Relational Inductive Shape Analysis

Bor-Yuh Evan Chang

University of California, Berkeley
bec@cs.berkeley.edu

Abstract

Shape analyses are concerned with precise abstractions of the heap
to capture detailed structural properties. To do so, they need to build
and decompose summaries of disjoint memory regions. Unfortu-
nately, many data structure invariants require relations be tracked
across disjoint regions, such as intricate numerical data invariants
or structural invariants concerning back and cross pointers. In this
paper, we identify issues inherent to analyzing relational structures
and design an abstract domain that is parameterized both by an ab-
stract domain for pure data properties and by user-supplied specifi-
cations of the data structure invariants to check. Particularly, it sup-
ports hybrid invariants about shape and data and features a generic
mechanism for materializing summaries at the beginning, middle,
or end of inductive structures. Around this domain, we build a
shape analysis whose interesting components include a pre-analysis
on the user-supplied specifications that guides the abstract interpre-
tation and a widening operator over the combined shape and data
domain. We then demonstrate our techniques on the proof of preser-
vation of the red-black tree invariants during insertion.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords shape analysis, inductive definitions, heap analysis,
separation logic, symbolic abstract domain, materialization

1. Introduction

Shape analyses define precise heap abstractions to provide the de-
tailed aliasing and structural information often necessary for veri-
fication or program transformation tasks when typically no other
static program analysis can. Most shape analyses are extremely
effective when the analysis can be done non-relationally, that is,
the property of interest can be decomposed so that the checking of
one part is (mostly) independent of the checking of others. A sig-
nificant challenge for almost all shape analyses is to step beyond
non-relational abstractions, which become clearly necessary when
combining structural shape analysis with numerical analyses.

* Abstraction Project-team, shared with CNRS and Ecole Normale Su-
prieure, Paris

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7-12, 2008, San Francisco, California, USA.

Copyright © 2008 ACM 978-1-59593-689-9/08/0001. .. $5.00

Xavier Rival

INRIA * and University of California, Berkeley
rival@di.ens.fr

To obtain the necessary precision, shape analyses rely on spe-
cialized descriptions for abstracting memory. In prior work (Chang
et al. 2007), we proposed a shape analysis parameterized by
inductively-defined predicates provided by the user. The novel as-
pect of our proposal is that these inductive definitions can come
from checking code, that is, code that could be used to verify data
structure instances dynamically. A nice property of using invariant
checkers is that they are not only a familiar way for the developer
to describe the data structure invariants but also express developer
intent on how the data structure should be used.

In some respects, inductively-defined predicates are a natural
fit for shape analysis (seemingly evidenced by the many shape
analyses being built around them (Lee et al. 2005; Distefano et al.
2006; Berdine et al. 2007; Magill et al. 2007; Guo et al. 2007)). A
key component of shape analysis is a materialization (i.e., a partial
concretization) operation that then enables strong updates, which
are critical for precision. With an inductively-defined predicate,
a natural materialization operation is to unfold its definition. For
example, consider the following definition for an acyclic doubly-
linked list:

1.dll (1prey) := if (1 = null) then []

else 1enext > n * leprev => lprey * n. dll (1)

Here, we write inductive checkers in a pseudo-code notation that
defines a class of memory regions by a traversal from a distin-
guished root pointer (the traversal parameter). The [] indicates an
end to the traversal (i.e., an empty region), while -> indicates the
address and value of a field (i.e., a dereference of a field). The * in-
dicates the components corresponding to disjoint memory regions
(i.e., the traversal is allowed to dereference each object field once).
New variables (e.g., n) are considered as local variables bound to
the value of the specified field. In the above, dll says a doubly-
linked list is either empty or has next and prev fields where prev
must contain lpey and next must be a doubly-linked list whose
prev is the current root pointer 1. A singly-linked list checker is
similar and can be obtained by simply dropping the constraint on
prev and the 1l,., parameter. Circular lists can be described by
adding a parameter for a distinguished “head node” and stopping
the traversal when the head is reached (instead of null).

The kinds of invariant checkers considered in our earlier paper
were non-relational. At a high-level, a non-relational checker de-
scribes each segment of the data structure independently. This in-
cludes checkers for singly-linked lists, singly-linked circular lists,
trees, and skip lists, but not the dll checker. Syntactically, in a non-
relational checker, the additional parameters of the checker (i.e.,
the state of the checker) are constant across all recursive calls. This
condition clearly holds for a stateless checker like the one for a
singly-linked list. In contrast, the dll checker uses an additional
parameter lp., to specify that the prev field of the next element
points to the current element.

The main difficulty with relational checkers is that simply un-
folding instances into their definitions does not reveal these rela-
tions. Thus, code that utilizes such relations are not analyzable

without other techniques. With the dll checker, an unfolding re-
veals that next points to another dll, but not that prev must also
point to a segment of dll, nor that next and prev are inverses (i.e.,
following next and then prev gets back to the same node). As
such, analyzing code that traverses a doubly-linked list using the
next field with the dll checker is easier than analyzing code that
traverses using the prev field. Part of the problem is that there are
a number of ways to traverse a doubly-linked list (i.e., a number
of inductive schemes). For example, an alternative checker could
start at the tail of the list following prev fields, but then the above
difficulty is simply reversed for the fields.

The relational issue becomes even more salient when we con-
sider inductive invariants with more involved data constraints than
pointer equality. For example, consider the following checkers:

t . bst (tio, tup) :=
if (t =null) then [] && tj, < tup
else tol -> 1 * ted ->d *x ter ->r
* 1. bst(tj,d) *r.bst(d, tu) && tjo < d < typ
1.listn (1ey) := if (1 = null) then [] && 1}, = 0
else lenext ->n * n. listn (L, — 1)
The bst checker describes a binary search tree, while listn spec-
ifies a list of a particular length. Each of these relational check-
ers uses parameters to capture very different kinds of relations and
thus pose different challenges. The bst checker enforces a global
ordering property on the data fields (d) with the range narrowing
in recursive calls (the shape constrains the data), while listn uses
lien to specify the recursion depth (the data constrains the shape).
Finally, the dll checker describes a kind of invertible structural in-
variant with a data structure that points to previous roots.

In this paper, we identify a dividing line in the complexity be-
tween non-relational and relational inductive shape analysis. We
extend our earlier work to the relational case and make the follow-
ing contributions:

e We propose a parametric abstract domain for relational induc-
tive shape analysis. Our domain is not only parameterized by
programmer-supplied invariant checkers, but also by a numeri-
cal domain for data constraints (Section 3). In order to support
relational shape analysis, we strengthen prior notions of partial
checker runs, which are used to abstract memory regions where
user-supplied invariants hold only partially.

We observe that shape analysis with invertible checkers, such as
dll, can be strengthened with a notion of backward unfolding.
The novel aspect of our proposal is that the backward unfolding
operation can be derived automatically from the standard for-
ward unfolding (Section 5.1). Another interesting aspect is that
we use a pre-analysis on checkers, in particular, a type infer-
ence, to guide the abstract interpretation (Section 4).

We describe how our shape domain interacts with example base
data domains in the abstract interpretation phase to compute
precise fixed-point invariants. In particular, we show that the
widening requires careful coordination between shape and data
(Section 5.2).

In the next section, we highlight the challenges that we aim to
address in this paper with an example analysis of red-black tree
insertion. After describing our analysis, we return to this example
in Section 7 to indicate how our algorithm can be used to verify the
correctness of operations on such complex data structures.

2. Background and Overview

To set the stage for this paper, we first present the basic ideas of
inductive checker-based shape analysis by tracing through the ex-
ample in Figure 1. Our shape analysis is a standard forward ab-
stract interpretation (Cousot and Cousot 1977) that computes an

typedef struct RBNode {

struct RBNode *1, *r, *p;

// left child, right child, parent

int d; color clr; // data, color } RBNode;
void insert(RBNode **t, RBNode *n) {
RBNode *pa, **sonp, *son;
@d — 1
I null
(:M nuII&@(
3
] pr rbtree >l
pa = null; sonp = t;
2 while (xsonp !'= null) {
3 pa = *sonp;
4 if (n->d < pa->d) sonp = &(pa->1);
5 else if (n->d > pa->d) sonp = &(pa->r);
6 else return ;
@d — ag : (@d — fq A
null 5 ! rbtree ! : rbtree
r rbtree (: H
*t.pa rbtree p P2 rbtree
*sonp *sonp
@d +— 14 @d — ng
| null | null
nulle@i null(—@i
P o " null P o " 7 null
7 ap < ag < Mg < oy o < Bio < Ba < Md < Pup < aup)

8 n->p = pa; n->clr = RED;

*sonp = n; son = n;
10 while (pa != null) {

11 if (pa does not locally satisfy the red-black invariants) {
12 ... perform rotations to reestablish invariants . ..

19

20 son = pa; pa = pa->p;

! : rbtree
N

21 pa

22 son->clr = BLACK; *t = son;

First Iteration At Fixed Point

Figure 1. Red-black tree insertion in C.

abstract memory state at each program point. In the figure, we show
the abstract memory state of the analysis at a number of program
points using a graphical notation. For the program points inside
loops, we give two memory states: one for the first iteration (left)
and one for the fixed point (right). Our memory abstraction is built
around using user-supplied inductive checkers to summarize mem-
ory regions. Intuitively, a programmer-defined checker describes
the class of memory regions arranged according to particular con-
straints on which an execution of the checker would succeed. In
a graph, each node denotes a value (e.g., a memory address) and,
when necessary, is labeled by a symbolic value. Symbolic values
are existentially quantified variables used to name heap objects. To
distinguish them from program variables, we use lowercase Greek
letters («, 3,7, ...). A program variable (e.g., pa) below a node
indicates that the value of that variable is that node. Edges describe
disjoint memory regions. A thin edge gives a points-to relationship,
that is, a memory cell whose address is the source node and whose
value is the destination node. To keep the diagram compact, we
draw points-to edges only for the pointer fields, and, when neces-
sary, we notate the values of data fields above the node (e.g., at pro-

gram point 7). A thick edge (a checker edge) summarizes a memory
region, that is, some number of points-to edges with certain proper-
ties. There are two kinds of checker edges: complete checker edges,
which have only a source node, and partial checker edges, which
have both a source and a target node. Complete checker edges indi-
cate memory regions that satisfy particular checkers (e.g., on line 1,
the complete checker edge labeled rbtree says the memory region
from « satisfies the red-black tree checker). To describe memory
states at intermediate program points, partial checker edges cap-
ture the notion of a checker that holds on just a segment of a data
structure. For example, at program point 7 in the fixed-point graph,
the partial checker edge from « to [summarizes a memory re-
gion that is a rbtree along that segment. For data constraints, our
memory abstraction is parameterized by a base abstract domain
whose coordinates (i.e., variables) are the symbolic values. In the
examples, we note the data constraints that are necessary to get the
desired results and assume the base domain can capture them.

A memory update is captured in the graph by modifying the ap-
propriate points-to edges (performing strong updates). For exam-
ple, consider the transition from program point 7 to 9 where we see
the updating of n’s parent and color fields (line 8). In the figure,
we show only the disjunct where sonp went right (r) on the fi-
nal iteration; the case for the 1 field is similar. Sometimes, checker
edges are unfolded to materialize the points-to edges for an update.
For example, the rbtree checker edge (as on line 1) is unfolded to
materialize the 1 and r fields on lines 4 and 5. To reach a fixed
point, we fold subgraphs into checker edges. We determine where
to fold in the graph (as to retain enough precision) by consulting
the iteration history (as described in Chang et al. (2007)).

The analysis of the red-black tree insertion routine poses a num-
ber of challenges that we aim to address in this paper. These chal-
lenges appear in both the unfolding to materialize needed points-to
edges and the folding to retain sufficient precision in the data con-
straints. In particular, while the non-relational shape analysis de-
scribed in our prior work could obtain the structural invariants (i.e.,
graphs) at program points 1, 7, and 9, it would fail to infer the key
data constraints and even the fixed-point graph at point 21.

To better understand these challenges, we first describe infor-
mally the invariants of the red-black tree we consider here. The in-
verse invariant (cf., doubly-linked lists) specifies that the p field
is the inverse of the 1 and r fields (i.e., for each node n, if
n->1 # null, then n->1->p = n and analogously for the r field).
Next, the order invariant (cf., binary search trees) says that for each
node n, the values in the left subtree (i.e., the value of the d fields
in the nodes reachable from n—->1) are less than n->d, and the val-
ues of the right subtree are greater than n->d. Finally, the balance
invariant (cf., lists of a given length) is as follows: (a) a node is ei-
ther red or black (given by the c1r field); null is considered black;
(b) the root is black; (c) both children of a red node are black; (d)
every simple path (i.e., following 1 and r fields) from a node to a
leaf contains the same number of black nodes. Observe that each of
these invariants describes a relation between nodes, and in the case
of the order and balance invariants, they describe a global relation
on all the nodes of the tree. It is clear that to write code that checks
this invariant, a checker needs to carry some state (in order to turn
the global relations specified above into local checks). In terms of
checkers, we define the following red-black checker for a node t:

t . rbtree (tp, tio, tup, tredok, tbh) =
if (t =null) then [] && ti, < tup && tph =0
else tol -> 1 * ter -> r * top -> tp * ted -> d * teclr -> ¢
* 1. rbtree (t,t)y,d,c # red,ite(c =red, tpn, tph — 1))
* r.rbtree (t,d, ty,c # red,ite(c =red, tph, toh — 1))
&& t)p < d < tup && (C #red | | tredok)

where ite is an if-then-else expression. The key point is that the
additional parameters are used to impose the following constraints:

tp is where the p field should point; tj, is a lower bound on the
d field; tp is an upper bound on the d field; treqok gives whether
the clr is allowed to be red; tyine is the number of black nodes
on all paths to a leaf (i.e., the black height). We can see that the
kinds of relations used by the rbtree checker have parallels to each
of the relational checkers presented in Section 1. As such, the red-
black tree insertion routine is a fairly representative example of the
kinds of challenges in relational shape analysis. In the example fig-
ure, we have elided the additional parameters on the instances of
rbtree. Instead, we adopt the convention of referring to the ad-
ditional parameters by subscripting the node name on which the
checker applies. For example, the checker edge on line 1 conveys
the following: «.rbtree(ay, cuo, Qup, Qredok, on) Where any con-
straints on the additional parameters are given in the data domain.

Returning to the example analysis in Figure 1, we comment
on the points where the relational aspect of the rbtree checker
poses obstacles to overcome in the analysis. First, consider the
memory state at program point 21 in the first iteration. Note that
the value of pa is vy, which has no outgoing edges from it (neither
points-to nor checker). However, on the next iteration, we will
analyze statements that access the fields of pa and thus need to
materialize them. From our intuitive understanding of the rbtree
checker, we know that v lies on the segment between « and
(B (when it is non-empty), so if we were to unfold the segment
backward from (3, we could materialize the fields of . To justify
the unfolding of partial checker edges, we must strengthen the
logical representation of such segments (Section 3.1). The novel
aspect of our proposal is that we determine when to apply this
backward unfolding automatically using a pre-analysis on checkers
(Section 4). We also reduce the soundness justification of backward
unfolding to that of forward unfolding (Section 5.1.1). In other
words, while the user supplies the forward unfolding axiom (as
an inductive checker definition), the backward unfolding is derived
automatically and not axiomatized (cf., Berdine et al. (2007)).

Second, consider the memory states at program point 7, which
is a location where the combination of shape and relational data
constraints poses challenges. We get the data constraints in the first
iteration simply by unfolding rbtree and from the guard on the
conditional. The challenge is on widening to generate the fixed-
point invariant. In this example, we need the underlined constraint
to know that the insertion preserves the ordering invariant, but it is
not necessarily easy to obtain. At a high-level, the core of the diffi-
culty is that while the top of the tree can be fairly easily summarized
into the segment from « to 3, the data invariant we desire requires
synthesizing relations between the prefix segment (« to) and the
suffix (from (). To address this difficulty, we make some observa-
tions that allow us to apply of some standard analysis techniques
in this context. One, we observe that because the coordinates of
the data domain are given by heap nodes, the data domain is rather
sensitive to the large changes that result from widening in the shape
domain. Thus, we delay widening elements of the data domain until
the shape portion has converged (keeping symbolic joins instead).
Two, we notice that we can separate this synthesis task into finding
appropriate arguments for the checker parameters and inferring the
appropriate relation on those arguments. Specifically, we can make
the finding of checker arguments shape-guided by using additional
data fields that correspond to the checker parameters.

3. Memory Abstraction with Inductive Segments

The core component of our analysis state is an abstract memory
state M (as shown in Figure 2). The memory state is based largely
on separation logic (Reynolds 2002), so we use notation that is bor-
rowed from there. The first three items are as in separation logic:
emp is the empty memory, a@f — ([is a points-to relation de-
scribing a single memory cell, and My * M, is the separating

memories M ::= emp empty
| a@f — 3 memory cell
| Mo * M disjoint regions
| a.c(d) checker region
| a.c(8) = a’.c/(&) checker segment
data constraints P € P!
environment E:= |Ez—a«a

analysis state A

1 ‘ <E,M,P> | A1V A
symbolic values o € Val®
program variables x € Var

70
(e
: c(8) (8

Figure 2. Analysis state.

field names f
checker names ¢

aef — [
a.c(6)
a.c(d) *= o' .c'(§)

conjunction specifying a memory that can be divided into two dis-
joint regions (i.e., with disjoint domains), which together can sym-
bolically describe a finite memory. A field offset expression a@ f
corresponds to the base address « plus the offset of field f (i.e.,
&(a.f) in C). For simplicity, we assume that all pointers occur as
fields in a struct. Also for simplicity in presentation, we con-
sider only symbolic values on the right side of points-to (3) (i.e.,
for the contents of memory cells) and assume any additional con-
straints on those values are captured elsewhere (e.g., is null). The
next two items are used to summarize memory regions. An applica-
tion of a user-supplied checker «.c(d) describes a memory region
where ¢ succeeds when applied to o and §. For presentation, we
write checkers with one traversal parameter and one additional pa-
rameter, though everything applies to checkers with zero-or-more
additional parameters. The last item provides a generic mechanism
for specifying segments of user-supplied checkers, which we will
describe further below. In Figure 2, we show the correspondence
between formulas and graphs. The thick edges (for checker regions
and checker segments) can be intuitively thought of as representing
possible subgraphs of thin points-to edges arranged in particular
shapes and with certain constraints.

Inductive Checker Definitions. Formally, the definition of a
checker c, with traversal parameter m and a sequence of zero-
or-more additional parameters o, is a finite disjunction of rules.
A rule R consists of a conjunction of a memory portion M and
a pure portion F' (given as a first-order formula). Further, M is
separated into two parts: an unfolded region M" given by a series
of points-to edges and a folded region M given by a series of
checker applications. Schematically, we write checker definitions
as follows:

me(P) = (Mg % M, Fo) V-V (M % M, F,)

Free variables in the rules are considered as existential variables
bound at the definition. Note that because we view checkers as
code, the kinds of inductive predicates are further restricted. In
particular, M" correspond to finite access paths from 7 and thus
existentials are only for the values of fields along those access
paths from 7. Each checker call in M? is applied to arguments
among the parameters (the traversal or the additional ones) or the
existentials introduced in M™ . These kinds of inductive definitions
are apt for analysis, as we know that unfolding such a definition
corresponds to materializing points-to edges from 7.

Inductive Segments. Inductive predicates from checkers, such as
dll and rbtree, give us rather precise summaries of memory re-
gions, but unfortunately, they are typically not general enough to
capture the invariants of interest at all program points. For exam-
ple, in Figure 1 at program points 7 and 9, we need to summarize

the region between « and ((i.e., between the root pointer xt and
the cursor pointer pa). As observed in our prior work (Chang et al.
2007), such segment regions are captured by a partial checker run.
In terms of inductively-defined predicates, we want to describe a
segment as a partial derivation (i.e., a derivation with a hole in a
subtree). In the past work, we have used the standard separating
implication *— from separation logic for this purpose. While suffi-
cient and useful for summarizing segments, this definition does not
allow for unfolding. As noted in Section 2, unfolding of segments,
particularly backward unfolding, is often necessary with relational
checkers (e.g., the rebalancing of the red-black tree in Figure 1).

In this paper, we strengthen this connector by imposing an in-
ductive structure. This additional structure then enables the defi-
nition of forward and backward unfolding schemes on segments.
Informally, a.c(6) *= a'.c’(¢") is a memory region where it sat-
isfies a.c(d) up to some number of unfoldings and conjoining any
disjoint memory that satisfies a’.c’(§") makes the combined region
satisfy a.c(d). In Section 3.1, we discuss this definition in further
detail, and in Section 5.1.1, we describe and justify the unfolding
operations on segments.

Analysis State. To track data constraints (i.e., non-points-to con-
straints), we maintain a pure state P, which we assume is an ele-
ment of an abstract domain P* . Note that the base data domain P¥
is a parameter of the analysis. To connect the abstract memory with
the program, we also keep an environment F that maps program
variables to symbolic values that denote their addresses. Finally, the
overall analysis state A is a finite disjunction of (E, M, P) tuples.

3.1 Semantics of the Memory Abstraction

In this subsection, we give the semantics of our memory abstrac-
tion. We focus mostly on segments, as other aspects of the graph
follow mostly from separation logic. We write u € Val for con-
crete values and make no distinction between addresses and values.
Further, we write u + f for the base address u plus the offset of
field f. A concrete store o: Val —4, Val maps addresses into
values. We write [-] for the empty concrete store and [uo — u1]
for the store of one cell mapping uo to ui. A compound store
oo * o1 is astore with disjoint substores o¢ and o1 where o and
o1 must have disjoint domains (i.e., overloading the operators from
the abstract memory). To capture relations among memory cells,
we consider a valuation that essentially assigns an interpretation to
symbolic values. More precisely, a valuation v: Val* — Val is a
mapping from symbolic values into concrete values.

Checker Regions. We write (o,v) = M to mean a concrete
store o and a valuation v satisfy an abstract memory M . The
semantics of a checker application is defined by induction over
the “height of the underlying calling tree”. We write c.c’(d) for
a checker application of height at most ¢. We also write [a/7] M
for substituting « for 7 in M . Now, we define |= as follows:

([],v) Eemp (always, for all v)
(v(a)+ f—v(B),v) Eaef— B (always, for all v)
(o0 * o1,v) |E Mo *x My iff (oo,v) = Mo and {(o1,v) F M
(o,V) = a.c(8) iff there exists an i such that {7, v) = a.c?(6)
(o) |= accit1(8)
iff there exists a rule (M™ % M?, F) in the definition of 7.c(p)
where Mt = Bo-co(0) * -+ * Bm.cm(ym) and such that
v satisfies [«, 9, /7, p, R|F and
(o,v) = o, 8,8/, p, RIM™ % Bo.cl(v0) * - * Bm.cty (Ym)
where < are the free variables of the rule and & are fresh.

Intuitively, a checker application of height 1 should make no recur-
sive calls (i.e., it should correspond to a case where M fis emp).
Observe that the valuation v is what connects regions and thus al-
lows checkers to be relational.

Segment Regions. In a similar way, the semantics of a segment
a.c(d) *= o'.c/(§') is defined by induction over the number of
checker rule applications needed to build a derivation of «.c(d)
from a derivation of a’.c’(8"). For this purpose, we add an index
¢ on segments to indicate its length (when it is known). Thus, the
standard segment is one of zero-or-more steps:
(o,v) E a.c(d) = o’.c'(8") ,

iff there exists an ¢ such that (o, v) = a.c(d) +=" o’.c/(§")
The definition of *=" then proceeds by induction on . Intuitively,
we want a O-step segment to be an “empty partial derivation”
of a.c(d), which means it should be case that the checkers and
arguments match and correspond to an empty store. Formally,

([1,v) E a.c(8) =0 o/ .c(8") iff v(a) =v(a’)and v(5) = v(§)

The main purpose of these restrictions is to guarantee that *x=
has many of the same properties as the separating implication
*— . Moreover, in Section 5.1.1, we will see that these restrictions
are critical for the backward unfolding (as used in the red-black
tree example of Figure 1). The definition of the inductive case is
very similar to the corresponding case for checker applications.
For an (i41)-step segment, we unfold the head checker ¢ once
materializing points-to edges and a series of recursive checker calls
where one of these checker calls should be replaced with a segment
of rank <. More precisely,
(o,v) E a.c(8) =1 a'.c/(§)
iff there exists a rule (M" % (MT % B.c” (7)), F) in the defini-
tion of 7.c(p) such that
v satisfies [a, 6, &/m, p, R|F and
(o,v) = [, 6,8/, p, RIM™ % Mt x (B.c" () =" o/.c/(6"))

where R are the free variables of the rule and £ are fresh.

Concretization. Finally, we tie these definitions together by giv-
ing the concretization of our abstract domain, which is a reduced
product of the shape domain (of graphs) and the base data do-
main. As the concrete counterpart of the environment £, we write
0: Var — Val for a concrete environment that maps variables to
concrete values. Here, we overload the concretization operator y
to apply to each of the component parts.

Definition 1 (Concretization).
Y(M)={(ov)|({o,v) =M}

Y((M, P)) ={(o,v) | (o,v) € Y(M) Av € vp:(P) }
Y((E,M,P))={(0,0) | v, 0 =vo ENA(o,v) € Y((M,P))}
We write ypy for the concretization function in the base domain,
which yields a set of satisfying valuations (independent of a store).

3.2 Properties of Inductive Segments

While inductive segments x= are specialized to inductive check-
ers, it still has many of the properties of the separating implication
*— (when applied to checkers). We want to be able to unfold seg-
ments, but we also need to maintain the properties necessary for
analysis. In particular, we can prove that = is a restriction of *—
(by induction over the length of the segment). The semantics of *—
is the standard one in separation logic.

Theorem 1 (Stronger than Separating Implication).
If (0,v) € Y(aued) %= al.c'(8")),
then (o,v) € Y(a.c(8) x— o’.c'(¢")).
As a consequence, we get the elimination rule.
If (o0,v) € Y((a.c(d) *=o'.c'(§)) * o/ .c'(8")),
then (o,v) € y(a.c(d)).
We also prove the following basic but important properties.
If (o,v) € Y(a.c(d) x=a'.d(8) x o'.c'(8') %= a/".c" (")),
then (o,v) € Y(a.c(d) *=a'".c"(6")).
Forall v, ([],v) € Y(a.c(d) *= a.c(d)).

In terms of the shape graph, these facts allow the analysis to discard
intermediate nodes when they are no longer needed, such as o’ and
o in the following graph:

@ » /a',\ » @)
= c(9) S) () (87
Furthermore, it allows us to discover when a region again satisfies a
complete run of a checker (i.e., the entire structure again adheres to
the data structure invariant). In the above, dropping the intermediate
nodes allows us to derive that the region from « (pointed to by
root) satisfies the invariants of checker c. The last fact allows us
to introduce segments anywhere when needed.

We remark that our notion of segments is designed to capture
precisely a partial run (i.e., a partial derivation) and not only struc-
ture segments where an empty structural segment need not neces-
sarily have equal additional parameters (i.e., ¢’s). This distinction
shows up in the above properties, which are crucial to our analysis.

4. Typing Checker Parameters

As alluded to in Section 2, we perform a pre-analysis on checker
definitions to gather information that we then use to guide the shape
analysis. In particular, we saw that at program point 21 in Figure 1,
in order to materialize the fields of ~ (i.e., the node pointed to by
pa), we need to unfold the segment between « and § “backward”
from (3. However, note that this reasoning was based only on our
intuitive understanding of the rbtree checker. Nevertheless, we
notice that with some additional type information on the checker
parameters, the analysis can then make this unfolding decision
automatically.

In this section, we prescribe a type system to checker parameters
that classifies them into various kinds of pointers and non-pointers.
This type information will then instruct the shape analysis where
to perform unfolding (see Section 5.1). Intuitively, we consider a
checker parameter to have pointer type if it appears on the left
side of points-to in some disjunct of a checker unfolding. That is,
in terms of checker runs, a parameter has pointer type if one of
its fields is ever dereferenced along some path in a checker run
(on a satisfying store). Thus far in the paper, we have in essence
implicitly assigned a pointer type to the traversal parameter (i.e., 7™
in a definition m.c(p)).

To direct unfolding decisions, we introduce further refinements
of the pointer type to indicate, for example, which fields f are
dereferenced. We thus write a pointer type as a record of fields
that are dereferenced { fo(€o), ..., fn(€n)} (in some disjunct). We
consider the non-pointer type to be simply the empty record of
fields {}. The level ¢ provides a relative measure of where in the
sequence of checker calls a field is dereferenced (i.e., where the
points-to edge is materialized). To describe this notion, consider a
derivation of a checker application «.c_, (), shown below diagram-
matically:

© >
Con c2 c1 co €1 Cc2

Cm

where the c¢;’s are the sequence of checker calls (of various check-
ers) through a path in the derivation (i.e., a path in the computation
tree of a.c_,()). For a pointer argument (3 of a call, such as at co,
we want to track an approximation of where along the run are the
fields of G dereferenced (i.e., materialized). A level £ is thus an
integer indicating in how many checker calls is the field derefer-
enced or unk if unknown (e.g., at different levels depending on a
conditional); negative integers indicate backward from the current
call, while positive integers indicate forward.

Example 1 (Typing the Doubly-Linked List Checker). The follow-
ing assigns parameters types to the dll checker from Section 1.

types T = {f0<40>7~--,fn<en>}
levels ¢ ::= n|unk
N FZ M ok
{f(0)} <T(a) T+ M ok
- temp t-field
I' - emp ok I'FM*xa@f— 3 ok
I(e;) —1=%(c)(m) I'F M ok (formp.c(m):=...)
t-checker
T'F M % agp.clar) ok
Fs chkdef ok
3(c) - M; ok
t-chkdef
F m.c(p) := (Mo, Fo) V - - -V (Mp, Fp) ok
Ly <l (0<i<n<m) £ <: unk

{f0<£0>7 afn<€n>} < {f0<£6>1 () fm<‘€{m>} £l

Figure 3. Type-checking checker parameters.

(7 : {next(0), prev(0)}).dll(p : {next(—1),prev(—1)}) :=
3(vy : {next(1), prev(1)}). (emp, 7 = null)

V (mr@next — v x w@prev — p x v.dll(7), w # null)
Example 2 (An Alternative Doubly-Linked List Checker). The
following pair of checkers define a doubly-linked list where the
unfolding materializes the next field of the current node and then
the prev field of the next node (if it is non-null) instead of the next
and prev fields of the current node as in dll.

(7 : {next(0), prev({—1)}).npdll() :=
3(vy : {next(2), prev(1)}). (r@next — ~ * v.npdll’(7), ™ # null)
(7 : {next(1), prev(0)}).npdll’ (p : {next(—1), prev(—2)}) :=
(emp, ™ = null) V (w@prev — p * w.npdll(), ® # null)

In Figure 3, we present a type-checking algorithm for the
pointer types described above, which will then lead to an inference
algorithm. We write I" for a type environment mapping symbolic
values « to types 7 and X for a checker environment mapping
checker names c to a type environment ' for the types of all the
parameters of c. Also, we assume that X(c) includes types for all
the free symbolic values in the definition of ¢ (i.e., the existentially
quantified variables). Both the types and levels form (semi-)lattices
where the ordering is given by the <: and <:: relations, respec-
tively. For types, records are ordered by subset containment of
fields modulo ordering in the levels, while the level lattice is the
flat lattice on integers with unk as the top element. Intuitively,
the absence of a field indicates it is not dereferenced anywhere.
The core judgment is I' s M ok, which checks that an abstract
memory is well-formed with respect to the parameter types I and
checker environment 32, which are fixed throughout. For a points-
to edge, we check that the field is in the set of dereferenced fields
(rule t-field). For a checker application, we check that the set of
dereferenced fields for the actuals and formals are the same, but we
need to shift the frame of reference of the levels (rule t-checker).
We write 7 — 1 for the function on types that decrements each of
the field levels (and where unk maps to unk). Finally, at the top-
level, we typecheck each checker separately and for each checker,
we check the memory specification of each rule.

The type-checking algorithm is fairly straightforward, but it also
yields a natural extension to inferring parameter types by a least
fixed-point computation. The inference proceeds by initializing
the global environment ¥ to map all symbolic values to {} (the
bottom element). At each place where we check conformance in
Figure 3, we instead compute the join in the type lattice and update

the appropriate environments. Then, we iterate until we reach a
fixed point. Since the type lattice has finite height (as the number
of fields is fixed for any set of checker definitions), the process
terminates.

This procedure provides fairly generic support for unfolding
(forward and backward). The graph unfolding described in Sec-
tion 5.1 combined with this pre-analysis allows support for back-
ward pointers that go back a finite number of steps (e.g., a list with
a pointer that goes back two nodes), but more importantly, it makes
the unfolding process less sensitive to how the checkers are written.
For example, the alternative doubly-linked list checker of Exam-
ple 2 works equally well. The types are slightly different, which in
turn guides the graph unfolding algorithm appropriately. Also, ob-
serve that in t-checker, we make no distinction between the traver-
sal parameters and the additional parameters. Thus, with this type
information, one could consider checkers with, for example, multi-
ple forward parameters (at least in terms of unfolding).

5. Analysis Algorithm

Our analysis works as a typical abstract interpretation on programs.
In particular, the analyzer computes an abstract state A for each
control point. To do that, we need transfer functions for commands,
such as assignment and condition testing. As alluded to in Sec-
tion 2, the key domain operation is the unfolding of checker edges
(forward and backward) in order to materialize points-to edges.
A novel aspect of our proposal is that we reduce the problem
of unfolding segments backward to unfolding them forward (Sec-
tion 5.1). To infer loop invariants and obtain a terminating analy-
sis, we define comparison and join operations on abstract states that
summarize graphs by folding them into checker edges. The primary
source of complexity in folding is the interaction between the shape
graph and the base data domain. A nice property of our algorithm
is that at a high-level, we separate the computation of the compari-
son and join operations into phases: first, a traversal over the shape
graph gathering constraints, and then, a propagation of these con-
straints to the base data domain before applying the corresponding
base domain operation (Section 5.2).

5.1 Abstract Transition with Segment Unfolding

Recall that the complete checker edges and partial checker edges
summarize memory regions. In order to reflect memory updates in
a precise manner, we often need to partially concretize these sum-
maries, which we do by unfolding. To describe unfolding in detail,
we consider a schematic example of doubly-linked list traversals
that illustrate the various forms of unfolding (shown in Figure 4).
Initially, we have that 1 points to the head of a doubly-linked list
(satisfying the dll checker from Section 1). From program point 3
to 4, we perform a forward unfolding of a complete checker edge
to materialize the edge corresponding to cg->next (the one from
« in the first iteration and the one from % in the fixed-point it-
eration). Observe that the analysis determines that it should, for
example, unfold forward at « in the first iteration because while
there is no outgoing points-to edge for the next field (correspond-
ing to co->next), node « does have an outgoing checker edge
(i.e., « is the traversal argument to a checker). Because checkers
are inductive definitions where points-to edges emanate from the
traversal parameter, unfolding the inductive predicate at its traver-
sal argument (e.g., o in «.dll(null)) is likely to materialize the
desired points-to edge.

From program point 7 to 8, to materialize the edge ci ->next,
we must unfold forward at the head of a dIl segment (the one from
« to w in the first iteration and the one from ¢ to w in the fixed-
point iteration). Like in the previous case, the analysis determines
it should unfold forward because it arrives at an outgoing checker
edge, but in this case, it is a partial checker edge and thus how

co = 1;
2 while (co !'= null && cq should be advanced forward) {
- RifE (D) N
[@ dli(null) J [O dil(null) dII(XTQ}/dH(X) }
3 1,co T co
co = cp->next;
null
8 ?| (o »(w)
4 T hext 57 dli(e) lel(null) dii(y) ~Anext)
5 c1=1;

6 while (c1 '= co && c1 should be advanced forward) {

- ()
[®1 < dii(null) d\l(w! @CO dll(w)} {Q dil(null) dil(s) \CS,/ dil(<)

dil(x) :ﬂ d\l(x}

7

c1 = c1->next;

null

() (®) (e B NG ¢ »(-
s T next = dii(a) dil(z) = dli(y) lel(null) dii(s) next = dii(s) dil(y) 5 diy

9 co = cy!=null ? cqi->prev : null;
10 while (ca '= null && co should be advanced backward) {

c2 () prev
11 dn(nun) dii(= ext du(g)
Co = Co->prev;
c2 prev | Prev
Ny
2 ‘dl\(nul\) dli(s "ex‘ "ext d\l(n) ‘
}

First Iteration At Fixed Point

Figure 4. Unfolding of doubly-linked lists (checker dlIl).

to unfold it does not come directly from a user-supplied inductive
definition.

Finally, from program point 11 to 12, we can only make
progress by unfolding backward at the tail of a segment (the one
from o to () to materialize the edge for c2->prev. There are two
distinct aspects to both forward and backward unfolding (though
they are more evident in the backward case): (1) implementing the
unfolding operations on the abstract domain, while justifying their
soundness (described in Section 5.1.1) and (2) determining when
to apply which unfolding operation (discussed in Section 5.1.2).
Unlike forward unfolding, determining when and where to apply
backward unfolding is not so obvious.

5.1.1 Unfolding Operations

We apply an unfolding in order to expose a heap cell (i.e., a points-
to edge) before performing an operation on it. Relational checker
definitions include not only shape information (i.e., how are the
points-to edges arranged) but also data information in the form of
pure constraints on the exposed heap cells. Thus, unfolding not
only modifies the shape graph M but must also add additional
constraints to the pure state P. In general, unfolding takes an
element of the product domain (M, P) and yields a disjunction
of abstractions (M, P) V...V (M, P;). Though, it is often the
case that all but one are ruled out by the data domain (i.e., we derive
a contradiction in the pure constraints).

To mark the phases of unfolding, we distinguish an unfolding
operation that works only on shape graphs from the overall un-
folding operation. This distinction is also useful in describing other
domain operations that rely on unfolding. We write u,, for the for-
ward unfolding at node « that takes a shape graph M and returns
a set of graph and formula pairs where the first-order formulas give

the pure constraints on the unfolded graphs. The overall unfolding
operation unfold,, then takes an element of the product domain
(M, P) and returns a disjunction of such elements.

Unfolding Inductive Checkers. Let us consider the unfolding of
a complete checker edge «.c(d), in the abstract element (M
a.c(d), P). We describe unfolding of complete checker edges for-
mally, as it serves as a basis for the unfolding of segments. The
unfolding of a checker proceeds by unfolding each rule separately:

unfolda (M * a.c(6), P) £ \/ unfolda (M * o.R(6), P)
Rec
def

Ua (M % a.c(8)) = {ua(M *x a.R(S)) | R€c}

where we write R € c for a rule R of checker definition ¢ and
overload checker application to also apply to rules. To unfold a
rule, we first materialize the fields of the rule and then add the data
constraint. We assume the base domain provides a guardp; (P, F')
function that is a sound approximation of constraining P with F'.

def

unfold, (M * a.R(5), P) = (M’,guardpy (P, F'))
where (M, F') = uq (M * a.R(5))

Uq (M * a.R(4))

= (M * [, 8,8/, p, RI(M™ % MY), [, 8,/ p, R]F)
In the shape graph, we simply unfold the rule and perform substitu-
tions (where ¢ are fresh; and rule R has formals 7 and p, has free
variables &, and has the form (M" % M’ F)). This scheme can
be performed in an automatic way and generates a finite number of
disjuncts, which are well-formed elements of the domain. Further-
more, this algorithm is sound in that unfolding the checker edge
results in a weaker disjunction.

Theorem 2 (Soundness of Unfolding). If unfolding transforms
(M, P) into V/; (M, P}), then y({M, P)) C U; y((M], P})).

The proof is by an (easy) induction on the height of the checker
“call tree”.

Example 3 (Unfolding a Binary Search Tree). We show the un-
folding of a region satisfying the bst checker from Section 1.

@d — ay
|

@_. unfold emp @<:@ peeve——
bst(auo, orup) E— \Vi >

PAa=null bst (o, orp)
P A age < awp PAa#null Aaj < ag < ayp

Forward Unfolding of Inductive Segments. Because the seman-
tics of a partial checker edge a.c(d) x= o’.c/(¢") is defined by
induction over the sequence of derivations (from « to '), we
can define an unfolding scheme analogous to the one for complete
checker edges. We call this operation forward unfolding since it
proceeds by unfolding checker definitions at the top of the deriva-
tion tree in the “standard” way (i.e., corresponding to the material-
ization of edges at the head o). This unfolding operation is exactly
what is needed to materialize the edge for c; ->next at program
point 7 in Figure 4.

We extend the definition of forward unfolding (unfold,) for
segments. Like for complete checker edges, unfold, on partial
checker edges generates a finite disjunction of (M, P) pairs. How-
ever, for partial checker edges, we must consider an additional case
for the empty segment (i.e., the O-step segment); only if the segment
is non-empty (i.e., is of 1-or-more steps) do we get materializations
corresponding to the rules of c.

unfolda (M * (a.c(d) = o'.c/(8")), P)
' unfold® (M * (a.c(8) = o’ .c'(§")), P)
V (Vpgee unfolda (M * (a.R(8) 3= o.c(8")), P))

unfold? (M * (a.c(8) += o’ .c'(§")), P)
ar | (M,guardp; (P,a=0o' AN =17¢")) ifc=¢
L ifc#c

Observe that for the empty segment (unfold?), we assert the
additional equalities (o« = o’ and § = §’) in the base domain.
Only with these equalities can we determine in the analysis that the
segment at program point 7 of the example is non-empty.

We omit the definition for unfold, on rules and the corre-
sponding definitions of u, for the sake of brevity, as like for
complete checker edges, they follow directly from the semantics
given in Section 3.1. This extended unfolding function unfold,
is sound in the same sense as the complete checker unfolding (i.e.,
it satisfies Theorem 2). The proof proceeds by induction over the
length i of x=" derivations.

Example 4 (Unfolding a Binary Search Tree Segment). We show
the unfolding of a segment region satisfying the bst checker.

‘. bst(cvio, up) bst(u]’“,a{.p! . M
P i

@d — aqg @d — ag
.<: ! : bst(u;u,ud)bst(a{u,(yf‘p% ’ © 5 bt (cu, ra)
T V T
o bst(aq, aup) o bst (g, aup)bst(ar,, af, 0

PAa#null Ao < ag < aw

emp

\

PAha=a' Nay=af Aay =«

PAa#nul Ao, < ag < au

Note that using separating implication (*—) for partial checker
edges would make them very difficult to unfold, as it would require
involved restrictions to be made on checkers. Instead, our notion of
segments as we define in this paper (*x=) seems to be closer to our
intuitive understanding of partial derivations of checkers and thus
leads to a natural forward unfolding operation.

Backward Unfolding of Inductive Segments. The unfolding
function defined above allows the analysis to materialize mem-
ory regions from the traversal argument of a checker edge. How-
ever, these unfolding operations do not apply to algorithms walking
backward through invertible data structures, such as doubly-linked
lists, as the sequence of edge dereferences does not follow the re-
cursive checker calls that the forward unfolding would uncover. For
example, this situation arises at program point 11 in Figure 4. From
our intuitive understanding of dll, we know that if the segment be-
tween « and ¢ is non-empty, then € —the value of co —lies along
that segment “just before (” (i.e., €’s next field points to ¢). Thus,
if we are able to unfold backward along the segment from ¢, we
could materialize the edge for cy ->prev.

The key observation we make to define the backward unfolding
operation is that we can split segments into subsegments. For ex-
ample, we can split a *=""1 segments into a pair of subsegments:
=" and *="'. This segment splitting property is captured by the
following lemma:

Lemma 1 (Splitting Inductive Segments). Let
(o,v) € yY(a.c(8) *="T"a'.¢'(8))

Then, there exists a checker ¢’ and nodes o, 8" such that
(0,v) € y(a.c(d) ¥="a".c"(8") x a".c"(8") x=" o’ .c (¢")).

The proof proceeds by induction on ¢. We remark that only
checkers that may be called transitively from ¢ need be considered
for ¢’ and that the nodes o, 8" are fresh (modulo renaming).

Observe that Lemma 1 makes it possible to decompose a seg-
ment into a finite set of disjuncts with shorter segments. We can
then define a backward unfolding operation by first splitting an
(i-+1)-step segment into an i-step segment and a 1-step segment
and then apply forward unfolding to the 1-step segment (while sep-
arately considering the 0-step segment case).

More precisely, we define a backward unfolding function
unfold/, which should be applied at a node o’ in an abstract
state of the form (M % (a.c(d) x= o’.c'(8")), P) and conceptu-
ally unfolds the checker application just before o’ in the sequence
of calls from « to .

dil(e) <

c2 prev
- dll(s; J
J unfold forward at &’

(Drrer = (D prev
0
@ W
lel(null) dll(8) \Amext dll(s/) dil(e ©

Uunfold 0-step segment (i.e., reduce ¢ = ¢’ and € = s’)]

° prev prev
C
dli(null)

NA N
dil(6? next e
Figure 5. Backward unfolding of a doubly-linked list segment.

@ dli(null)

I
Usplit using Lemma 1 (4, &’ fresh)]

® »()
< dil(null) dil(s) = dli(5)

C2

unfold ' (M # (a.c(8) *= a'.c/(§")), P) returns a disjunction
composed of the following:

1. the term unfold® (M x* (a.c(§) *= o’.c/(8")), P), which
corresponds to the empty segment;

2. the disjuncts that result from

unfold,» (M % (a.c(d) *= a’.c"" (§"))
x (a.c"(8") =1 o/ .c/(8")), P)

for each possible ¢’/ and with o/, " fresh (as in Lemma 1),
which corresponds to splitting the non-empty segment and apply-
ing the forward unfolding on the *=" edge.

This backward unfolding function is sound in the same sense as
in Theorem 2. Note that Lemma 1 can be generalized to splitting
segments of length ¢ + k, which allows us to unfold backward k
steps in one operation (for any constant k). We write unfold”
for the k-step backward unfolding function at .

In Figure 5, we show the individual steps in the backward
unfolding of a doubly-linked list segment that is needed in the
example shown in Figure 4. At the top, we show the subgraph
of interest from program point 11. The empty segment case is
ruled out because we have that € # null from the loop condition;
since the parameter at « is null, an empty segment would imply
that € = null (as € is the parameter at (). Figure 5 shows the
steps for the non-empty segment case. It is in the last step that we
discover that ¢ = ¢’ and £ = £, which allows us to find out that
e@next — ((i.e., is the points-to edge for cp ->next).

5.1.2 Expression Evaluation and Controlling Unfolding

The basic transfer functions for atomic operations (e.g., muta-
tion, allocation, deallocation, and condition testing) are all fairly
straightforward, as updates affect graphs locally. As described in
Section 2, once points-to edges have been materialized, pointer up-
dates amount to the swinging of an edge. Determining which edge
to swing and to where is a simple walk of the graph from variables
following the sequence of field dereferences of the command. This
strong update is sound because each edge is a disjoint region of
memory (i.e., the separation constraint).

For data operations (e.g., arithmetic expressions) on heap val-
ues, we symbolically evaluate the expressions by obtaining sym-
bolic values for each memory access. We then create a new sym-
bolic value to stand for this expression in the graph and assert this
equality relation in the data domain P*. For example, consider the
following assignment statement showing an example transition:

[(x — ax, axedata — 3, P)j
x->data = x->data + x->data;

[(x — ax, axedata — v, guardp; (P,y =8+ 5))]

where ~ is a fresh symbolic value.

As described above, evaluating expressions requires following
points-to edges in the shape graph. In case the relevant points-
to edges are folded into complete or partial checker edges (i.e.,
summarized), we need to unfold the appropriate checker edge to
materialize the desired points-to edge (using the operations defined
in Section 5.1.1). To choose the appropriate edge and unfolding
operation, we take advantage of the type inference on checker
parameters defined in Section 4.

We are faced with deciding where to perform unfolding when
the evaluation of an expression requires dereferencing a field f of
anode o, but there is no such points-to edge from «. If there is a
complete checker edge .c(d) or a partial checker edge a.c(d) *x=
a'.c'(8') starting from « (i.e., a is the traversal argument for
some checker edge), then we may unfold this summary edge using
the forward unfolding function unfold,, . If the points-to edge for
a@f is materialized, then the evaluation of the expression can be
resumed in the new unfolded graph(s). This materialization step is
the basic one based on the knowledge that points-to edges emanate
from the traversal parameter in inductive checker definitions and is
what applies at program points 3 and 7 in Figure 4. Note that as an
optimization, we need only consider outgoing checker edges where
the type of the traversal parameter of the checker includes f(¢) (for
alevel £ that is non-negative or unk).

Otherwise, if there is no outgoing checker edge from «, we
look for a potential backward unfolding. We look elsewhere for a
partial checker edge 3.c(5) *= 3'.c/(a) where « is a parameter
at the tail. If additionally, the corresponding parameter of checker
¢’ has a type that includes f(n) where n < 0, then we apply the
backward unfold function at (3’ (unfoldgl‘”|). The magnitude of
the integer level tells us how many steps backward (i.e., how to
split the segment from 3 to 3). In the doubly-linked list example
at program point 11, we are trying to materialize e@prev when ¢
has no outgoing edges. However, we have the edge a.dll(null) x=
¢.dlli(¢) in the graph. Since the type of the additional parameter
to dll contains prev(—1) (see the type of p in Example 1), we
know to unfold backward 1-step from . Observe that the checker
parameter typing does not affect soundness; it is utilized only as
guide to decide where to unfold.

5.2 Folding with Relational Data Constraints

To obtain loop invariants in the shape domain, we need a way
to identify subgraphs that should be folded into complete or par-
tial checker edges. Because checker edges incorporate both shape
and data properties, this summarization requires careful coordi-
nation between the shape domain and the data domain (in order
to avoid losing precision unnecessarily). As observed in our prior
work (Chang et al. 2007), the folding of the shape graph can be
guided by consulting the iteration history through a widening oper-
ator defined on shape graphs. In this paper, we describe a widening
algorithm that applies in the presence of relational checkers (i.e.,
with the introduction of inductive segments and rich data domains).

In this subsection, we define the comparison and widening op-
erations, which both first perform a simultaneous traversal over the
input shape graphs gathering constraints before then applying the
corresponding operation in the base domain. We describe the com-
parison algorithm first, as it has similar but slightly simpler struc-
ture as compared to the widening and is also the key subroutine
used by the widening.

5.2.1 Comparison of Abstract States

The comparison operator checks inclusion between two abstract
elements in a conservative way. More precisely, it takes as input
two abstract elements Ay = (E¢, My, Pp), Ar = (Er, My, P;)
and returns true if it can establish that y(A) C y(A,) and false
otherwise (which does not necessarily mean that the inclusion does

not hold at the concrete level). Recall that the nodes in the shape
graph correspond to existentially-quantified symbolic values, so at
the basis of the comparison is a notion of node equivalence, which
states that valuations should map nodes in A, and A, to the same
value for the inclusion to hold. For instance, if x is a variable,
then the address of x should be the same on both sides, or the
inclusion cannot hold. In fact, these equality relations constrain
the valuations. Thus, when it succeeds, the comparison algorithm
should return a valuation transformer ¥ that is a function mapping
nodes of A, into nodes of A,. The condition that W is a function
ensures that any aliasing expressed in A, is also reflected in A, so
if at any point, this condition on WV is violated, then the comparison
returns false.
At a high-level, the algorithm proceeds in three stages:

e First, the initialization of the algorithm creates an initial valu-
ation transformer Wini¢ defined by the environments £, and
FE,.. Each variable should be mapped to the same address, so it
is defined as follows: Vz € Var, Ui, (Er(2)) = E(x).

Second, a comparison in the shape domain is performed, which
proceeds by checking inclusion locally. When new node rela-
tions are established as required for the inclusion to hold, the
valuation transformer should be extended in order to include
these constraints. Finally, it returns the following: (1) the final
valuation transformer W; (2) a first-order formula F', which
collects pure constraints, which may arise during the compu-
tation that must ultimately be proven (i.e., are temporarily as-
sumed).

Last, a comparison in the data domain is performed that shows
the inclusion of P in P,.. We must also ask the data domain to
prove and discharge the first-order side-conditions F' computed
in the previous step hold under the assumption of P . All this
is done modulo application of the valuation transformer W .

Comparison in the Shape Domain. The basic idea of the graph
comparison algorithm is to determine semantic inclusion by itera-
tively reducing to stronger statements until the inclusion is obvious.
It does so using a set of rules that apply to the graph locally. While
applying this set of rules, the algorithm carries along and enriches
the pair (¥, F') introduced above.

The rules are presented in Figure 6. For conciseness, we omit
the explicit bookkeeping of the node relations in the valuation
transformer W, that is, the rules assume the “final” ¥ is given
and state the soundness of the whole computation. In practice,
the state of W also determines when a rule applies. We show
this aspect indirectly by underlining the constraints on ¥ that
are added once the rule applies, while the mappings that are not
underlined must be in ¥ for the rule to apply. For instance, rule
c-pt applies when o, and «, match (i.e., when ¥(a,) = ay)
and when there is a field edge with label f from each node in
both graphs. Then, the edges can be removed from both abstract
elements (since ay@f — [, is obviously weaker than o, @f +—
0Br). A correspondence between 3, and (3, can be added into ¥,
for these two nodes should correspond to the same value. When
adding such a correspondence is not possible, because it would
make ¥ not a function, the algorithm should return false (i.e.,
the inclusion cannot be established because this situation would
mean that one value in M, should be equal to two possibly distinct
values in Mpy).

In the following, we briefly summarize the behavior of the
other rules, whereas we show how the rules apply concretely in
Example 5. Rule c-emp allows returning true when the proof is
finished. Similar to c-pt, rule c-chk matches two checker edges
from related nodes. When there is a partial checker edge in M,
and a checker edge in M, , we split out the “prefix segment” in the
right to match the left (rule c-segchk for a complete checker edge

U(ar)=ap M,CE M, U(B)=5 V(ar)=ay MCL M, ¥()=6
— c-emp c-pt c-chk
emp LYY emp My % ag@f v B CF My % ar@f — By My * ag.c(8p) TF My % ar.c(5r)
U(ar) = ap M, CE M, % al.c'(6]) U(85r) =& V(o) = o v(d;) =9, (a., 8], fresh)
c-segchk
My % ag.c(8;) 4= o.c(6)) CEF M, * ar.c(6r)
U(ar) = ap Mo CE M, al..c/(6]) += ol .c"(57) W(s,) =& V(o) = o U(s;) =9, (o, 8! fresh)
c-segseg

My ag.c(8¢) #= o).’ (6)) C°F My % aur.c(8r) = ol.c"(5]))

M, CE M/ where (M., F') € uq, (M * ar.c(ér))

M, CE M) where (M., F') € Uq, (My * ar.c(6;) = a..c’(6.))

c-uchk

M, E@AF(M, * ar.c(6r)

- c-useg
My CENET M % ar.c(6r) 4= af..c'(5))

Figure 6. The comparison operation in the shape domain.

in M, and rule c-segseg for a partial checker edge). Rules c-uchk
and c-useg unfold complete or partial checker edges in M, when
no other rule applies. Intuitively, when the comparison succeeds,
W gives us a relationship between the valuation of nodes on the
left and on the right. In other words, a valuation v, for A, can
be composed with ¥, to give a valuation for A,. We write this
composition as vy © ¥, which we use to state soundness.

Theorem 3 (Soundness of Comparison in the Shape Domain). The
above comparison function is sound: if My T5 M,, (o,v) €
Y(M¢) and v © VU satisfies F, then (o,v @ ¥) € M,..

The proof proceeds by induction on the derivation of CZ .
Soundness of rules c-pt and c-chk is straightforward. Proving
rules c-segchk and c-segseg requires an induction over the length
of the segments. Finally, the soundness of c-uchk and c-useg
follows from the soundness of unfolding.

We remark that the rules differ significantly from the rules pro-
posed in our prior work because of the introduction of inductive
segments that we need for segment unfolding. In particular, the
rules c-segseg (matching of partial checker edges) and c-useg (un-
folding of partial checker edges) are new and replace the “assume”
rule, which does not hold for inductive segments. Furthermore, the
proofs for rules c-segchk and c-uchk are also quite different. The
comparison algorithm in the shape domain is incomplete (i.e., the
comparison may fail to prove the inclusion when it does hold at the
concrete level). These rules have been primarily designed to be ef-
fective in the way the comparison is used in the join and widening
algorithms where we need to see if M, is an unfolded version of
M, (see Section 5.2.2).

Comparison in the Combined Domain. If the comparison in the
shape domain succeeds, then the comparison holds in the combined
domain if we can discharge the side-conditions F' and show the
inclusion in the data domain. The key is that the comparison in
the shape domain has computed ¥, the correspondence between
values in the left and values in the right, which captures the rela-
tionship between the shape and data domains. To define the over-
all comparison, we assume that the data domain has a function
provep; that takes as input an abstract element P &€ P* and a
first-order formula F' and tries to prove that any valuation v in
Vet (P) satisfies F, as well as a conservative comparison function
Cps . Furthermore, we assume the data domain can apply © at the
abstract level, that is, P € W applies the valuation transformer ¥
to rename symbolic values and capture any relations. Conceptually,
this operation can be implemented by asserting equalities for each
mapping in ¥ then projecting out the symbolic values in the range
of W. With that, the comparison function for the product domain is
defined as follows:

(My¢, P;) Cy (M., Py) iff there exists an F' such that
M, 5 M, and provey; (P, @ ¥, F) and P, @ ¥ Ty P

Moreover, (E¢, My, Pe) C (Ey, M,, P.) if and only if the above
comparison evaluates successfully when started with ¥ = Wy, .
The Cg operator is sound, that is, if (M, Pr) Co (M,, Pr),
then y((M¢, Pe)) C y({M,, P;)). Similarly, if (E¢, My, P;) C
<Er7 Mm Pr) , then Y(<E17 M(’.a PZ>) - Y(<Er7 Mv‘: Pr>) .

Example S (Verifying a Loop Invariant of Search Tree Traversal).
We highlight some aspects of the comparison algorithm by follow-
ing an example derivation. This example checks, for a region, the
inclusion of an iteration in a loop invariant for finding the value d
in a binary search tree (essentially, the first stage prior to the inser-
tion in the red-black tree example, as shown in Figure 1, lines 2-8).

Bo # null A
B <d< B3 <By

(B8, 85, BF)
°
r
t
C bst(¢, ;3;;"5

A <A < d <A <A

= @ lo . up lo uw‘@
T bst(v0:70) bst(+y, 71") ps

Y = Bo
Y1 = B1

8s , lﬁf)")@ (v
.: c
r

lo up
2, Y057)
| e lo d lo up 0
@<. bst(75, 76) bst(71, 7} ! .
Q, '
bst(8S, B

—
O

0

I

emp C emp

F:‘ o # null Ayl <48 <? ‘
[c-pt (5x) and c-chk (1x)]
’Yi = B
D 325
= By
A, gi
e = By
AP = B3
The first line shows the initial goal: on the left-side of the compar-
ison, we have the state where the cursor ¢ has advanced to the left
subtree of the root t. We want to show that this subgraph is con-
tained in the segment from t to c. At the top, we show the pure
constraints for each side: on the left, we have that d < 8¢, which
is why c advanced to the left subtree. We want to show that d is
in the range of the subtree from ~; . In the right column, we show
the valuation transformer WU as it is extended through the course of
the computation. We show the rules used to transition between each
step boxed and flush right. The highlighting of nodes and edges in-
dicates where the rules apply. To keep the diagram compact, we
write the values of the data fields as a tuple (e.g., 3¢, B, B).
The first step applies c-useg that unfolds the segment on the
right producing a proof obligation F' (shown boxed). The next step
matches points-to and complete checker edges, which extends W.
Finally, the last step unfolds the segment at +; as a 0-step segment,
which produces key additional constraints on ¥ that come from
the semantics of the 0-step segment.

To complete the proof, we need to discharge the above proof
obligation and show inclusion at the data level. Applying the valu-
ation transformer to the element of the data domain on the left side
(i.e., P, © V), we get the following:

Yo #null A g =97 <d <A =" <
which clearly implies the proof obligation and the inequality con-
straints on the right side (i.e., the loop invariant).

5.2.2 Join and Widening of Abstract States

The join and widening operators combine shape and data con-
straints to build an over-approximation of two abstract elements
A¢ = (B¢, My, Py) and A, = (E,, M., P.). Furthermore, the
widening operation should ensure the termination of sequences of
abstract iterates. In particular, termination should be achieved at
both the shape and data levels. We first consider the join of ab-
stract elements, that is, the computation of a sound approximation
of both A, and A, . Like for the comparison operator, we need to
track the correspondence between symbolic values in the inputs and
those in the output. Intuitively, a node « in the result should over-
approximate the values corresponding to a pair of nodes (a, a;),
where ay isin A, and «, in A,, so we maintain a pair of valua-
tion transformers (U,, ¥,.) that describe these relations. For con-
venience, we also write ¥(a) for (U,(a), Ur(a)).

At a high-level, we can partition the join into stages in a similar
manner as the comparison operation (by utilizing the valuation
transformers W,, W,):

e First, during initialization, for each variable x in the environ-
ment, a node . is created so as to represent the address of
x. The valuation transformers W,, ¥, are initialized so that
Vz € Var, ¥(a,) = (E¢(z), Er(z)), and the resulting envi-
ronment E is defined by Vz € Var, E(z) = as.

Second, a join in the shape domain builds a new shape ab-
straction M and returns it together with valuation transformers
Wy, U, and residual first-order constraints Fj, F;. that should
be proven at the data level. Like in the comparison, it also en-
riches W, and ¥, whenever a new node is created in order to
preserve the consistency of the node pairing.

Last, a join in the data domain is applied to P, © ¥, and
P, © ¥,.. We must also ask the data domain to discharge the
first-order constraints Fy, F;. (so as to check that the abstrac-
tions performed in the shape join are valid with respect to data
constraints).

Join in the Shape Domain. The join in the shape domain iter-
atively attempts to replace fragments in each of the input shape
graphs (m, and m,) with a new fragment (m) through a set of
rewriting rules. A rule “consumes” fragments m, of M, and m,.
of M, and produces a fragment m for the result, which should be
a sound approximation of m, and m, modulo the application of
W, and W, , respectively.

In Figure 7, we present the fragment rewriting rules. We write
(me, my) ~% m for such a rewriting rule where ¥ is the valu-
ation transformer and F’ is the residual first-order constraint from
the rewriting. Like for the comparison, we do not explicitly show
the extending of W but rather assume the “final” W is given. Also,
the rules for the join are intended to be symmetric; for conciseness,
we elide the left-sided version of the non-symmetric right-sided
rules. Further discussion on how we decide in what order to ap-
ply the rules is found elsewhere (Chang et al. 2007). A key rule
is j-waliases, which introduces a segment as a weakening for both
sides. Note that the weakening on the left (from emp) is justified
by one of basic properties of inductive segments (see Section 3.2).

Theorem 4 (Soundness of Join in the Shape Domain). If the join
algorithm returns M = M, U M, together with the valuation

transformers V,, W, and the first-order constraints Fy, F., then

for each side i € {{,r} and for all (o,v) € Y(M;), if v © T;

satisfies F;, then (o,v @ V;) € y(M).

The proof proceeds by induction on the sequence of rewriting
steps and case analysis on the rules used.

Join in the Combined Domain. The join operator for the com-
bined domain (E, M, P) = (E¢, My, Py) U (Er, M,, P,) is de-
fined as follows: (1) E is the environment computed from FE, and
E,. during initialization; (2) the shape join returns M together with
Wy, W,, F;,and F, when applied to M, and M, ; (3) the resid-
ual side-conditions are discharged, that is, provep; (P, © Wy, Fy)
and provep; (P, © V., F;.) succeed; and (4) P is the join in the
data domain (i.e., P = (P © ¥y) Upt (P- © ¥U,)). This join
operator is sound, that is, Y({Fe¢, Me, Pe)) UY({Er, M., P.)) C
Y(E, M, P)).

Widening. A widening operator V is a join operator with a stabi-
lizing property so as to ensure termination of the analysis (Cousot
and Cousot 1977). This operator should ensure that both shapes
and data invariants are stable after finitely many iterations. The
shape join already has the stabilizing property, so a widening oper-
ation for the combined domain can be obtained by simply using the
widening operator Vp; instead of the join Llpy in the data domain.

Theorem 5 (Widening Termination). Given any sequence (A7,)nen,
the sequence (Ay)nen (where An, = (En, My, P,)) defined by
Ao = Ay and Any1 = AnV A,y is ultimately stationary.

The proof is based arguments similar to those required to prove
the termination of widening in cofibered domains (Venet 1996):
the shape graphs stabilize first, and then the data abstract values
eventually converge since a widening operator is used.

Example 6 (Traversal of a List of Given Length). In this example,
we consider the join of the first two iterates that arise during the

traversal of a list of length n:
Bllcn =—n—-1

,C
The above join algorithm produces the following shape invariant
M after applying rules j-chk and j-waliases:

L

len _
ao =n

T listn(~vg" Iistn(fyf"r = listn(n;™)

Rule j-chk extends the valuation transformer so that W¥(nf") =
(af™, B") . Fromrule j-waliases, we get on the left side that 7§ =
Y (Qe., Up(y8") = Wy(~4™)). On the right side, one unfolding
step is required in the comparison (to fold from [y to (1 into a
listn segment), so by the definition of the additional parameter of
the recursive call in the definition of checker listn, we have the
relation that 4" = ~%" 4 1. This relation cannot be tracked by U,
as we have defined it in this paper, but we can consider an extended
valuation transformer that not only maps nodes of the result into
nodes of one of the inputs, but also allows expressing such relations
among the nodes of the output graph. Such relations typically arise
in the unfoldings performed during the comparisons required for
applying rules j-waliases, j-wchk, and j-wseg. After the join of
the shape abstractions, the above relations are propagated to Py
and P, (i.e., by applying ©). This results in the following for the
join in the data domain P*:

[=n A" =] Upe [=n—1A" =" +1]
If we let P* be the domain of linear equalities (Karr 1976), the
result of the join is [Y§" — 7" = n — n'™], which says that the
sum of the lengths corresponding to the partial and the complete
checker segments is n (i.e., the length of the list does not change

Vo) = (0,00) VB = Buf) W) = (o) VO =Bub) W) = (o0,00) me T, 0cl) W@ =0
(2@ By cr@f o By) ~og @@f =B (agc(30), arc(8r)) ~og cc(8) (g.c(80), my) ~E a.c(6) !
U(a) = (ag, ar) V(') = (o,) my EgT a.c(8) = a'.c/ (&) Wy (8) = g U, (8') =5, -
(0r0.c(8¢) = iy (8)), mir) ~= cv.c(8) 4= o - (8') jrsee
V()= (apar) V()= (p,a)) mr Ef ac(d)s=a'.c(d) (5 =8 (d) =35
j-waliases

(emp, my)

T a.c(8) = a'.c(d)

Figure 7. Fragment rewriting rules for the join operation in the shape domain.

during the traversal). This invariant is the most precise one can hope
for on this example.

Example 7 (Inferring a Loop Invariant for Search Tree Traversal).
Consider again the code for finding a value d in a binary search tree
(i.e., lines 2-8 in Figure 1). For this example, we assume P* is an
abstract domain that supports inequalities among pairs of variables
(e.g., octagons (Miné 2006)). Suppose in the first iteration, the
cursor ¢ is advanced to the left subtree (i.e., d is smaller than
the data at the root), then the the first widening is applied to the

following arguments: (88, o, B
. ﬂlo d
: bst(af, aff s .<

@_§ ()
bSt(ﬁu By
7oo—a0<d<a3p—oo 7oo:ﬁg)°<d<50<ﬁgp:oo
The join in the shape domain yields the following shape graph:
@ » (1) N
bst(vy, 7o) bst(¥y 7"“7U bst(n'’, ny") Q)

The valuation transformer W is initialized to ¥(yo0) = (a0, Bo),
W(y1) = (a0, 1) from the environment. Then, rule j-chk applies
to add the complete checker edge from 71 , which also extends ¥
so that U(nY?) = (o, BF) and ¥(ni®) = (af,5¢). Finally,
rule j-waliases applies to create the segment, which enriches ¥ so
that the following relations hold: \Ilg(fy})") = T, (), \Ifg(ygp) =
U, (7‘;) for the initial state and T, (v%) = U,.(v°) = Bf,
U, (7)) = B, W, (7iP) = B¢ for the first iterate. Note that the
incluswn check that we need to weaken the subgraph from [y to
(1 to a partial checker edge is the comparison in the shape domain
shown in Example 5. The extensions to W, can be read from there.

Then, applying the valuation transformers W,, ¥,. to the respec-
tive input elements, the data invariants to join are as follows:

[0 =7 AW =7

Ups [—oo=10 =" =" <d <" =9 <% = o]

However, the join of these two data invariants is problematic
because the first invariant is, in a sense, too general, for any
(8, 7") = (°,7}) approximates a O-step segment. Specifi-
cally, the equality constraint (v, 7p") = (i, 7o°) is not required
in the initial state (i.e., the left data element) but is required in the
first iterate (i.e., the right data element). Moreover, the segment
between 7o and +; is only an approximation of the corresponding
subgraph on the right when (v, 7¢”) = (—00,00).

This example illustrates one of the difficulties that we sketched
in Section 2. As the symbolic values form the coordinates of the
base data domain, it is quite sensitive to large changes in the shape
graph. Here, we see that between the graph at the initial state and
the join, cg has been “split” into o and 1 and (), ~5?) has
been “split” into (v, v?) and (v°,~i?). However, we observe
that this becomes a non-issue once the graph stabilizes. Therefore,
we propose to delay the join of the data invariants until the next
iteration, which is a common static analysis technique.

A —oo=nf <d<n’ = o0

Now, for the case where the cursor is advanced to the right sub-
tree in the first iteration, the result of the widening yields the same
shape graph shown above and marked as (). The data constraints
are, however, as follows:

—co =5 < =nF <d <y =’ =7 =00
The join of the numerical invariants corresponding to the left and
right branches after one iteration is as follows:

—oo=9g <A = <d <A = < =00 ()
After the next iteration, we get the following two shape graphs:

(8¢.85.87) (5.8, 87)

bst(AY, 57)

bst(3y, BF) bst(BY, By

The computation of the join of each of these invariants with the
result of the first widening output (f) reveals that the latter is stable
at the shape level. Furthermore, from this point, the data invariant
marked as (1) above is also stable, so we have obtained a fixed
point. The loop invariant says that at any step of the find, the cursor
c points to a subtree of t where the range of the data values in the
subtree contains d.

Example 7 also shows the other difficulty alluded to in Sec-
tion 2, which was solved by a different technique. In the above, the
range of the subtree is not only expressed in the checker parame-
ters of a folded region but also as fields of unfolded nodes. With-
out these fields, the resulting situation of the first widening (shown
in display (x)) is similar to what is described above without the
delayed join of data invariants. Specifically, we would get a “too
general” instantiation of the partial checker edge where the lower
bound at the head (7) could be any value smaller than the key at
the root. The valuation transformer W, is never constrained so that
U, (v0) = U, () = BY. This folding would be sound, but it
would not allow folding at the next step, due to being too general.
Instead, with these fields, we break the dependence on synthesizing
the appropriate “less general” parameters. Example 6 does not re-
quire such fields because of the tight constraints on the parameters.
We note that this kind of technique is also rather common in veri-
fication (e.g., McPeak and Necula (2005)), which we apply here to
separate the analysis concerns from the modeling ones.

6. Experimental Evaluation

We have applied a prototype implementation of our shape analysis
for C code to a set of data structure manipulation benchmarks. Ta-
ble 1 presents analysis statistics executed on a 2.0GHz Intel Xeon
with 2GB of RAM. In each case, we verified that the pointer ma-
nipulation preserved the structural invariants of the data structures
(e.g., back-pointer property, acyclicity, non-sharing, treeness). We
did not verify any numerical properties on the node data, as we do
not yet have an effective interface to implementations of numerical
base domains. In the table, when the operation exists for the non-
back pointer analogue (i.e., singly-linked list vs. doubly-linked list
and tree vs. tree with parent pointers), we show the analysis time

With Back Pointers Without
Time Disj. Iter. Time
Benchmark (sec) (num) (num) (sec)
list reverse 0.0014 1 3 0.0006
list copy 0.0053 2 3 0.0037
list insert 0.0038 2 4 0.0049
list insert™ 0.0042 2 4 -
list remove”* 0.0065 5 4 -
list remove and back 0.0068 5 4 -
search tree insert 0.0083 5 5 0.0148
search tree insert and back 0.0470 5 5 -

Table 1. Benchmark results for verifying shape preservation. We
show the analysis time, the maximum number of disjuncts at any
program point (Disj.), and the maximum number of iterations at
any point (Iter.). Where applicable, we also show the analysis time
for the analogous operation in the structure without back pointers.

of the non-back pointer variant as a point of comparison. The in-
sert and remove cases marked with * are variants where the search
for the location to do the operation is done with only one cursor,
so back pointers are required to perform the operation. The “list
remove and back” example finds an element if it exists, removes
it, and walks back modifying the previous nodes (e.g., updating a
length field); the “tree insert and back” is similar. In all the test
cases, the analysis times are negligible, but more importantly, the
maximum number of disjuncts (i.e., the number of shape graphs),
we need to keep at any program point seems to be small.

7. Example: Red-Black Trees

We now return to the red-black tree insertion example from Fig-
ure 1, Section 2 to discuss how the invariants in the rebalancing
loop after an insertion can be obtained. In Figure 8, we present one
of the rebalancing cases in detail with the fixed-point invariants
shown at key points. At program point 21, we show a loop invari-
ant for the rebalancing loop that is sufficient to show that after the
loop, a (pointed to by *t) is a red-black tree according to checker
rbtree. The shape portion of the loop invariant indicates that ¢ and
¢ are red-black trees (with certain parameters) but perhaps not lo-
cally around 3. In the data portion, we have the ordering property
on the data (shown at the bottom), which is obtained in the search
loop (lines 2 to 8) prior to the insertion. Note that this ordering
invariant is obtained by the analysis algorithm as described in the
example widening on a binary search tree traversal (Example 7 of
Section 5.2.2) and then preserved in this loop. The other data con-
straints describe the invariant on the black height parameters of the
checkers (e.g., Opn). The top constraint gives the relation between
the black height at 5 with those at § and e, which first comes from
the unfolding of the rbtree in the search loop and then notably pre-
served on insertion (line 9). The middle constraint is the relation
between the black height at o with the subtree at 3 (where bh is
the initial black height of the entire tree and 3, is the black height
checker parameter at the end of segment to 3—as opposed to Fon
that is the black height parameter from). This invariant is also
obtained in the search loop and in the same manner as the example
widening on lists of given length (Example 6). However, the base
domain should be richer to handle the additional boolean structure
(on whether a node is red or black) by using, for example, binary
decision diagrams (BDDs) with linear equalities at the leaves.
Observe that we have no constraints on the red-ok parameters
(e.g., €redok) meaning that any of §, ¢, and 5 may be red and
thus locally violating the color aspect of the red-black tree invariant
for the entire structure. The shown rebalancing case addresses

10 while (pa !'= null) {
11 if (pa->r && pa->r->r

&& pa->r->clr == RED && pa->r->r->clr == RED) {
12 son = pa->r;

“ar = black fibh = Boh

= ite(yar = red, Yo, Yon — 1)

rbtree
far = red Oph = Eph

= ite(Bar = red, Bon, Bon — 1)
aph — B, = bh —
rbtree oh bh Pon
< Yo < B0 L €lo < Eup = By =10 < dup = Vd = Klo < Kup < Yup <o

13
son->r->clr = BLACK;
14 son->p = pa->p; Sset pa->p’s 1/r field to replace pa with son ;
15 pa->r = son->1; if (son->1) { son->1->p = pa; }
16 son->1 = pa; pa->p = son;
17 pa = son;
~Yer = black
| Kbh = Boh
rotree = ite(yer = red, Yoh, Yon — 1)
bh = €bh
= ite(Bar = red, Bon, Bon — 1)
rbtree aph — By, = bh — Bon
18 < Mo < Blo L €10 < Eup = Bd = 1o < dup = Yd = Kio < Kup < Yup <o+
19 ... other rebalancing cases ...

20 son = pa; pa = pa->p;

th = ?hh
= ite(Buy = red, Bon, Bon — 1)

aph — Bf, = bh — Bon

a
27 —00 = ajo < Blo < €l < eup = B = 1o < dup < Pup < cwp = 00

}

Figure 8. Rebalancing in the red-black tree insertion example.

this violation by performing a left rotation and coloring. From
program point 21 to 13, the analysis does a backward unfolding to
materialize the fields of pa. This unfolding (along with cwh—/5f, =
bh — Bbn) yields the additional black height constraint on Kpn
and [Byn. Then the condition that (o, = red (and an unfolding
constraint on &redok) tells us that o, = black. For compactness, we
do not show the unfolding of €, which is needed only to access its
color field. Aside from the coloring of ¢, the rotation only affects
the graph (as shown at point 18). Now, compare this after-rotation
state with the loop invariant at 21. We see that the after-rotation
state is contained in the loop invariant (after advancing the cursor
pa) by folding the region from + into a rbtree, which is computed
by the join as described in Section 5.2.2. In the data constraints, the
key observation is that the coloring gives us that Kpn = dbh = Ebh -
Also, while the new black height at 3 and ¢ increase by one, this
is summarized by the difference equality constraint.

8. Related Work

In the past few years, we note a growing interest in shape analyses
based on inductive definitions in separation logic. Distefano et al.
(2006) build into the analysis a singly-linked list segment predicate
with specialized folding rules (in a unary canonicalization opera-
tion). Berdine et al. (2007) have extended this framework to apply
to doubly-linked lists polymorphically. In contrast, our analysis al-
gorithm is parameterized by inductive checker definitions that sup-
port data constraints and folds using a generic widening operator
(i.e., uses iteration history). Magill et al. (2007) propose an analy-
sis for length-specified lists (like listn) that is staged as opposed to
a reduced product: the shape analysis is performed prior to apply-
ing the numerical analysis. This design has clear engineering ad-
vantages but may make it harder to achieve the desired precision.

Also, like the works mentioned previously, the length-specified list
predicate is built into the analysis, which enables the domain op-
erations to be tuned for the relational aspects. Guo et al. (2007)
describe a global shape analysis that synthesizes inductive struc-
tural invariants (i.e., shape only) from construction patterns present
in the code. In contrast, our approach is to focus the shape analysis
based on developer intent, which often includes intertwined data
constraints. They also describe a notion similar to segments (“trun-
cation points”), though it is unclear how unfolding is applied.

TVLA (Sagiv et al. 2002) is a well-known, very powerful and
generic framework based on three-valued logic for setting up shape
analyses. It has been widely used to verify complex structures and
has proven able to tackle deep properties, such as sortedness (Lev-
Ami et al. 2000). A large amount of ongoing work on this topic ad-
dresses scalability (e.g., Arnold (2006)). Our parametric framework
seems to offer an interesting balance between expressivity and ef-
ficiency (Chang et al. 2007); the present contribution significantly
extends it to accommodate data invariants and relational shapes.

The abstract interpretation-based analysis proposed by Gulwani
and Tiwari (2007) is based on an encoding of shape invariants into
quite expressive 3V quantified formulas that essentially correspond
to our checker edges. The existential defines a segment endpoint
(i.e., a bound on the recursion depth), while the universal gives the
induction. Also, it does not make explicit use of separation and thus
requires may/must alias information to be recomputed on the fly.

Shape analysis-based on reference counting and region infer-
ence techniques has proven quite successful in addressing cer-
tain relational properties, such as the balance invariant in AVL
trees (Rugina 2004) and doubly-linked lists (Cherem and Rugina
2007) at a very reasonable cost. However, it is not clear how to
extend the analysis to more global properties, such as the search
tree ordering invariant, amenable to the shape analyses mentioned
previously. There is also a large body of work on using “verifica-
tion procedures” for shape properties (e.g., Nguyen et al. (2007);
Chatterjee et al. (2007); McPeak and Necula (2005); Mgller and
Schwartzbach (2001)). These techniques typically address expres-
sive sets of predicates but require the user to supply loop invariants.
Another relevant line of work addresses array properties. Whereas
no folding/unfolding of specialized structures need to be consid-
ered, partitioning and summarization of array cells are required. In
particular, Gopan et al. (2005) utilize canonical abstraction and nu-
merical abstract domains to achieve this, while Cousot (2003) uses
parametric predicate abstraction.

9. Conclusion

We have described a generic framework for relational inductive
shape analysis with user-supplied invariant checkers. We have high-
lighted the difficulties with relational checkers, which include in-
vertible structural invariants, such as in doubly-linked lists, as well
as intertwined data and shape invariants, such as in binary search
trees. The key mechanisms we have introduced to enable relational
shape analysis are the notion of (generic) inductive segments and a
two-phased widening operator over the combination of shape and
data domains. Moreover, we have introduced a typing of checker
parameters with an inference algorithm that is then utilized to con-
trol the firing of unfoldings in the abstract interpretation. Finally,
we have shown the applicability of our analysis algorithm to the
correctness verification of insertion for red-black trees (including
both the ordering and balance invariants).

Acknowledgments

We thank George Necula for valuable discussions and his support
of this project, as well as the anonymous referees for providing
helpful comments on drafts of this paper. This research was sup-

ported in part by NSF under grants CCR-0326577, CCF-0524784,
and CNS-0509544; and an NSF Graduate Research Fellowship.

References

Gilad Arnold. Specialized 3-valued logic shape analysis using structure-
based refinement and loose embedding. In Static Analysis (SAS), 2006.

Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W.
O’Hearn, Thomas Wies, and Hongseok Yang. Shape analysis for com-
posite data structures. In Computer-Aided Verification (CAV), 2007.

Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape analysis
with structural invariant checkers. In Static Analysis (SAS), 2007.

Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Raka-
maric. A reachability predicate for analyzing low-level software. In
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2007.

Sigmund Cherem and Radu Rugina. Maintaining doubly-linked list in-
variants in shape analysis with local reasoning. In Verification, Model
Checking, and Abstract Interpretation (VMCAI), 2007.

Patrick Cousot. Verification by abstract interpretation.
Theory and Practice, 2003.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Principles of Programming Languages (POPL), 1977.

In Verification:

Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape
analysis based on separation logic. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2006.

Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for
numeric analysis of array operations. In Principles of Programming
Languages (POPL), 2005.

Sumit Gulwani and Ashish Tiwari. An abstract domain for analyzing heap-
manipulating low-level software. In Computer-Aided Verification (CAV),
2007.

Bolei Guo, Neil Vachharajani, and David I. August. Shape analysis with
inductive recursion synthesis. In Programming Language Design and
Implementation (PLDI), 2007.

Michael Karr. Affine relationships among variables of a program. Acta Inf.,
6, 1976.

Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic verification
of pointer programs using grammar-based shape analysis. In European
Symposium on Programming (ESOP), 2005.

Tal Lev-Ami, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm.
Putting static analysis to work for verification: A case study. In Software
Testing and Analysis (ISSTA), 2000.

Stephen Magill, Josh Berdine, Edmund Clarke, and Byron Cook. Arith-
metic strengthening for separation logic based shape analyses. In Static
Analysis (SAS), 2007.

Scott McPeak and George C. Necula. Data structure specifications via local
equality axioms. In Computer-Aided Verification (CAV), 2005.

Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1), 2006.

Anders Mgller and Michael 1. Schwartzbach. The pointer assertion logic
engine. In Programming Language Design and Implementation (PLDI),
2001.

Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin.
Automated verification of shape and size properties via separation logic.
In Verification, Model Checking, and Abstract Interpretation (VMCAI),
2007.

John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science (LICS), 2002.

Radu Rugina. Quantitative shape analysis. In Static Analysis (SAS), 2004.

Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape

analysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3),
2002.

Arnaud Venet. Abstract cofibered domains: Application to the alias analysis
of untyped programs. In Static Analysis (SAS), 1996.

	Introduction
	Background and Overview
	Memory Abstraction with Inductive Segments
	Semantics of the Memory Abstraction
	Properties of Inductive Segments

	Typing Checker Parameters
	Analysis Algorithm
	Abstract Transition with Segment Unfolding
	Unfolding Operations
	Expression Evaluation and Controlling Unfolding

	Folding with Relational Data Constraints
	Comparison of Abstract States
	Join and Widening of Abstract States

	Experimental Evaluation
	Example: Red-Black Trees
	Related Work
	Conclusion

