictitious)
erroneous traces. We propose to refine this kind of semantic slicing (i.e. extrac-
tion of part of the program traces) by selecting some alarm contexts (e.g. traces
leading to an error after two iterations in a loop or traces constrained by some
set of inputs). A similar process allows to check an error scenario, by slicing the
traces reaching the alarm point in some context specified by an execution pat-
tern and a set of inputs that are supposed to be valid: in case the analysis reveals
that such conditions always lead to an error, the error scenario is validated (this
can be achieved in the example of Fig. 1(b)); it is a counter-example.

The contribution of the paper is both theoretical and practical:

– we propose a framework for alarm inspection, based on backward analysis
[8, 9], trace partitioning [25], and slicing techniques [32, 21];

– we provide encouraging practical results obtained by an implementation in-
side the Astrée static analyzer [4, 5, 12].

Sect. 2 introduces forward-backward analysis-based approximation (semantic
slicing) of a set of traces resulting in an error. Semantic slicing refinements
are introduced in Sect. 3: restriction to some execution patterns in Sect. 3.1
and to some inputs in Sect. 3.2. Sect. 4 applies syntactic slicing techniques to
the reduction of the amount of code to analyze. Sect. 5 presents some practical
examples. Sect. 6 concludes and reviews related work.

2 Backward Analysis

2.1 Standard notations

We restrict to a subset of C for the sake of concision. We let
�

(resp. �) denote
the set of variables (resp. of values); we write � (resp. �) for the set of expressions
(resp. statements aka programs). Variables and values have an integer, floating-
point or boolean type. We consider assignments, conditionals, loops, assertions,

and an additional input(x) statement, that emulates the reading of a volatile
variable x: this statement replaces the value of x with a random value of the
corresponding type. The grammar is given below. The control point before each
statement and at the end of each block is associated to a unique label l ∈ � .

e (e ∈ �) ::= v (where v ∈ �) | x (where x ∈
�
) | e⊕ e

s (s ∈ �) ::= x := e (where x ∈
�
, e ∈ �) | s; s | skip

| input(x) | assert(e) | if(e){s}else{s} | while(e){s}

In practice, the subset of C we analyze also includes functions, pointers, compos-
ite data-structures, all kinds of definitions, and all control structures. It excludes
recursive functions, dynamic memory allocation, and destructive updates.

A state s ∈ � is either the error state Ω or a pair (l, ρ) where l is a label and
ρ ∈ � =

�
→ � is a memory state (aka store). Note that we assume there are no

errors in expressions; hence, the error state Ω can only be reached after a failed
assertion. The semantics JsK = {〈σ0, . . . , σn〉 | ∀i, σi → σi+1} of a program s is
a set of sequences of states (aka traces), such that any two successive states are
related by the transition relation → of the program. The relation → is defined
by local rules, such as the following (the full definition is given in appendix A):

– assert statement l0 : assert(e); l1: if JeK(ρ) = true (JeK(ρ) is the result of the
evaluation of e in ρ), then (l0, ρ)→ (l1, ρ); if JeK(ρ) = false, then (l0, ρ)→ Ω.

– assignment l0 : x := e; l1: (l0, ρ)→ (l1, ρ[x← JeK(ρ)]) (where JeK ∈ � → �);

– input statement l0 : input(x); l1: if v ∈ � has the same type as x, then
(l0, ρ)→ (l1, ρ[x← v]);

2.2 Approximation of Dangerous Traces

Dangerous states: We consider a program P ∈ � . A state σ is dangerous if
it is not Ω and may lead to Ω in one transition step: σ → Ω. A dangerous
label is a label l followed by an assertion statement (l : assert(e);). Astrée

over-approximates the set of reachable dangerous states; hence, our goal is to
start with such an over-approximation and to make a diagnosis whether a set of
concrete, dangerous states is actually reachable.

Dangerous traces: First, we are interested in real executions only, that is
traces starting from an initial state. We let I ⊆ � denote the set of initial states.

Then, the set of real executions is
−→
T = {〈σ0, . . . , σn〉 ∈ JP K | σ0 ∈ I} = lfp∅

−→
F

where
−→
F : E 7→ {〈σ〉 | σ ∈ I} ∪ {〈σ0, . . . , σn, σn+1〉 | 〈σ0, . . . , σn〉 ∈ E ∧ σn →

σn+1} constructs execution traces forward, and lfpXF is the least fixpoint of F
greater than X . Second, we restrict to executions ending in a dangerous state
(or at a dangerous label). We let F ⊆ � denote the set of final states of interest.

The set of executions ending in F is
←−
T = {〈σ0, . . . , σn〉 ∈ JP K | σn ∈ F} =

lfp∅

←−
F where

←−
F is defined in a similar way as

−→
F :
←−
F : E 7→ {〈σ〉 | σ ∈ F} ∪

{〈σ−1, σ0, . . . , σn〉 | 〈σ0, . . . , σn〉 ∈ E ∧ σ−1 → σ0}.

The set of traces of interest is T =
−→
T ∩

←−
T = lfp∅

−→
F ∩ lfp∅

←−
F . It is a subset

of all program behaviors JP K; in this respect, we call T a semantic slice.

In the following, F may represent either Fl = {(l, ρ) | ρ ∈ � } or FD,l =
{(l, ρ) | ρ ∈ � ∧ (l, ρ)→ Ω}, unless we specify explicitly; the slice Tl (resp. TD,l)
defined by Fl (resp. FD,l) collects the executions ending at label l (resp. the
executions causing an error at label l). T shall represent either Tl or TD,l.

Example 1. In the code of Fig. 1(a), label l3 is a dangerous label; the set of
dangerous states for the corresponding assert is FD,l3 = {(l3, ρ) | ρ ∈ � ∧ρ(b) =
true∧−10 ≤ ρ(x) ≤ 10}. The set of initial states is I = {(l0, ρ) | ρ ∈ � }. Clearly,
this program does not cause any error: if y > 10 at l2, then, either x > 0 and
x = y > 10 or x ≤ 0 and x = −y < −10. Hence, we wish to prove that TD,l3 = ∅.

Alarm inspection: Our goal is to determine whether an alarm is true or not.
We may fall in either of the following cases:

Case a) alarm proved false: if the static analysis proves that TD,l = ∅,
then the dangerous states in FD,l are not reachable and the alarm is false;

Case b) alarm proved true: if the static analysis proves that any trace in
Tl violates the assert (i.e. all traces reaching l cause an error at this point), then
the alarm is a true error;

Case c) undecided case: obviously, we may not be able to conclude to
either of the previous cases; then, either an error would occur in some cases
only (this case is considered in Sect. 3) or the lack of conclusion is due to a lack
of expressivity of the abstract domain (the refined analysis of the alarm context
should help designing a domain refinement).

Trace approximation: The approximation of sets of traces is based on an
abstraction of sets of stores defined by a domain (D]

n,v) and a concretization
function γn : D]

n → P(�) [10]. We assume that D]
n provides a widening operator

∇, approximate binary lub (t) and glb (u) operators, and a least element ⊥,
with the usual soundness assumptions. The domain for approximating sets of ex-
ecutions is defined by D] = � → D]

n and γ : (I ∈ D]) 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 |
∀i, ρi ∈ γn(I(li))}: a set of traces is approximated by local invariants, ap-
proximating the sets of stores that can be encountered at any label. We let
lfp] denote an abstract post-fixpoint operator, derived from ∇: if F : D → D,
F ◦ γ ⊆ γ ◦ F] and X ⊆ γ(X]), then lfpXF ⊆ γ(lfp]

X]F
]). The domain D]

n

is supposed to feature sound abstract operations
−−−→
assign :

�
× � × D]

n → D]
n,

guard : � × D]
n → D]

n, forget :
�
× D]

n → D]
n that soundly mimic the concrete

assignment, testing of conditions, and reading of inputs (by forgetting the value
of the modified variable). For instance, the soundness of guard boils down to
∀d ∈ D]

n, ∀ρ ∈ γn(d), JeK(ρ) = true⇒ ρ ∈ γn(guard (e, d)).
We let I] ∈ D] be a sound approximation of the traces made of just one initial

state, i.e. {〈σ〉 | σ ∈ I} ⊆ γ(I]); we let F] ∈ D] be a sound approximation of F
in the same way, where F may be either Fl or FD,l. The purpose of the following
subsections is to approximate the semantic slice T .

2.3 Forward Analysis

We consider here the approximation of
−→
T . It is well-known that a sound abstract

interpreter in D] can be derived from
−→
F . More precisely, we can define a family

of functions
−→
δ l,l′ : D]

n → D]
n that compute the effect of any transition at the

abstract level. The soundness of
−→
δ l,l′ writes ∀ρ, ρ′ ∈ � , ∀d ∈ D]

n, ρ ∈ γn(d) ∧

(l, ρ)→ (l′, ρ′)⇒ ρ′ ∈ γn(
−→
δ l,l′(d)) and is a direct consequence of the soundness

of the basic abstract operations. The (classical) complete definition of
−→
δ l,l′

is postponed to appendix B. The forward abstract interpreter is:
−→
F] : D] →

D]; I 7→ λ(l ∈ �). t {
−→
δ l,l′(I(l)) | l′ ∈ � } (this presentation leaves the choice

for an iteration strategy; Astrée uses a denotational iteration scheme, so as to
keep the need for local invariant storage down). The soundness of the forward
abstract interpreter is proved by standard abstract interpretation methods [10].

Theorem 1 (Soundness of the forward abstract interpreter). T ⊆
−→
T ⊆

γ(� 0) where � 0 = lfp]

I]

−→
F].

Example 2 (Ex. 1 continued). A simple non relational analysis yields the invari-
ant b ∈ {true, false}, y ≥ 0 at point l3; the assertion is not proved safe.

2.4 The backward interpreter

We consider the refinement of the approximation � 0 of
−→
T (hence, of T) into a

better approximation, by taking into account the second fixpoint
←−
T .

A straightforward way to do this would be to design a backward interpreter

in the same way as we did for
−→
F] and to compute the intersection of both

analyses. Yet, this approach would not be effective, mainly because in most
cases, the greatest pre-conditions are not very precise, so that we would face
a major loss of precision. For instance, in the case of a function call through
a pointer dereference (?f)(), the flow depends on the value of f before the call;
hence, the called function cannot be determined from the state after the call and
the backward analysis of such a statement with no data about the pre-condition
would be very imprecise (?f could be any function in the program). Examples
of similar issues when analyzing assignments are given in Sect. 2.5.

Hence, the refining backward interpreter
←−
F]

r takes two elements of D] as
inputs: an invariant to refine and an invariant to propagate backwards. It is

based on a family of backward transfer functions
←−
δ l,l′ : D] × D] → D] maps

a pre-condition to refine and a post-condition into a refined pre-condition, as
stated by the soundness condition: ∀ρ, ρ′ ∈ � , ∀d, d′ ∈ D]

n, ρ ∈ γn(d) ∧ ρ′ ∈

γn(d′) ∧ (l, ρ) → (l′, ρ′) ⇒ ρ ∈ γn(
←−
δ l,l′(d, d′)) (i.e. d is refined into a stronger

pre-condition, by taking into account the post-condition d′). The definition for a

very simple
←−
δ l,l′ operator is given and discussed below. It is based on a backward

abstract assignment operator
←−−−
assign :

�
× � ×D]

n×D]
n → D]

n, satisfying a similar
soundness condition. The design of this operator is detailed in Sect. 2.5.

– assignment l0 : x := e; l1:
←−
δ l0,l1(d0, d1) =

←−−−
assign(x, e, d0, d1)

– conditional l0 : if(e){lt1 : st; lt2}else{l
f
1 : sf ; lf2}; l3:

←−
δ l0,lt

1
(d0, d1) = d0 u d1

←−
δ lt

2
,l3(d2, d3) = d2 u d3

←−
δ

l0,l
f
1

(d0, d1) = d0 u d1
←−
δ

l
f
2
,l3

(d2, d3) = d2 u d3

– loop l0 : while(e){l1 : s; l2}; l3:
←−
δ l0,l1(d0, d1) = d0 u d1

←−
δ l2,l0(d2, d0) = d2 u d0

←−
δ l0,l3(d0, d3) = d0 u d3

– assertion l0 : assert(e); l1:
←−
δ l0,l1(d0, d1) = d0 u d1

– input l0 : input(x); l1:
←−
δ l0,l1(d0, d1) = d0 u forget(x, d1)

It might be desirable to improve the precision by locally refining the computa-

tion of
←−
δ l,l′ . Indeed, if

−→
δ l,l′ and

←−
δ l,l′ are sound, then so is

←−
δ

(n)
l,l′ : (d, d′) 7→ d(n),

where: d(0) =
←−
δ l,l′(d, d′) and ∀n ∈ � , d(n+1) =

←−
δ l,l′(d

(n),
−→
δ l,l′(d

(n))). This pro-
cess is known as local iterations [19] and usually allows to improve the precision
of backward abstract operations and condition testings. For instance, in the case

of the if statement, we may replace
←−
δ l0,lt

1
with

←−
δ l0,lt

1
(d0, d1) = guard (e, d0ud1).

Our experience proved local iterations not extremely useful, in the presence of
a refined abstract domain, able to carry out rather expressive constraints.

The backward analyzer is defined by a function
←−
F]

r : D]×D] → D]; (I, I ′) 7→

λ(l ∈ �). t {
←−
δ l,l′(I(l), I ′(l′)) | l′ ∈ � } and satisfies the soundness result:

Theorem 2 (Soundness of the backward abstract interpreter). T ⊆

γ(� 1) where � 1 = lfp]

F]u � 0 [λ(I ∈ D]).
←−
F]

r(� 0, I)] and � 0 is the result of the forward

analysis (Th. 1).

2.5 Backward Assignment

The domain: Astrée uses a reduced product of several domains, including an
interval domain, constraints among boolean variables or between boolean and
scalar variables. Among the numerical relational domains, we can cite octagons
[26] that express relations of the form ±x ± y ≤ c and specific domains like
[15], adapted to the analysis of control command software components. Complex
expressions can be abstracted prior to evaluation inside the abstract domain into
interval linear forms [27]: given an abstract value d ∈ D]

n, e is abstracted into
e′ = lin(e, d) =

∑
k Ik · xk (· is a product operator, ∀k, Ik is a real interval, xk

a variable), such that ∀ρ ∈ γn(d), JeK(ρ) ∈ Je′K(ρ). Linearization allows complex
(e.g. non linear) expressions to be analyzed precisely inside relational domains.

We consider now the definition of
←−−−
assign(x, e, dpre, dpost). Note that we assume

that the l-value x is resolved exactly; this is always the case in the subset of C
introduced in Sect. 2.1. In practice, may-assign (e.g. in the case of arrays) and
assignment of pointer values are also taken into account. In the proofs below, we
let ρ ∈ γn(dpre); we write v = JeK(ρ) and we also assume ρ[x← v] ∈ γn(dpost).

Boolean transfer function: If x is a boolean variable, we let:

←−−−
assign(x, e, dpre, dpost) =

{
guard (e, forget(x, guard (x, dpost)) u dpre)
t guard (¬e, forget(x, guard (¬x, dpost)) u dpre)

Indeed, let us assume v = true. Then ρ ∈ γn(forget(x, guard (x, dpost))), due to the
hypothesis on ρ[x← true]. Moreover, JeK(ρ) = true, so ρ ∈ γn(guard (e, forget(x,
guard (x, dpost)))), which shows the soundness of the above definition.

Arithmetic backward transfer function: Let us assume now that x has
scalar type, e.g. floating point. We let lin(e, d) =

∑
k Ik ·xk be an interval linear

form of e. We consider the derivation of new octagon and interval constraints:

– the octagon domain provides backward assignment and guard abstract trans-
fer functions for interval linear form expressions [28];

– the interval information in dpre is refined as follows: we let I
pre
x (resp. I

post
x)

denote the interval information about x in dpre (resp. dpost) and we compute
a refined interval information I

ref
xj

for xj . The soundness of linearization
implies that v ∈ (

∑
k 6=j Ik · Ipre

xk
) + Ij · ρ(xj); hence, if 0 6∈ Ij , ρ(xj) ∈

(v−(
∑

k 6=j Ik ·Ipre
xk

))/Ij ⊆ (Ipost
x −(

∑
k 6=j Ik ·Ipre

xk
))/Ij , so that the definition

I
ref
xj

= (Ipost
x − (

∑
k 6=j Ik · Ipre

xk
))/Ij is correct. These refined intervals are

computed with a floating point-based approximation of the semantics of
linear interval forms defined in terms of real numbers [27].

Note that the linearization should be computed using dpre: using dpost would be
unsound, since the value of the assigned variable changed; dpre is also most useful
to get the interval information before the assignment; hence, the first argument
of
←−−−
assign is crucial to compute a precise and sound dpre.

Example 3 (Backward assignment for intervals). We consider the assignment
x := y · x + z, dpre = {x ≥ 0, y ∈ [1, 2], z ∈ [1, 2], . . .}, dpost = {x ∈ [3, 4], . . .}.
Linearization converts it into x := [1, 2] · x + z; the backward assignment refines
the range for x into [0.5, 3]. Local iteration would not improve the precision.

2.6 Iteration strategies

Iterative refining process: At the concrete level, T could be defined as
the intersection of two independent fixpoints. However, at the abstract level,
the invariant � 1 obtained after one forward analysis and one backward anal-
ysis might be refined by further analyses. For instance, in case the backward
analysis reveals that no trace is going through the true branch of a conditional
l : if(e){st}else{sf}; l

′ : s′, a refining forward analysis from � 1 may refine the
local invariants inside s′, since the possible imprecision due to the least upper
bound at l′ no longer occurs. Note that a further backward analysis would likely
improve the results inside sf also.

Therefore, we propose to define a refining forward analysis and to iterate the

refining forward-backward process [8, 11]. The refining forward analyzer
−→
F]

r :
D] × D] → D] is based on the forward analyzer and refines its first argument

as the backward analyzer:
−→
F]

r : (I, I ′) 7→ λ(l′ ∈ �). t {
−→
δ l,l(I(l)) u I(l′) | l ∈ � }.

The refining sequence (� n)n∈ � is defined by:

– � 0 has been defined in Th. 1 by � 0 = lfp]

I]

−→
F];

– if n ≥ 0, � 2n+1 = lfp]

F]u � 2n
[λ(I ∈ D]).

←−
F]

r(� 2n, I)] (akin to � 1, see Th. 2);

– if n ≥ 0, � 2n+2 = lfp]

I]u � 2n+1
[λ(I ∈ D]).

−→
F]

r(� 2n+1, I)].

Theorem 3 (Soundness of the forward-backward refinement). The above
process is sound: ∀n ∈ � , T ⊆ γ(� n).

The proof is done by induction; it is similar to [11, Chap. 6]. Note that, given
I] and F], the sequence of refined invariants is obtained fully automatically.

Example 4 (Ex. 1 continued: refined analysis). We let F] be x ∈ [−10, 10]∧ y ≥
0 ∧ b = true; clearly FD,l3 ⊆ γn(F]). The table below shows the result of the
first two refining iterations, using a non relational abstraction:
label � 0 � 1 � 2
l1 > ⊥ ⊥
l2 y ≥ 0 −10 < x < 10 ∧ y ≥ 10 ⊥
l3 y ≥ 0 ∧ b ∈ {true, false} −10 < x < 10 ∧ y ≥ 10 ∧ b = true ⊥
TD,l3 ⊆ γ(� 2); hence, TD,l3 = ∅: the second refining iteration proves the correct-
ness of the program, i.e. the alarm was false (Sect. 2.2, Case a).

Local iterations: The above refinement process is not optimal from the effi-
ciency point of view. In the case of the if statement considered above, it amounts
to completing the backward analysis of the whole program before doing a new
forward analysis so as to refine the invariant at label l. We might want to do
local iterations, that is carrying out forward and backward local analysis steps in
a single iteration phase. In practice, we found that the refinement process done
with an expressive abstract domain (like the domain present in Astrée) does
not require much local iterations. Carrying out iterative refinements on large
blocks of code (e.g. functions) was a more efficient strategy.

Implementation of the interpreters: The forward analyzer Astrée is writ-
ten as a function that inputs a statement and an abstract pre-condition and
returns an abstract post-condition; it is defined in denotational style, recursively
on the syntax. The export of invariants is optional and one may choose the labels
local invariants are exported at. The refining forward analyzer is based on the
latter; a parameter just forces it to compute greater lower bounds with a previ-
ously computed invariant. The backward analyzer is very similar (same layout,
same iteration strategy).

3 Specifying Alarm Contexts

Sect. 2 described the forward-backward analysis involved in the approximation
of the set of “dangerous traces”. Yet, it does not solve the following issues:

– if we analyze backwards a statement while(e){l : assert(e); . . .}, the back-
ward interpreter computes a least-fixpoint on the loop; at the end of the process
the invariant at l approximates not only the states right before an error occurs
but also the states encountered one, two, or many iterations before, which results
in a massive loss of precision at l;

– after refinement of the invariants, we may have the intuition that TD,l 6= ∅;
should that case arise, we would like to envisage and check an “error scenario”,
which needs to be defined.

Example 5. We consider the example shown on Fig. 1(b) along this section.
Clearly, this program may fail: it may read a negative input; at the next iteration,

y is negative, which causes the assertion to fail. However, if the input is always
positive, it does not fail. Last, note that it will not fail in the first iteration. The
attempt to determine the alarm raised after computing � 0 using a simple interval
analysis leaves us in the undetermined case (Sect. 2.2, Case c).

3.1 Restriction to an execution pattern

We propose to extend the semantic slicing introduced in Sect. 2, by specifying
some execution patterns in addition to the initial and final states: for instance,
we may restrict a slice to the executions that cause an error after at least two
iterations of the main loop and distinguish the states encountered in the last two
iterations when approximating this slice. In practice, we resort to some kind of
trace partitioning technique, that fits in the framework of [25].

Restriction to a pattern: We extend the syntax of the language presented in
Sect. 2.1 with a statement l0 : cnt; l1. Tne new semantics should keep track of
the order such statements are executed in. We propose to abstract this order.

Our approach involves the choice of an automaton (
�
,), where

�
is a finite

set of states and () ⊆
�
× � × �

is a transition relation (we write q
l
 q′

for (q, l, q′) ∈ ()). The labels are replaced with pairs (l, q) ∈ � × �
in the

definition of the concrete semantics: we replace � with � p = � × �
; � with

� p = � p × � ∪ {Ω}. The new, partitioned semantics JP Kp is defined similarly to
JP K, using the new transition relation (→p) ⊆ � p × � p instead of (→):

– case of l0 : cnt; l1: if q0
l0
 q1, then ∀ρ ∈ � , ((l0, q0), ρ)→p ((l1, q1), ρ);

– case of any other transition (defined in appendix A):
if (l0, ρ0)→ (l1, ρ1), then ((l0, q), ρ0)→p ((l1, q), ρ1);
if (l0, ρ0)→ Ω, then ((l0, q), ρ0)→p Ω.

The execution pattern defined by a pair of states (q, q′) is γ � (q, q′) = {〈((l0, q0), ρ0),
. . . , ((ln, qn), ρn)〉 | q0 = q ∧ qn = q′}.

Example 6 (Ex. 5 continued). We insert a cnt statement in the loop and consider
the automaton Q below. Then, γ � (q0, q2) specifies all the traces reaching the
dangerous label at the iteration n where n ≥ 2 and distinguishes the last two
iterations (q1 stands for iteration n−1; q2 stands for iteration n). The automaton
allows us to restrict to the executions that spend more than one iteration in the
loop (hence, that may cause an error).

q0 q1 q2

lc

lc lc
l0 : x = 1; y = 1;

while(true){
lc : cnt;
li : input(x);
ld : assert(y > 0);

y = x; }

We write π � : � p → � (resp. π � : � p → � , π : � ?
p → � ?) for the erasure

function that removes the elements of
�

in labels (resp. stores, traces); we let π
also be defined for sets of traces. If τ ∈ JP Kp, then π(τ) ∈ JP K (proof obvious).

qe qo

lc

lc
(a)

q0 q1 q2

lc lc
lc

(b)

Fig. 2: Automata specifying trace patterns

Refining the semantic slice: We also need to extend I and F . Let qi, qf ∈
�
.

We define Ip = {((l, qi), ρ) | (l, ρ) ∈ I} and Fp = {((l, qf), ρ) | (l, ρ) ∈ F}. The
automaton (

�
,) and the states qi, qf are currently chosen by the user so as to

specify some set of execution paths and to specialize even more the semantic slice
T ; the automatic selection of refinements is left as future work (see discussion in
Sect. 5). Other choices for I or F , involving several states in the automaton are
possible (the extension is easy). The definition of Tp from Ip,Fp is similar to the
definition of T from I,F (Sect. 2.2). It satisfies the following property, which
clearly shows that it is restricted to the execution pattern defined by qi, qf :

π(Tp) = T ∩ π(γ � (qi, qf))

Approximation of the semantic slice: We replace D] = � → D]
n with

the partitioning domain D]
p = � × �

→ D]
n; we let γp : D]

p → P(� p), I 7→
{〈((l0, q0), ρ0), . . . , ((ln, qn), ρn)〉 | ∀i, ρi ∈ γn(I(li, qi))}. The definition of for-
ward and backward abstract interpreters and of the sequence of refined invariants

� pn follows the steps of Sect. 2, with extended definitions for
−→
δ l,l′ ,

←−
δ l,l′ :

– Case of l0 : cnt; l1:

• forward analysis: if q0
l0
 q1,

−→
δ (l0,q0),(l1,q1)(d) = d;

• backward analysis: if q0
l0
 q1,

←−
δ (l0,q0),(l1,q1)(d, d′) = d u d′;

– Case of other statements:
−→
δ (l0,q),(l1,q) (resp.

←−
δ (l0,q),(l1,q)) is defined like

−→
δ l0,l1 (resp.

←−
δ l0,l1) in Sect. 2.

Theorem 4 (Soundness). The static analysis of the partitioned system leads
to a sequence of sound invariants: ∀n ∈ � , Tp ⊆ γp(� pn).

Proof: with respect to JP Kp.

Example 7 (Execution patterns). Many patterns can be encoded easily (we as-
sume that the program is of the form while(e){lc : cnt; . . .}):

– On Fig. 2(a), qe and qo correspond to even and odd iteration numbers:
γ � (qe, qo) slices the traces iterating the loop an even number of times; it also
helps distinguishing states reached after an odd (resp. even) number of iterations;

– On Fig. 2(b), γ � (q0, q1) corresponds to the first iteration, γ � (q0, q2) to the
n-th iteration (n ≥ 2).

Example 8 (Ex. 5 continued).
– The refinement of TD,(ld,q1) with the automaton of Fig. 2(b) and the pat-

tern qi = q0, qf = q1 shows that no error may happen in the first iteration;

– Similarly, the refinement of TD,(ld,q2) with the automaton Q (Ex. 6) gives
some intuition about the traces that cause an error: at (ld, q2), we get y ≤ 0;
at (ld, q1), we get x ≤ 0, which suggests the input of x should be negative one
iteration before the error. We wish now to verify this error scenario.

Remarks: Note that the choice of an automaton with only one state q and such

that for any statement l : cnt, q
l
 q results in the same analyses as in Sect. 2.

The trace partitioning presented in this section runs on the top of the one
described in [25]; the latter aims at computing more precise invariants thanks to
delayed merges of flows (e.g. out of while or if statements). Our goal here is to
extract some execution patterns and to refine the corresponding invariants.

3.2 Restriction to a set of inputs

We now consider the slices defined by constraining the inputs; for instance, this
may allow to show that this input always leads to an error.

Specification of inputs: We let � in denote the set of input statements labels:
� in = {l ∈ � | l : input(xl)}. An input specification is a function ν : � p →
P(�), mapping a label to the set of values that may be read at this point. The
definition of ν over the partitioned labels allows to select different inputs for
different execution contexts (corresponding to different states in the automaton
introduced in Sect. 3.1) at the same label. The denotation of the input function
ν is the set of traces γ � (ν) = {〈((l0, q0), ρ0), . . . , ((ln, qn), ρn)〉 | ∀i, li ∈ � in ⇒
ρi+1(xli) ∈ ν(li, qi)}: such traces satisfy the property that reading an input at
label (l, q) yields a value in ν(l, q).

Refining the semantic slice: The semantic slice constrained to ν is:

Tv = Tp ∩ γ � (ν) = T ∩ γ � (qi, qf) ∩ γ � (ν) .

Approximation of the semantic slice: The only modification required to
take into account the input specification concerns the rule for the l0 : input(x); l1

statement. In this case, we let
−→
δ (l0,q),(l1,q)(d) = forget(x, d) u ν](l0, q) where

ν](l0, q) is a sound approximation of ν(l0, q): {ρ ∈ � | ρ(x) ∈ ν(l0, q)} ⊆
γn(ν](l0))}. The case of the backward analysis requires no modification.

Theorem 5 (Soundness). The resulting abstract interpreters are sound and
compute a sequence of sound refined invariants: ∀n ∈ � , Tv ⊆ γp(� pn).

The proof follows the definition of a variation JP Kv of the concrete semantics
JP Kp: JP Kv is obtained from →p,ν just as JP Kp from →p, where →p,ν is the
transition relation constrained by the input function ν. The only modification
in the definition of →p,ν comes from the case of the l : input(xl); l′ statement:
((l, q), ρ)→ ((l′, q), ρ[x← v]) where v ∈ ν(l, q).

Example 9 (Ex. 5 continued). Let us consider the input specification ν(li, q1) =
−1. Then, � 0 shows that y = −1 at point (ld, q2) (the interval analysis proves
this property). Hence, the automaton Q and the input specification ν define a

valid error scenario: any execution iterating the loop n times and such that the
value read for x during the (n− 1)th iteration is −1 will result in an error. Such
situations are feasible, so the static analysis showed a real bug in the program
(Sect. 2.2, Case b).

Example 10 (Ex. 7 continued). The automaton of Fig. 2(a) allows to specify a
cyclic input; the automaton of Fig. 2(b) allows to isolate initialization inputs
read during the first iteration and inputs read at iteration n for n ≥ 2.

Currently, the function ν] should be provided by the user; further work should
allow to synthesize an input specification ν] exhibiting an error.

4 Slicing

The approach followed in the definition of the backward abstract interpreter in
Sect. 2.4 and 2.6 is not completely satisfactory for several reasons:

– it requires each analysis to save a local invariant at each label, i.e. at each
statement, which would result in a dramatic memory cost;

– it leads to the forward-backward analysis of the whole program, which would
result in rather long execution times due to the analysis of the full program,
even if only part of the program is relevant to the alarm to investigate.

Therefore, we propose to use regular, syntactic slicing techniques [32, 21] so as to
restrict the amount of code to apply the refining analyses to. We use the notations
of Sect. 2 for the sake of simplicity (even though mixing slicing techniques and
the methods introduced in Sect. 3 does not incur any major issue).

We assume a program s is given, that contains a statement ld : assert(e).
We write use(e) for the set of variables that appear in expression e.

Slicing: A slicing criterion is a set C ⊆ � × �
of pairs made of a label and a

variable ; it specifies a set of variables we wish to observe the value of, at some
point. A typical choice is C = {(ld, x) | x ∈ use(e)}. A simple way of computing
the slice s′ = S〈C, s〉 is sketched here:

– a dependence analysis (e.g. based on the pre-computation of a dependence
graph [21]) closes the criterion C into C by taking into account any induced
dependence. For instance:

• l0 : x := e; l1 defines x from the value of the variables in e at l0; hence,
for any y ∈ use(e), (x, l1) depends on (y, l0);

• l0 : input(x); l1 defines x from no other variable; hence (x, l1) depends
on nothing;

• if and while statements carry dependences through branches and add
dependences due to conditions; for instance if y ∈ use(e) and s0 defines
x, then l : if(e){. . . l0 : s0 . . .} induces a dependence of (x, l0) on (y, l);

– the slicing transformation extracts from s any statement l0 : s0 defining a
variable x and such that (x, l0) ∈ C, the original assertion statement and any
if or while statement containing them.

Analysis of slices: We assume that I,F , T are defined as in Sect. 2.2; we let
I ′,F ′, T ′ be defined similarly for the slice s′. The slicing transformation is sound:

Theorem 6 (Soundness of slicing). The observation of C on s′ approximates
those on s, i.e., for any state (l, ρ) ∈ � encountered in T , there exists a store ρ′

such that (l, ρ′) is encountered in T ′ and ∀x ∈
�
, (l, x) ∈ C =⇒ ρ(x) = ρ′(x).

The approximation stated in Th. 6 is strict in general, because slicing may remove
causes for non-termination or errors, hence, introduce strictly more behaviors in
the statements after while or assert statements. The main consequence of this
result is that analyzing the slice s′ instead of the original program s results in
an over-approximation of the behavior of s when restricting to C.

Beyond the restriction of the size of the code to analyze, an advantage of
considering the slice defined by the ld : assert(e) statement is that most of the
remaining statements and variables are relevant to the observation at label ld, i.e.
to the alarm under investigation. Forms of slicing to cut down the complexity
of further static analyses were proposed, e.g. in [1].

Reducing the size of slices: If � n(l) = ⊥, then � n proves that the statement
at label l is not relevant to the semantic slice of interest T ; hence, this statement
can be safely removed from the slice and its dependences thrown away, which
allows to reduce even more the size of the syntactic slice. Such a transformation
preserves the soundness and should speed up the computation of � n+k (k ≥ 1).

Approximation of slices: Slicing should reduce the programs to analyze to a
reasonable size; however, even the slices extracted from some assert statements
may have prohibitive sizes, when extracted from very large programs, with long,
cyclic dependence chains. Thus, we propose to do “aggressive slicing” and to
approximate any removed statement in a sound manner during the analysis.

For instance, let us consider the forward analysis of a statement l0 : x := e; l1
(that should be extracted in the slice). As seen in Sect. 2, the forward abstract

transfer function for this statement is
−→
δ l0,l1 : d 7→

−−−→
assign(x, e, d). The aggressive

slicing of this statement consists in replacing the previous definition of
−→
δ l0,l1

with the following:
−→
δ l0,l1 : d 7→ forget(x, d). Observe that this is sound: d 7→

forget(x, d) approximates all the concrete transitions defined by the assignment;

hence, this new definition for
−→
δ l0,l1 leads to a sound forward abstract interpreter

(the soundness result of Th. 1 is preserved); similar results are achieved for the
forward and backward refining analyzers (Th. 2 and Th. 3).

The advantage is that this form of slicing actually does not require to modify
the program to analyze; indeed the analysis can be carried out on the original
program; the only difference with the analyses proposed in Sect. 2, is that the
transfer functions for some statements are replaced with forget(x, .) operators.

Among the possible strategies to reduce the size of “aggressive slices”, we
can cite the limiting of dependency chains, the restriction to a given subset of
variables or the elimination of loop-carried dependences: these approaches lead
to an under-approximation Ĉ of the dependences induced by C (C ⊆ Ĉ ⊆ C).

Semantic criteria are also being investigated (we may wish to extract only the
parts of the program backward analysis is able to refine the invariants of).

5 Case Studies

A typical alarm investigation session proceeds as follows:

1. do a forward analysis, determine a superset of the possible errors (Th. 1);

2. choose an alarm to investigate; restrict to a slice including the alarm point;

3. define I],F], attempt to prove the alarm wrong with forward-backward
refinement (Th. 3), otherwise a more precise alarm context slice is found;

4. in case of failure, specialize the alarm context (Sect. 3.1);

5. in case no attempt to get the analyzer to prove TD,l = ∅ succeeds, then
attempt to prove the alarm true by choosing a set of inputs (Sect. 3.2).

Application to a family of programs: We applied our methodology to the
alarms raised by Astrée on a series of 3 early development versions of some crit-
ical embedded programs (bugs were not unlikely in the development versions).

Size of the C code (lines) 67 500 233 000 412 000
Number of functions 650 1900 2900
Analysis time (� 0) in sec. 1 300 16 200 37 500
Number of alarms 4 1 0
Alarm names a1, a2, a3, a4 a5 -

Slicing (Sect. 4) showed that a2 (resp. a4) is a direct consequence of a1 (resp.
a3); hence, we restricted to the investigation of a1, a3 and a5. The computation
of a semantic slice for the corresponding dangerous states on the slices revealed
rather informative conditions on the inputs. Specializing some inputs and car-
rying out a new, forward analysis allowed to prove the alarms true, thanks to
an input specification as in Ex. 10. The table below provides some data about
the process: the number of input constraints is the number of points an input
constraint had to be specified for (Sect. 3.2); the number of execution patterns
corresponds to the number of automata we considered (Sect. 3.1). The size of
the slices (number of lines, functions and variables) involved in the alarms show
that a1, a3 were rather subtile; a5 was much simpler. The number of additional
constraints generated during the forward-backward refinement is rather difficult
to express simply due to the trace partitioning, and to the use of sophisticated
numerical domains; we can only mention that it is much higher than the number
of variables or of program points. One forward-backward iteration necessitates
a reasonable amount of resources for these slices (up to 1 min., 80 Mb).

Alarm a1 a3 a5

Size of the slice (lines) 1280 4096 244
Number of functions in the slice 29 115 8
Number of variables in the slice 215 883 30
including: int, bool, float variables 15, 60, 146 122, 553, 208 7, 11, 23
Execution patterns 2 2 2
Input constraints 4 4 2

The only manual step is the choice of adequate execution patterns and of
constraints on inputs, so as to get an error scenario; in all the above cases, these
numbers are very low, which shows the amount of work for the user is very
reasonable: only 4 inputs had to be chosen in the most complicated case (a3).
However each of these choices had to be made carefully, with respect to complex
conditions on bit-fields and arithmetic values. The choices for the execution
patterns to examine only required considering very few simple automata (similar
to unrolling of loops, akin to Fig. 2(b) and Ex. 6), so that the selection of
execution patterns should be easy to automatize.

All alarms found involve intricate floating point computations. For instance,
a5 is due to a mis-use of (interpolated) trigonometric functions, leading to a
possibly negative result, causing a square root computation to fail.

Resolution of a former alarm: We disabled some Astrée relational domain
packing options aimed at solving a previously reported alarm on the second
development version and could successfully prove it to be false (as in Ex. 4).

Early experience conclusions: The use of the system reduced the alarm
investigation time to a few hours in the worst case we faced; the refining analyses
are fully automatic and default parameters (fixed number of global forward-
backward steps, no local iterations) did not have to be twicked too much to give
good results. Fully manual inspection of such alarms would have required days
of work and would have made the definition of an error scenario much more
involved. Moreover, we could successfully classify all alarms, which means that
no false alarm remains.

6 Conclusion and Related Work

We proposed a framework adapted to alarm inspection. Early experiments are
positive about the ability of the system to reduce the burden of tracking the
source of alarms in Astrée: overall, all considered alarms could be classified (no
case similar to Fig. 1(c) left), which is a very positive result.

Some forms of conditioned slicing [23, 6] attack a similar problem. However,
these methods are essentially based on a purely syntactic process, not only for the
extraction but also for the shape of the result (a slice is a subset of the program
statements [32]). Slicing has been employed for debugging tasks. Recent advances
in this area led to the implementation of conditioned slicing tools like [16], that
could be applied to testing and software debugging [20]. However, our system
is able to produce semantic slices, i.e. to provide global information about a
set of executions instead of a mere syntactic subset of the program; this is a
major advantage when investigating complex errors. The downside is the use of
more sophisticated algorithms; however, syntactic slicing alone would not help
significantly the alarm inspection process in Astrée.

The search for counter-examples and automatic refinement has long been a
motivation in the model-checking-based systems, such as [7, 3, 29, 30, 18]. In par-
ticular, the automatic refinement process plays a great role in the determination

of the set of predicates (i.e. abstract domain) needed for a precise analysis [2].
Our goal is to bring such methods in static analyzers like Astrée for a different
purpose, i.e. to solve the few, subtile alarms, after an already very precise anal-
ysis [5] (the construction of the domain requires no internal refinement process).

Forward-backward analysis schemes have been applied, e.g. in [22], to the
inference of safety properties. Some static analysis systems have been extended
with counter-examples search facilities: [17] relies on random test generation; [14]
uses a symbolic under-approximation of erroneous traces and theorem proving.
The main difference is that we chose to start with an over-approximation of
erroneous traces until conditions on inputs are precise enough so that a counter-
example could be found since the search space for counter-examples was huge in
our case, due to the size of the programs. For instance, the systematic exploration
of paths as in [14] over length above 1000, with hundreds of variables would not
work. Moreover, we allow abstract error scenario to be tested unlike [17, 14]: this
reduces the amount of input constraints to fix to a minimum. On the other hand,
we leave the automatic generation of counter-examples as a future work.

Future work should make the process more automatic for attempting to dis-
cover an error scenario, by proposing input sequences and restricting to adapted
alarm contexts (which are user provided in Sect. 3.1 and Sect. 3.2). We also plan
to make the choice of slices to analyze (Sect. 4) more sensible, by using the result
of the initial forward analysis, to choose which part of the invariant to refine.

Acknowledgments We wish to thank deeply B. Blanchet, P. Cousot, R. Cousot,
J. Feret, C. Hymans, L. Mauborgne, A. Miné, and D. Monniaux for comments
on early version of this paper and discussions. We are also grateful to M. Sagiv
for interesting discussions about related work.

References

1. S. Adams, T. Ball, M. Das, S. Lerner, S. K. Rajamani, M. Seigle, and W. Weimer.
Speeding up dataflow analysis using flow-insensitive pointer analysis. In SAS, 2002.

2. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate ab-
straction of C programs. In PLDI, 2001.

3. T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing errors in
counterexample traces. In POPL, 2003.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. Design and Implementation of a Special-Purpose Static Program An-
alyzer for Safety-Critical Real-Time Embedded Software, invited chapter. In The
Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones, LNCS 2566. 2002.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety Critical Software. In PLDI, 2003.

6. G. Canfora, A. Cimitille, and A. D. Lucia. Condition program slicing. Information
and Software Technology; Special issue on Program Slicing, 1998.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, 2000.

8. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD
thesis, 1978.

9. P. Cousot. Semantic foundations of program analysis. In S. Muchnick and N. Jones,
editors, Program Flow Analysis: Theory and Applications, pages 303–342. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1981.

10. P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

11. P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

12. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyzer. In ESOP, 2005.

13. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically
detecting all buffer overflows in C. In PLDI, 2003.

14. G. Erez. Generating counter examples for sound abstract interpretation. Master’s
thesis, 2004.

15. J. Feret. Static analysis of digital filters. In ESOP, 2004.

16. C. Fox, S. Danicic, M. Harman, and R. Hierons. ConSIT: A Conditioned Program
Slicing System. Software - Practice and Experience, 2004.

17. F. Gaucher, E. Jahier, B. Jeannet, and F. Maraninchi. Automatic state reaching
for debugging reactive programs. In AADEBUG, 2003.

18. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. Journal of the ACM, pages 361–416, 2000.

19. P. Granger. Improving the results of static analyses programs by local decreasing
iteration. In FSTTCS, 1992.

20. R. Hierons, M. Harman, C. Fox, , L. Ouarbya, and D. Daoudi. Conditioned slicing
supports partition testing. Journal of Software Testing, Verification and Reliabil-
ity, 2002.

21. S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing using Program De-
pendence Graphs. Programming Languages and Systems, 1990.

22. B. Jeannet. Dynamic partitioning in linear relation analysis. Formal Methods in
System Design, 2003.

23. B. Korel and J. Laski. Dynamic Program Slicing. Information Processing Letters,
1988.

24. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
SAS, 2000.

25. L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In ESOP, 2005.

26. A. Miné. The Octagon Abstract Domain. In Analysis, Slicing and Transformation
(in WCRE), 2001.

27. A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In ESOP, 2004.

28. A. Miné. Weakly relational numerical abstract domains. PhD thesis, 2004.

29. G. Pace, N. Halbwachs, and P. Raymond. Counter-example generation in symbolic
abstract model-checking. In 6th International Workshop on Formal Methods for
Industrial Critical Systems, FMICS, 2001.

30. A. Podelski. Software model checking with abstraction refinement. In VMCAI,
2003.

31. A. Venet and G. Brat. Precise and efficient array bound checking for large embed-
ded c programs. In PLDI, 2004.

32. M. Weiser. Program slicing. In Proceeding of the Fifth International Conference
on Software Engineering, pages 439–449, 1981.

A Concrete Semantics

Expressions: We assume that all variables have a type (boolean, integer, or
floating point) and that all programs are well typed: the type of the right hand
side and the type of the left hand side of an assignment are the same; the type
of a condition is boolean.

The semantics of expressions maps an expression and a memory state to the
value of the expression in this state: ∀e ∈ � , JeK : � → � . It is defined by
induction on the syntax of expressions and by using the concrete definition for
the arithmetic and boolean operators.

Transition rules: If ρ ∈ � , x ∈
�
, v ∈ � , we let ρ[x← v] denote the update of

x with the value v: ρ[x← v] :
�
→ � ; x 7→ v; x′ 6= x 7→ ρ(x′).

We list below the transition rules associated to all the (labeled) statements:

– assignment l0 : x := e; l1 (x ∈
�
, e ∈ �): if v = JeK(ρ),

(l0, ρ)→ (l1, ρ[x← v])

– input statement l0 : input(x) (x ∈
�
, v ∈ �): if v has the same type as x,

(l0, ρ)→ (l1, ρ[x← v])

– assertion statement l0 : assert(e); l1 (e ∈ �):

JeK(ρ) = true =⇒ (l0, ρ)→ (l1, ρ)
JeK(ρ) = false =⇒ (l0, ρ)→ Ω

– if statement l0 : if(e){lt0 : s0; l
t
1}else{l

f
0 : s1; l

f
1}; l1 (e ∈ � , s0, s1 ∈ �):

JeK(ρ) = true =⇒ (l0, ρ)→ (lt0, ρ)

JeK(ρ) = false =⇒ (l0, ρ)→ (lf0 , ρ)
(lt1, ρ)→ (l1, ρ)

(lf1 , ρ)→ (l1, ρ)

– loop statement l0 : while(e){lb : s; l′b}; l1 (e ∈ � , s ∈ �):
JeK(ρ) = true =⇒ (l0, ρ)→ (lb, ρ)
JeK(ρ) = false =⇒ (l0, ρ)→ (l1, ρ)

(l′b, ρ)→ (l0, ρ)

B Definition of the Forward Abstract Interpreter

Soundness of the abstract operators: We assume the abstract operators
provided by D]

n to satisfy the following:

– forward assignment
−−−→
assign :

�
× � ×D]

n → D]
n:

∀ρ, x, e, d, ρ ∈ γn(d) =⇒ ρ[x← JeK(ρ)] ∈ γn(
−−−→
assign(x, e, d))

– condition operator guard : � ×D]
n → D]

n:

∀ρ, e, d, ρ ∈ γn(d) ∧ JeK(ρ) = true =⇒ ρ ∈ γn(guard (e, x))

– forget operator forget :
�
×D]

n → D]
n:

∀ρ, x, d, v, ρ ∈ γn(d) =⇒ ρ[x← v] ∈ γn(forget(x, d))

Forward abstract transfer functions: The forward transfer functions asso-
ciated to each statement are defined by:

– assignment l0 : x := e; l1 (x ∈
�
, e ∈ �):

−→
δ l0,l1 : d 7→

−−−→
assign(x, e, d)

– input statement l0 : input(x) (x ∈
�
):

−→
δ l0,l1 : d 7→ forget(x)

– assertion statement l0 : assert(e); l1 (e ∈ �):
−→
δ l0,l1 : d 7→ guard (e, d)

– if statement l0 : if(e){lt0 : s0; l
t
1}else{l

f
0 : s1; l

f
1}; l1 (e ∈ � , s0, s1 ∈ �):

−→
δ l0,lt

0
: d 7→ guard (e, d)

−→
δ

l0,l
f
0

: d 7→ guard (¬e, d)
−→
δ lt

1
,l1 : d 7→ d

−→
δ

l
f
1
,l1

: d 7→ d

– loop statement l0 : while(e){lb : s; l′b}; l1 (e ∈ � , s ∈ �):
−→
δ l0,lb : d 7→ guard (e, d)
−→
δ l0,l1 : d 7→ guard (¬e, d)

−→
δ lb,l0 : d 7→ d

– for any l0, l1 ∈ � such that no
−→
δ l0,l1 has been defined by the above rules,

we let
−→
δ l0,l1 : d 7→ ⊥.

Soundness of {
−→
δ l,l′ | l, l′ ∈ � } writes down as follows:

∀d ∈ D]
n, (l, ρ), (l′, ρ′) ∈ � , ρ ∈ γn(d) ∧ (l, ρ)→ (l′, ρ′) =⇒ ρ′ ∈ γn(

−→
δ l,l′)

Forward abstract interpreter: The forward abstract interpreter is defined
by:

−→
F] : D] → D]

I 7→ λ(l ∈ �). t {
−→
δ l,l′(I(l)) | l′ ∈ � }

Soundness of
−→
F] boils down to:

∀I ∈ D], ∀(l, ρ), (l′, ρ′) ∈ � , ρ ∈ γn(I(l))∧(l, ρ)→ (l′, ρ′) =⇒ ρ′ ∈ γn(
−→
F](I)(l′))

