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ABSTRACT

We show that abstract interpretation-based static program
analysis can be made efficient and precise enough to formally
verify a class of properties for a family of large programs
with few or no false alarms. This is achieved by refinement
of a general purpose static analyzer and later adaptation to
particular programs of the family by the end-user through
parameterization. This is applied to the proof of soundness
of data manipulation operations at the machine level for
periodic synchronous safety critical embedded software.

The main novelties are the design principle of static ana-
lyzers by refinement and adaptation through parameteriza-
tion (Sect. 3 and 7), the symbolic manipulation of expres-
sions to improve the precision of abstract transfer functions
(Sect. 6.3), the octagon (Sect. 6.2.2), ellipsoid (Sect. 6.2.3),
and decision tree (Sect. 6.2.4) abstract domains, all with
sound handling of rounding errors in floating point compu-
tations, widening strategies (with thresholds: Sect. 7.1.2,
delayed: Sect. 7.1.3) and the automatic determination of
the parameters (parameterized packing: Sect. 7.2).

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification—for-

mal methods, validation, assertion checkers; D.3.1 [Program-

ming Languages|: Formal Definitions and Theory—se-
mantics; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
Mechanical verification, assertions, invariants; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—Denotational semantics, Program analysis.

General Terms

Algorithms, Design, Experimentation, Theory, Verification.

1. INTRODUCTION

Critical software systems (as found in industrial plants,
automotive, and aerospace applications) should never fail.
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Ensuring that such software does not fail is usually done by
testing, which is expensive for complex systems with high re-
liability requirements, and anyway fails to prove the impos-
sibility of failure. Formal methods, such as model-checking,
theorem proving, and static analysis, can help.

The definition of “failure” itself is difficult, in particular
in the absence of a formal specification. In this paper, we
choose to focus on a particular aspect found in all specifica-
tions for critical software, that is, ensuring that the critical
software never executes an instruction with “undefined” or
“fatal error” behavior, such as out-of-bounds accesses to ar-
rays or improper arithmetic operations (such as overflows or
division by zero). Such conditions ensure that the program
is written according to its intended semantics, for example
the critical system will never abort its execution. These cor-
rectness conditions are automatically extractable from the
source code, thus avoiding the need for a costly formal spec-
ification. Our goal is to prove automatically that the soft-
ware never executes such erroneous instructions or, at least,
to give a very small list of program points that may possibly
behave in undesirable ways.

In this paper, we describe our implementation and exper-
imental studies of static analysis by abstract interpretation
over a family of critical software systems, and we discuss the
main technical choices and possible improvements.

2. REQUIREMENTS

When dealing with undecidable questions on program ex-
ecution, the verification problem must reconcile correctness
(which excludes non exhaustive methods such as simula-
tion or test), automation (which excludes model-checking
with manual production of a program model and deductive
methods where provers must be manually assisted), preci-
sion (which excludes general analyzers which would produce
too many false alarms), scalability (for software of a few hun-
dred thousand lines), and efficiency (with minimal space
and time requirements allowing for rapid verification dur-
ing the software production process which excludes a costly
iterative refinement process).

Industrialized general-purpose static analyzers satisfy all
criteria but precision and efficiency. Traditionally, static
analysis is made efficient by allowing correct but somewhat
imprecise answers to undecidable questions. In many usage
contexts, imprecision is acceptable provided all answers are
sound and the imprecision rate remains low (typically 5 to
15%). This is the case for program optimization (such as
static elimination of run-time array bound checks), program
transformation (such as partial evaluation), etc.



In the context of program verification, where human in-
teraction must be reduced to a strict minimum, false alarms
are undesirable. A 5% rate of false alarms on a program of a
few hundred thousand lines would require a several person-
year effort to manually prove that no error is possible. For-
tunately, abstract interpretation theory shows that for any
finite class of programs, it is possible to achieve full pre-
cision and great efficiency [5] by discovering an appropriate
abstract domain. The challenge is to show that this theoret-
ical result can be made practical by considering infinite but
specific classes of programs and properties to get efficient
analyzers producing few or no false alarms. A first experi-
ment on smaller programs of a few thousand lines was quite
encouraging [3] and the purpose of this paper is to report on
a real-life application showing that the approach does scale

up.

3. DESIGN PRINCIPLE

The problem is to find an abstract domain that yields an
efficient and precise static analyzer for the given family of
programs. Our approach is in two phases, an initial design
phase by specialists in charge of designing a parameterizable
analyzer followed by an adaptation phase by end-users in
charge of adapting the analyzer for (existing and future)
programs in the considered family by an appropriate choice
of the parameters of the abstract domain and the iteration
strategy.

3.1 Initial Design by Refinement

Starting from an existing analyzer [3], the initial design
phase is an iterative manual refinement of the analyzer. We
have chosen to start from a program in the considered fam-
ily that has been running for 10 years without any run-time
error, so that all alarms are, in principle, due to the impre-
cision of the analysis. The analyzer can thus be iteratively
refined for this example until all alarms are eliminated.

Each refinement step starts with a static analysis of the
program, which yields false alarms. Then a manual back-
ward inspection of the program starting from sample false
alarms leads to the understanding of the origin of the im-
precision of the analysis. There can be two different reasons
for the lack of precision:

e Some local invariants are expressible in the current ver-
sion of the abstract domain but were missed either:

— because some abstract transfer function (Sect. 5.4) was
too coarse, in which case it must be rewritten closer to
the best abstraction of the concrete transfer function [7],
(Sect. 6.3);

— or because a widening (Sect. 5.5) was too coarse, in which
case the iteration strategy must be refined (Sect. 7.1);

e Some local invariants are necessary in the correctness
proof but are not expressible in the current version of the
abstract domain. To express these local invariants, a new
abstract domain has to be designed by specialists and incor-
porated in the analyzer as an approximation of the reduced
product [7] of this new component with the other already
existing domains (Sect. 7.2).

When this new refinement of the analyzer has been imple-
mented, it is tested on typical examples and then on the full
program to verify that some false alarms have been elim-
inated. In general the same cause of imprecision appears
several times in the program; furthermore, one single cause
of imprecision at some program point often leads later to

many false alarms in the code reachable from that program
point, so a single refinement typically eliminates a few dozen
if not hundreds of false alarms.

This process is to be repeated until there is no or very few
false alarms left.

3.2 Adaptation by Parameterization

The analyzer can then be used by casual end-users in
charge of proving programs in the family. The necessary
adaptation of the analyzer to a particular program in the
family is by appropriate choice of some parameters. An ex-
ample provided in the preliminary experience [3] was the
widening with thresholds. Another example is relational do-
mains (such as octagons [21]) which cannot be applied to all
global variables simultaneously because the corresponding
analysis would be too expensive; it is possible to have the
user supply for each program point groups of variables on
which the relational analysis should be independently ap-
plied.

In practice we have discovered that the parameterization
can be largely automated (and indeed it is fully automated
for octagons as explained in Sect. 7). This way the effort to
manually adapt the analyzer to a particular program in the
family is reduced to a minimum.

3.3 Analysis of the Alarms

We implemented and used a slicer [22] to help in the
alarm inspection process. If the slicing criterion is an alarm
point, the extracted slice contains the computations that
led to the alarm. However, the classical data and control
dependence-based backward slicing turned out to yield pro-
hibitively large slices. We therefore designed more restric-
tive ways to close the program dependences involved in the
computation of a slice (following closely what we used to do
manually): we restrict the data dependences to those defined
by some variables. In practice we are not interested in the
computation of the variables for which the analyzer already
provides a value close to end-user specifications, and we can
consider only the variables we lack information about (inte-
ger or floating point variables that may contain large values
or boolean variables that may take any value according to
the invariant).

In the future we plan to design more adapted forms of
slicing: an abstract slice would contain the computations
that lead to an alarm point and a meaningful fragment of
the invariant so as to make the alarm diagnosis easier.

4. THE CONSIDERED FAMILY OF PRO-
GRAMS

The considered programs in the family are automatically
generated using a proprietary tool from a high-level specifi-
cation familiar to control engineers, such as systems of dif-
ferential equations or synchronous operator networks (block
diagrams), which is equivalent to the use of synchronous
languages (like LUSTRE [15]). Such synchronous data-flow
specifications are quite common in real-world safety-critical
control systems ranging from letter sorting machine control
to safety control and monitoring systems for nuclear plants
and “fly-by-wire” systems. Periodic synchronous program-
ming perfectly matches the need for the real-time integra-
tion of differential equations by forward, fixed step numerical
methods. Periodic synchronous programs have the form:



declare volatile input, state and output variables;

initialize state variables;

loop forever

— read volatile input variables,

— compute output and state variables,

— write to volatile output variables;
wait for next clock tick;

end loop
Our analysis proves that no exception can be raised (but
the clock tick) and that all data manipulation operations
are sound. The bounded execution time of the loop body
can also be checked by static analysis [11] to prove that the
real-time clock interrupt does occur at idle time.

We operate on the C language source code of those sys-
tems, ranging from a few thousand lines to 132,000 lines of
C source code (75 kLOC after preprocessing and simplifi-
cation as in Sect. 5.1). We take into account all machine-
dependent aspects of the semantics of C (as described in
[3]) as well as the periodic synchronous programming as-
pects (for the wait). We use additional specifications to
describe the material environment with which the software
interacts (essentially ranges of values for a few hardware
registers containing volatile input variables and a maximal
execution time to limit the possible number of iterations in
the external loop').

The source codes we were interested in use only a reduced
subset of the C programming language, both in the automat-
ically generated glue code and the handwritten pieces. As it
is often the case with critical systems, there is no dynamic
memory allocation and the use of pointers is restricted to
call-by-reference. On the other hand, an important charac-
teristics of those programs is that the number of global and
static? variables is roughly linear in the length of the code.
Moreover the analysis must take the values of all variables
into account and the abstraction cannot ignore any part of
the program without generating false alarms. It was there-
fore a grand challenge to design an analysis that is precise
and does scale up.

5. STRUCTURE OF THE ANALYZER

The analyzer is implemented in Objective Caml [18]. It
operates in two phases: the preprocessing and parsing phase
followed by the analysis phase.

5.1 Preprocessing Phase

The source code is first pre-processed using a standard
C preprocessor, then parsed using a C99-compatible parser.
Optionally, a simple linker allows programs consisting of sev-
eral source files to be processed.

The program is then type-checked and compiled to an
intermediate representation, a simplified version of the ab-
stract syntax tree with all types explicit and variables given
unique identifiers. Unsupported constructs are rejected at
this point with an error message.

Syntactically constant expressions are evaluated and re-
placed by their value. Unused global variables are then

'Most physical systems cannot run for ever and some event
counters 1n their control programs are bounded because of
this physical limitation.

’In the C programming language, a static variable has
limited lexical scope yet is persistent with program lifetime.
Semantically, it is the same as a global variable with a fresh
name.

deleted. This phase is important since the analyzed pro-
grams use large arrays representing hardware features with
constant subscripts; those arrays are thus optimized away.

Finally the preprocessing phase includes preparatory work
for trace partitioning (Sect. 7.1.4) and parameterized pack-
ing (Sect. 7.2).

5.2 Analysis Phase

The analysis phase computes the reachable states in the
considered abstract domain. This abstraction is formalized
by a concretization function « [6, 7, 8]. The computation
of the abstraction of the reachable states by the abstract
interpreter is called abstract ezecution.

The abstract interpreter first creates the global and
static variables of the program (the stack-allocated vari-
ables are created and destroyed on-the-fly). Then the ab-
stract execution is performed compositionally, by induction
on the abstract syntax, and driven by the iterator.

5.3 General Structure of the Iterator

The abstract execution starts at a user-supplied entry
point for the program, such as the main function. Each
program construct is then interpreted by the iterator ac-
cording to the semantics of C as well as some information
about the target environment (some orders of evaluation left
unspecified by the C norm, the sizes of the arithmetic types,
etc., see [3]). The iterator transforms the C instructions into
directives for the abstract domain that represents the mem-
ory state of the program (Sect. 6.1), that is, the static and
stack-allocated variables.

The iterator operates in two modes: the iteration mode
and the checking mode. The iteration mode is used to gen-
erate invariants; no warning is displayed when some possible
errors are detected. When in checking mode, the iterator is-
sues a warning for each operator application that may give
an error on the concrete level (that is to say, the program
may be interrupted, such as when dividing by zero, or the
computed result may not obey the end-user specification for
this operator, such as when integers wrap-around due to an
overflow). In all cases, the analysis goes on with the non-
erroneous concrete results (overflowing integers are wiped-
out and not considered modulo, thus following the end-user
intended semantics).

Tracing facilities with various degrees of detail are also
available. For example the loop invariants which are gener-
ated by the analyzer can be saved for examination.

5.4 Primitives of the lterator

Whether in iteration or checking mode, the iterator starts
with an abstract environment E* at the beginning of a state-
ment S in the program and outputs an abstract environment
[S]*(E*) abstracting [S](y(E*")) where [S] is the collecting
semantics of S [6], as follows:

o Tests: let us consider a conditional

S = if (¢)]
S

} else {
Sa
}

(an absent else branch is considered as an empty execution
sequence). The condition ¢ can be assumed to have no side
effect and to contain no function call, both of which can be
handled by first performing program transformations. The



iterator computes:
[SP(E") = [Si]*(guard (E*,c)) UF [Sa]* (guard* (EF, =c))

where the abstract domain implements:
— L as the least upper bound that is an abstraction of the
union U of sets of environments;
— guard*(E*,c) as an approximation of v(E*) N [¢] where
[c] is the collecting semantics of the condition ¢, that is, the
set of environments satisfying ¢. In practice, the abstract
domain only implements guard® for atomic conditions and
compound ones are handled by structural induction.

e Loops are by far the most delicate construct to analyze.
Let us denote by Eg the environment before the loop:

while (¢) {
body
}

The abstract loop invariant to be computed for the head of
the loop is an upper approximation of the least invariant
of F where F(E) = v(E}) U [body](E N [¢]). This fixpoint
computation is always done in iteration mode and requires
a widening (Sect. 5.5). When in checking mode, an extra
iteration, starting from this abstract invariant is necessary
to collect errors.

e Sequences i1 ;1 first 41 is analyzed, then i», so that:

[ivsiol* (BF) = [io] o [ (EF) -

e Function calls are analyzed by abstract execution of the
function body in the context of the point of call, creating
temporary variables for the parameters and the return value.
Since the considered programs do not use recursion, this
gives a context-sensitive polyvariant analysis equivalent to
inlining.

o Assignments are passed to the abstract domain.

e Return statement: We implemented the return state-
ment by carrying over an abstract environment represent-
ing the accumulated return values (and environments, if the
function has side effects).

55 Least Fixpoint
Widening

The analysis of loops involves the iterative computation of
an invariant E* that is such that F#(E*) C E* where F is
an abstraction of the concrete monotonic transfer function
F of the test and loop body. In abstract domains with in-
finite height, this is done by widening iterations computing
a finite sequence Ef = 1, ..., E’Jl+1 = E!L V FYE}), ...,

n

Approximation with

Eg\, of successive abstract elements, until finding an invari-
ant E%. The widening operator V should be sound (that
is the concretization of x V y should overapproximate the
concretizations of z and y) and ensure the termination in
finite time [6, 8] (see an example in Sect. 7.1.2).

In general, this invariant is not the strongest one express-
ible in the abstract domain. This invariant is then made
more and more precise by narrowing iterations: E}i\,, ey
E! L1 = E! A F¥(E!) where the narrowing operator A is
sound (the concretization of z A y is an upper approxima-
tion of the greatest lower bound of z and y) and ensures
termination [6, 8].

6. ABSTRACT DOMAINS

The elements of an abstract domain abstract concrete
predicates, that is, properties or sets of program states. The

operations of an abstract domain are transfer functions ab-
stracting predicate transformers corresponding to all basic
operations in the program [6]. The analyzer is fully paramet-
ric in the abstract domain (this is implemented using an Ob-
jective Caml functor). Presently the analyzer uses the mem-
ory abstract domain of Sect. 6.1, which abstracts sets of pro-
gram data states containing data structures such as simple
variables, arrays and records. This abstract domain is itself
parametric in the arithmetic abstract domains (Sect. 6.2)
abstracting properties of sets of (tuples of) booleans, integer
or floating-point values. Finally, the precision of the abstract
transfer functions can be significantly improved thanks to
symbolic manipulations of the program expressions preserv-
ing their abstract semantics (Sect. 6.3).

6.1 The Memory Abstract Domain

When a C program is executed, all data structures (simple
variables, arrays, records, etc) are mapped to a collection of
memory cells containing concrete values. The memory ab-
stract domain is an abstraction of sets of such concrete mem-
ory states. Its elements, called abstract environments, map
variables to abstract cells. The arithmetic abstract domains
operate on the abstract value of one cell for non-relational
ones (Sect. 6.2.1) and on several abstract cells for relational
ones (Sect. 6.2.2, 6.2.3, and 6.2.4). An abstract value in a
abstract cell is therefore the reduction of the abstract values
provided by each different basic abstract domain (that is an
approximation of their reduced product [7]).

6.1.1 Abstract Environments

An abstract environment is a collection of abstract cells,
which can be of the following four types:

o An atomic cell represents a variable of a simple type
(enumeration, integer, or float) by an element of the arith-
metic abstract domain. Enumeration types, including the
booleans, are considered to be integers.

e An ezpanded array cell represents a program array us-
ing one cell for each element of the array. Formally, let
A= ((vi,... ’U;))ieA be the family (indexed by a set A)
of values of the array (of size n) to be abstracted. The ab-
straction is L (representing non-accessibility of dead code)
when A is empty. Otherwise the abstraction is is an abstract
array A! of size n such the expanded array cell A%[k] is the
abstraction of (J;c 5 vé for k=1, ..., n. Therefore the ab-
straction is component-wise, each element of the array being
abstracted separately.

o A shrunk array cell represents a program array using a
single cell. Formally the abstraction is a shrunk array cell
A! abstracting Jy_, ;e vi- All elements of the array are
thus “shrunk” together. We use this representation for large
arrays where all that matters is the range of the stored data.

e A record cell represents a program record (struct) us-
ing one cell for each field of the record.

6.1.2 Fast Implementation of Abstract Environments

A naive implementation of abstract environments may use
an array. We experimented with in-place and functional
arrays and found this approach very slow. The main reason
is that least upper bound LI¥ and widening V operations
are expensive, because they operate in time linear in the
number of abstract cells; since both the number of global
variables (whence of abstract cells) and the number of tests
(involving the least opper bound LI*) are linear in the length



of the code, this yields a quadratic time behavior.

A simple yet interesting remark is that in most cases, least
upper bound, widening and narrowing operations are ap-
plied between abstract environments that are identical on
almost all abstract cells: branches of tests will modify only
a limited subset of the abstract cells, and most abstract cells
are rapidly stable across iterations. It is therefore desirable
that those operations should have a complexity proportional
to the number of differing cells between both abstract en-
vironments. We chose to implement abstract environments
using functional maps implemented as balanced binary trees,
with short-cut evaluation when computing the least upper
bound, greatest lower bound, widening or narrowing of iden-
tical subtrees [3, §6.2].

On a 10,000-line example we tried [3], the execution time
was divided by seven, and we are confident that the ex-
ecution times would have been prohibitive for the longer
examples.

An additional benefit is that this implementation tech-
nique both promotes and benefits from memory sharing
between different abstract values. This contributes to the
rather light memory consumption of our analyzer.

6.1.3 Operations on Abstract Environments

Operations on a C data structure are translated into op-
erations on cells of the current abstract environments. Most
translations are straightforward.

— Assignments: In general, an assignment lvalue := e is
translated into the assignment of the abstract value of e
into the abstract cell corresponding to lvalue. However, for
array assignments, such as z[i] := e, one has to note that the
array index ¢ may not be fully known, so all cells possibly
corresponding to z[i] may either be assigned the value of
e, or keep their old value. In the analysis, these cells are
assigned the upper bound of their old abstract value and
the abstract value of e. Similarly, for a shrunk array z, after
an assignment z[i] := e, the cell representing x may contain
either its old value (for array elements not modified by the
assignment), or the value of e.

— Guard: The translation of concrete to abstract guards
is not detailed since similar to the above case of assignments.

— Least upper bound, widening: Performed cell-wise be-
tween abstract environments.

6.2 Arithmetic Abstract Domains

The non-relational arithmetic abstract domains abstract
sets of numbers while the relational domains abstract sets of
tuples of numbers. The basic abstract domains we started
with [3] are the intervals and the clocked abstract domain
abstracting time. They had to be significantly refined using
octagons (Sect. 6.2.2), ellipsoids (Sect. 6.2.3) and decision
trees (Sect. 6.2.4).

6.2.1 Basic Abstract Domains

e The Interval Abstract Domain. The first, and simplest,
implemented domain is the domain of intervals, for both
integer and floating-point values [6]. Special care has to be
taken in the case of floating-point values to always perform
rounding in the right direction and to handle special IEEE
[17] values such as infinities and NaNs (Not a Number).

e The Clocked Abstract Domain. A simple analysis using
the intervals gives a large number of false warnings. A great
number of those warnings originate from possible overflows

in counters triggered by external events. Such errors can-
not happen in practice, because those events are counted at
most once per clock cycle, and the number of clock cycles
in a single execution is bounded by the maximal continuous
operating time of the system.

We therefore designed a parametric abstract domain. (In
our case, the parameter is the interval domain [3].) Let
X! be an abstract domain for a single scalar variable. The
elements of the clocked domain consist in triples in (X*)3,
A triple (v, vu_,vﬂ_) represents the set of values z such that

z € y(v"), & — clock € v(vh) and z + clock € 'y(vﬁ_), where
clock is a special, hidden variable incremented each time the
analyzed program waits for the next clock signal.

6.2.2 The Octagon Abstract Domain

Consider the following program fragment:

R :=X-7

L :=X;

if (R>V) {

L :=Z+V;

}

At the end of this fragment, we have L < X. In order to
prove this, the analyzer must discover that, when the test
is true, we have R = X — Z and R > V, and deduce from this
that Z+V < X (up to rounding). This is possible only with a
relational domain able to capture simple linear inequalities
between variables.

Several such domains have been proposed, such as the
widespread polyhedron domain [10]. In our prototype, we
have chosen the recently developed octagon abstract domain
[20, 21], which is less precise but faster than the polyhe-
dron domain: it can represent sets of constraints of the form
+z+y < ¢, and its complexity is cubic in time and quadratic
in space (w.r.t. the number of variables), instead of expo-
nential for polyhedra. Even with this reduced cost, the huge
number of live variables prevents us from representing sets
of concrete environments as one big abstract state (as it
was done for polyhedra in [10]). Therefore we group vari-
ables into small packs and use one octagon for each pack.
The set of packs is a parameter of the analysis which can be
determined automatically (Sect. 7.2.1).

Another reason for choosing octagons is the lack of sup-
port for floating-point arithmetics in the polyhedron do-
main. Designing relational domains for floating-point vari-
ables is indeed a difficult task, not much studied until re-
cently [19]. On one hand, the abstract domain must be
sound with respect to the concrete floating-point semantics
(handling rounding, NaNs, etc.); on the other hand it should
use floating-point numbers internally to manipulate abstract
data for the sake of efficiency. Because invariant manipula-
tions in relational domains rely on some properties of the
real field not true for floating-points (such as z +y < ¢
and z — y < d implies ¢ + z < ¢+ d), it is natural to con-
sider that abstract values represent subsets of RY (in the
relational invariant  + y < ¢, the addition + is considered
in R, without rounding, overflow, etc.). Our solution sepa-
rates the problem in two. First, we design a sound abstract
domain for variables in the real field (our prototype uses
[20]). This is much easier for octagons than for polyhedra,
as most computations are simple (addition, multiplication
and division by 2). Then, each floating-point expression is
transformed into a sound approximate real expression tak-



ing rounding, overflow, etc. into account (we use the linear
forms described in Sect. 6.3) and evaluated by the abstract
domain.

Coming back to our example, it may seem that octagons
are not expressive enough to find the correct invariant as
Z + V < X is not representable in an octagon. However,
our assignment transfer function is smart enough to extract
from the environment the interval [c, d] where V ranges (with
d < Rum where Ras is an upper bound of R already computed
by the analysis) and synthesize the invariant ¢c <L —Z < d,
which is sufficient to prove that subsequent operations on L
will not overflow. Thus, there was no need for this family
of programs to use a more expressive and costly relational
domain.

Remark that this approach provides a generic way of
implementing relational abstract domains on floating-point
numbers. It is parametrized by:

e a strategy for the determination of packs (Sect. 7.2.1);

e an underlying abstract domain working in the real field.
Aspects specific to floating-point computation (such as
rounding and illegal operations) are automatically taken
care of by our approach.

6.2.3 The Ellipsoid Abstract Domain

In our examples, we have to analyze code of the form:

if () {
Y =g
X:=7j;
} else {
X' = aX — bY + t;
Y: =X
X:=X

}

where a and b are floating-point constants, i, j and t are
floating-point expressions, B is a boolean expression, and X,
X', and Y are variables. We assume we can compute bounds
to the expression t by the previously described analyses,
say |t| < tam. The first branch is a reinitialization step,
the second branch consists in an affine transformation &.
Since this code is repeated inside loops, the analysis has
to find an invariant preserved by this code. The previously
described analyses fail to find such an invariant, and so yield
the imprecise result that X and Y may take any value.

To find an interval that contains the values of X and Y, we
have designed a new abstract domain based on ellipsoids,
that can capture the required invariant. More precisely, we
can show that:

Proposition 1 If 0 < b < 1, a®> —4b < 0, and k >

2
(i%) , then the constraint X2 — aXY + bY? < k is pre-

served by the affine transformation ®.

The proof of this proposition follows by algebraic manip-
ulations using standard linear algebra techniques. In our
examples, the conditions on a and b required in Prop. 1 are
satisfied. We still have to propagate the invariant in the pro-
gram, and to take into account rounding errors that occur
in floating-point computations (and are not modeled in the
above proposition).

Having fixed two floating-point numbers a and b such that
0 < b<1anda®—4b <0, we present a domain ¢, p, for
describing sets of ellipsoidal constraints. An element in &4,3

is a function r which maps a pair of variables (X,Y) to a
floating-point number r(X,Y) such that X* — aXY + bY> <
r(X,Y).

We briefly describe some primitives and transfer functions
of our domain:

o Assignments. Let r € g4, be the abstract element de-
scribing some constraints before a statement X := e, our
goal is to compute the abstract element r’ describing a set
of constraints satisfied after this statement:

1. in case e is a variable Y, each constraint containing Y
gives a constraint for X: we take r’ such that »'(U,V) =
r(cU,aV) where o is the substitution of the variable Y
for the variable X;

2. in case e is an expression of the form aY + bZ + ¢, we first
remove any constraint containing X, then we add a new
constraint for X and Y. We therefore take:

' =r[(X,¥) = 8(r(Y,2)), (X, )|(-,X) = +o00].

We have used the function § defined as follows:

5(k) = ((\/I_)+ (4f%)) VE+ (1 +f)tM)

where f is the greatest relative error of a float with re-
spect to a real and t € [—tum,tn]. Indeed, we can show
that, if Y2 — aYZ + b2? < k and X = aY — bZ + ¢, then in
exact real arithmetic X2 — aXY + bY2 < (\/IE +1tup)?, and
taking into account rounding errors, we get the above
formula for 6(k);

3. otherwise, we remove all constraints containing X by tak-
ing ' = r[(X,))|(,,X) = +oo].

e Union and widening are computed component-wise.
The widening uses thresholds as described in Sect. 7.1.2.

The abstract domain €,,;, cannot compute accurate re-
sults by itself, mainly because of inaccurate assignments.
Hence we use an approzimate reduced product with the in-
terval constraints. A reduction step consists in substituting
in the function r the image of a couple (X,Y) by the small-
est element among r(X,Y) and the floating-point number &
such that k is the least upper bound to the evaluation of
the expression X? — aXY + b¥? in the floating-point numbers
when considering the computed interval constraints. These
reduction steps are performed:

e before computing the union between two abstract ele-
ments r1 and r2, we reduce each constraint r;(X,Y) such that
ri(X,Y) = 400 and r2—;(X,Y) # +oo (where 7 € {1;2});

e before computing the widening between two abstract
elements r1 and r2, we reduce each constraint r2(X,Y) such
that 72(X,Y) = 400 and r1(X,Y) # +o0;

e before an assignment of the form X' := aX — bY + ¢, we
refine the constraints r(X, Y).

These reduction steps are especially useful in handling a
reinitialization iteration.

Another reduction consists in taking into account the
equality relations between variables that are satisfied before
an assignment of the form X' := aX — bY + ¢ to synthesize
constraints not only between X’ and X, but also between X’
and any variable equal to X.

Ellipsoidal constraints are then used to reduce the in-
tervals of variables: after each assignment A of the form

X' := aX — bY + t, we use the fact that |X'| < 2v/by/ Zb(f'a”;),




where r' is the abstract element describing a set of ellipsoidal
constraints just after the assignment A.

6.2.4 The Decision Tree Abstract Domain

Apart from numerical variables, the code uses also a
great deal of boolean values, and no classical numerical do-
main deals precisely enough with booleans. In particular,
booleans can be used in the control flow and we need to re-
late the value of the booleans to some numerical variables.
Here is an example:

B := (X=0);
if (- B) {

Y:=1/%
}

We found also more complex examples where a numeri-
cal variable could depend on whether a boolean value had
changed or not. In order to deal precisely with those exam-
ples, we implemented a simple relational domain consisting
in a decision tree with leaf an arithmetic abstract domain®.
The decision trees are reduced by ordering boolean variables
(as in [4]) and by performing some opportunistic sharing of
subtrees.

The only problem with this approach is that the size of
decision trees can be exponential in the number of boolean
variables, and the code contains thousands of global ones.
So we extracted a set of variable packs, and related the
variables in the packs only, as explained in Sect. 7.2.3.

6.3 Symbolic Manipulation of Expressions

We observed, in particular for non-relational abstract do-
mains, that transfer functions proceeding by structural in-
duction on expressions are not precise when the variables
in the expression are not independent. Consider, for in-
stance, the simple assignment X := X — 0.2 % X performed in
the interval domain in the environment X € [0,1]. Bottom-
up evaluation will give X — 0.2 * X = [0,1] — 0.2 % [0,1] =
[0,1] — [0,0.2] = [-0.2,1]. However, because the same X
is used on both sides of the — operator, the precise result
should have been [0, 0.8].

In order to solve this problem, we perform some simple
algebraic simplifications on expressions before feeding them
to the abstract domain. Our approach is to linearize each
expression e, that is to say, transform it into a linear form
on V with interval coefficients: [e] = >~ | [, Bi]vi +[a, B]-
[e] is computed by recurrence on the structure of e. Linear
operators on linear forms (addition, subtraction, multiplica-
tion and division by a constant interval) are straightforward.
For instance, [X—0.2+X] = 0.8%X, which will be evaluated to
[0,0.8] in the interval domain. Non-linear operators (multi-
plication of two linear forms, division by a linear form, non-
arithmetic operators) are dealt by evaluating one or both
linear form argument into an interval.

Although the above symbolic manipulation is correct in
the real field, it does not match the semantics of C expres-
sions for two reasons:

o floating-point computations incur rounding;

e errors (division by zero, overflow, etc.) may occur.

Thankfully, the systems we consider conform to the IEEE
754 norm [17] that describes rounding very well. Thus, it
is easy to modify the recursive construction of linear forms

3The arithmetic abstract domain is generic. In practice, the
interval domain was sufficient.

from expressions to add the error contribution for each oper-
ator. It can be an absolute error interval, or a relative error
expressed as a linear form. We have chosen the absolute
error which is more easily implemented and turned out to
be precise enough.

To address the second problem, we first evaluate the ex-
pression in the abstract interval domain and proceed with
the linearization to refine the result only if no possible arith-
metic error was reported. We are then guaranteed that the
simplified linear form has the same semantics as the initial
expression.

7. ADAPTATION VIA PARAMETERIZA-
TION

In order to adapt the analyzer to a particular program
of the considered family, it may be necessary to provide in-
formation to help the analysis. A classical idea is to have
users provide assertions (which can be proved to be invari-
ants and therefore ultimately suppressed). Another idea is
to use parameterized abstract domains in the static program
analyzer. Then the static analysis can be adapted to a par-
ticular program by an appropriate choice of the parameters.
‘We provide several examples in this section. Moreover we
show how the analyzer itself can be used in order to help or
even automatize the appropriate choice of these parameters.

7.1 Parameterized Iteration Strategies

7.1.1 Loop Unrolling

In many cases, the analysis of loops is made more precise
by treating the first iteration of the loop separately from
the following ones; this is simply a semantic loop unrolling
transformation: a while loop may be expanded as follows:

if (condition) { body; while (condition) { body } }

The above transformation can be iterated n times, where the
concerned loops and the unrolling factor n are user-defined
parameters. In general, the larger the n, the more precise
the analysis, and the longer the analysis time.

7.1.2 Wdening with Thresholds

The widening with thresholds Vr for the interval analysis
of Sect. 6.2.1 is parameterized by a threshold set T that is
a finite set of numbers containing —oco and +oco and defined
such that:

[a,b] Vr[a', 0] = [if a' < athen max{f € T |£<a'} elsea,
if ' > bthen min{h € T | h > '} else b]

In order to illustrate the benefits of this parameterization
(see others in [3]), let xo be the initial value of a variable
X subject to assignments of the form X := a; * X+ 35, ¢ €
A in the main loop, where the a;, 8i, i € A are floating
point constants such that 0 < a; < 1. Let be any M such

that M > max{|zo|, l‘f;‘,,i € A}. We have M > |zo| and
0

M > a;M + |B;| and so all possible sequences z” = o,
z" Tt = ;™ + f3;, i € A of values of variable X are bounded
since Vn > 0: || < M. Discovering M may be difficult in
particular if the constants a;, 8i, i € A depend on complex
boolean conditions.

As long as the set T of thresholds contains some number
greater or equal to the minimum M, the interval analysis of
X with thresholds 7" will prove that the value of X is bounded




at run-time since some element of 7' will be an admissible
M. In practice we have chosen T to be an exponential series.
Which particular one is unimportant since it only needs to
contain numbers which are large enough to capture stability
and are small enough to capture hardware defined bounds.

7.1.3 Delayed Widening

When widening the previous iterate by the result of the
transfer function on that iterate at each step as in Sect. 5.5,
some values which can become stable after two steps of
widening may not stabilize. Consider the example:

X:=Y+

Yi=axX+4
This should be equivalent to Y := a * Y + 8 (with 8 =
d + ay), and so a widening with thresholds should find a
stable interval. But if we perform a widening with thresh-
olds at each step, each time we widen Y, X is increased to
a value surpassing the threshold for Y, and so X is widened
to the next stage, which in turn increases Y further and the
next widening stage increases the value of Y. This eventually
results in top abstract values for X and Y.

In practice, we first do Ny iterations with unions, then
we do widenings unless a variable which was not stable be-
comes stable (this is the case of Y here when the threshold
is big enough as described in Sect. 7.1.2). We add a fairness
condition to avoid livelocks in cases for each iteration there
exists a variable that becomes stable.

7.1.4 Trace Partitioning

In the abstract execution of the program, when a test
is met, both branches are executed and then the abstract
environments computed by each branch are merged. As de-
scribed in [3] we can get a more precise analysis by delaying
this merging.

This means that:

if (¢) { 51}
else { S> }
rest
is analyzed as if it were
if (¢) { Si; rest }
else { So; rest } .
A similar technique holds for the unrolled iterations of loops.

As this process is quite costly, the analyzer performs this
trace partitioning in a few end-user selected functions, and
the traces are merged at the return point of the function.
Informally, in our case, the functions that need partitioning
are those iterating simultaneously over arrays a[]l and b[]
such that a[¢] and b[:] are linked by an important numer-
ical constraint which does not hold in general for al[s] and
b[j] where i # j. This solution was simpler than adding
complex invariants to the abstract domain.

7.2 Parameterized Abstract Domains

Recall that our relational domains (octagons of Sect. 6.2.2,
and decision trees of Sect. 6.2.4) operate on small packs of
variables for efficiency reasons. This packing is determined
syntactically before the analysis. The packing strategy is a
parameter of the analysis; it gives a trade-off between accu-
racy (more, bigger packs) and speed (fewer, smaller packs).
The strategy must also be adapted to the family of programs
to be analyzed.

7.2.1 Packing for Octagons

We determine a set of packs of variables and use one oc-
tagon for each pack. Packs are determined once and for
all; before the analysis starts, by examining variables that
interact in linear assignments within small syntactic blocks
(curly-brace delimited blocks). One variable may appear in
several packs and we could do some information propagation
(i-e. reduction [7]) between octagons at analysis time, using
common variables as pivots; however, this precision gain was
not needed in our experiments. There is a great number of
packs, but each pack is small; it is our guess that our packing
strategy constructs, for our program family, a linear num-
ber of constant-sized octagons, effectively resulting in a cost
linear in the size of the program. Moreover, the octagon
packs are efficiently manipulated using functional maps, as
explained in Sect. 6.1.2, to achieve sub-linear time costs via
sharing of unmodified octagons.

Our current strategy is to create one pack for each syn-
tactic block in the source code and put in the pack all vari-
ables that appear in a linear assignment or test within the
associated block, ignoring what happens in sub-blocks of
the block. For example, on a program of 75 kLOC, 2,600
octagons were detected, each containing four variables on
average. Larger packs (resulting in increased cost and pre-
cision) could be created by considering variables appearing
in one or more levels of nested blocks; however, we found
that, in our program family, it does not improve precision.

7.2.2 Packing Optimization for Octagons

Our analyzer outputs, as part of the result, whether each
octagon actually improved the precision of the analysis. It
is then possible to re-run the analysis using only packs that
were proven useful, thus greatly reducing the cost of the
analysis. (In our 75 kLOC example, only 400 out of the
2,600 original octagons were in fact useful.) Even when the
program or the analysis parameters are modified, it is per-
fectly safe to use a list of useful packs output by a previous
analysis. We experimented successfully with the following
method: generate at night an up-to-date list of good oc-
tagons by a full, lengthy analysis and work the following
day using this list to cut analysis costs.

7.2.3 Packing for Decision Trees

In order to determine useful packs for the decision trees
of Sect. 6.2.4, we used the following strategy: each time a
numerical variable assignment depends on a boolean, or a
boolean assignment depends on a numerical variable, we put
both variables in a tentative pack. If, later, we find a pro-
gram point where the numerical variable is inside a branch
depending on the boolean, we mark the pack as confirmed.
In order to deal with complex boolean dependences, if we
find an assignment b := ezpr where ezpr is a boolean ex-
pression, we add b to all packs containing a variable in ezpr.
In the end, we just keep the confirmed packs.

At first, we restrained the boolean expressions used to ex-
tend the packs to simple boolean variables (we just consid-
ered b := b’) and the packs contained at most four boolean
variables and dozens of false alarms were removed. But we
discovered that more false alarms could be removed if we ex-
tended those assignments to more general expressions. The
problem was that packs could then contain up to 36 boolean
variables, which gave very bad performance. So we added
a parameter to restrict arbitrarily the number of boolean
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Figure 1: Total analysis time for the family of pro-
grams without packing optimization (Sect. 7.2.2)

variables in a pack. Setting this parameter to three yields
an efficient and precise analysis of boolean behavior.

8. EXPERIMENTAL RESULTS

The main program we are interested in is 132,000 lines of
C with macros (75 kLOC after preprocessing and simplifi-
cation as in Sect. 5.1) and has about 10,000 global/static
variables (over 21,000 after array expansion as in Sect. 6.1).
We had 1,200 false alarms with the existing analyzer [3] we
started with. The refinements of the analyzer described in
this paper reduces the number of alarms to 22, only 5 on
more recent versions of the analyzed program. Fig. 1 gives
the total analysis time for a family of related programs on
commodity hardware (2.4 GHz,, 1 Gb RAM PC), using a
slow but precise iteration strategy.

The memory consumption of the analyzer is reasonable
(550 Mb for the full-sized program). Several parameters,
for instance the size of the octagon packs (7.2.1), allow for
a space-precision trade-off.

The packing optimization strategy of reusing results from
preceding analysis to reduce the number of octagons (7.2.2)
reduces, on the largest example code, memory consumption
from 550 Mb to 150 Mb and time from 1h 40 min to 40 min.
Furthermore, the current automatic tuning of the iteration
strategy may be made more efficient, using fewer iterations
and thus reducing analysis time.

9. RELATED WORK

Let us discuss briefly some other proof methods that could
be considered.

Automated static proof of software run-time properties
is a recurrent research subject since a few decades. Most
fully automatic methods, such as software model-checking
[16], do not proceed directly on the software but on a finite
model, with a small enough state space, which is impossi-
ble in our case since sharp data properties must be taken
into account. Moreover most modeling languages (such as
PROMELA for SPIN [16]) concentrate on aspects of software
systems to trace logical design errors, which in our case has
already been performed at earlier stages of the software de-
velopment, whereas we concentrate on abstruse machine im-
plementation aspects of the software.

Proof assistants face semantic problems. The prover

has to take the machine-level semantics into account (e.g.,
floating-point arithmetic with rounding errors as opposed
to real numbers). The meticulous and precise design of ab-
stract transfer functions for all considered abstract domains
represents a very important part of our work, which can
hardly be automated by lack of formal semantics of pro-
gramming languages.? In addition, the prover needs to op-
erate on the C source code, not on some model written in a
prototyping language.

Predicate abstraction, which consists in specifying an ab-
straction by providing the atomic elements of the abstract
domain in logical form [14], would certainly have been the
best candidate. Moreover most implementations incorpo-
rate an automatic refinement process by success and fail-
ure [1] whereas we successively refined our abstract domains
manually, by experimentation. A number of difficulties seem
to be insurmountable to automate this design process in the
present state of the art of deductive methods, in addition to
the semantic problems shared by proof assistants:

o State Explosion Problem: to get an idea of the size of
the necessary state space, we have dumped the main loop
invariant (a textual file over 4.5 Mb).

The main loop invariant includes 6,900 boolean interval as-
sertions (z € [0,1]), 9,600 interval assertions (z € [a,b]),
25,400 clock assertions (Sect. 6.2.1), 19,100 additive octago-
nal assertions (a < z +y < b), 19,200 subtractive octagonal
assertions (a < z —y < b, see Sect. 6.2.2), 100 decision trees
(Sect. 6.2.4) and 50 ellipsoidal assertions (Sect. 6.2.3)%, all
these involving, e.g., over 16,000 floating point constants at
most 550 of them appearing in the program text.
Obviously some of these atomic predicates might be super-
fluous but on one hand it is hard to say which ones and on
the other hand this does not count all other predicates that
may be indispensable at some program point to be locally
precise. In order to allow for the reuse of boolean model-
checkers, the conjunction of true atomic predicates is usually
encoded as a boolean vector over boolean variables associ-
ated to each predicate [14] (the disjunctive completion [7] of
this abstract domain can also be used to get more precision
[1], but this would introduce an extra exponential factor).
Model-checking state graphs corresponding to several tenths
of thousands of boolean variables (not counting hundreds of
thousands of program points) is presently inappropriate.

e Refinement Problem: predicate abstraction per se uses
a finite domain and is therefore provably less powerful than
our use of infinite abstract domains (see [9], the intuition
is that all inductive assertions have to be provided manu-
ally). Therefore predicate abstraction is often accompanied
by a refinement process to cope with false alarms [1]. Under
specific conditions, this refinement can be proved equivalent
to the use of an infinite abstract domain with widening [2].
These specific conditions (essentially that the widening is
by constraint elimination) are not satisfied by the widening
with thresholds of Sect. 7.1.2 and so all possible intervals
for all possible stages and all program variables would have
to be manually provided in the list of atomic predicates,

4For example ESC is simply unsound with respect to mod-
ular arithmetics [12].

®Figures are rounded to the closest hundred. We get more
assertions than variables because in the 10,000 global vari-
ables arrays are counted once whereas the element-wise ab-
straction yields assertions on each array element. Boolean
assertions are needed since booleans are integers in C.



and similarly for octagons, which introduces prohibitive hu-
man and computational costs for end-users. Formally this
refinement is a fixpoint computation [5, 13] at the concrete
semantics level, whence introduces new elements in the ab-
stract domain state by state whereas, e.g., when introducing
clocks from intervals or ellipsoids from octagons we exactly
look for an opposite more synthetic point of view. Therefore
the present state of the art on counterexample-based refine-
ment does not cope with the design of adequate abstract
domains.

10. CONCLUSION

In this experiment, we had to cope with stringent require-
ments. Industrial constraints prevented us from requiring
any change in the production chain of the code. For in-
stance, it was impossible to suggest changes to the library
functions that would offer the same functionality but would
make the code easier to analyze. Furthermore, the code
was mostly automatically generated from a high-level spec-
ification that we could not have access to, following rules of
separation of design and verification meant to prevent the
intrusion of unproved high-level assumptions into the verifi-
cation assumptions. It was therefore impossible to analyze
the high-level specification instead of analyzing the C code.

That the code was automatically generated had contrary
effects. On the one hand, the code fit into some narrow
subclass of the whole C language. On the other hand, it
used some idioms not commonly found in human-generated
code that may make the analysis more difficult; for instance,
where a human would have written a single test with a
boolean connective, the generated code would make one test,
store the result into a boolean variable, do something else
do the second test and then retrieve the result of the first
test. Also, the code maintains a considerable number of
state variables, a large number of these with local scope but
unlimited lifetime. The interactions between several com-
ponents are rather complex since the considered program
implement complex feedback loops across many interacting
components.

Despite those difficulties, we developed an analyzer with
a very high precision rate, yet operating with reasonable
computational power and time. Our main effort was to
discover an appropriate abstraction which we did by man-
ual refinement through experimentation of an existing ana-
lyzer [3] and can be later adapted by end-users to particular
programs through parameterization (Sect. 6.3 and 7). To
achieve this, we had to develop two specialized abstract do-
mains (Sect. 6.2.3 and 6.2.4) and improve an existing domain
(Sect. 6.2.2).

The central idea in this approach is that once the an-
alyzer has been developed by specialists, casual end-users
can adapt it to other programs in the family without much
efforts. Therefore, the approach should be economically vi-
able.
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