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ABSTRACT
User-space programs rely on memory allocation primitives when
they need to construct dynamic structures such as lists or trees.
However, low-level OS kernel services and embedded device drivers
typically avoid resorting to an external memory allocator in such
cases, and store structure elements in contiguous arrays instead.
This programming pattern leads to very complex code, based on
data-structures that can be viewed and accessed either as arrays or
as chained dynamic structures. The code correctness then depends
on intricate invariants mixing both aspects. We propose a static
analysis that is able to verify such programs. It relies on the com-
bination of abstractions of the allocator array and of the dynamic
structures built inside it. This approach allows to integrate program
reasoning steps inherent in the array and in the chained structure
into a single abstract interpretation. We report on the successful
veri�cation of several embedded OS kernel services and drivers.

1 INTRODUCTION
While user-space programs usually rely onmemory allocation prim-
itives provided by the OS to manage dynamic memory, low-level
codes such as embedded device drivers or low-level OS services typ-
ically manage their own memory using a custom allocation scheme.
The most common way to achieve this is to create a static array,
and use it as a pool of memory cells, which can be used directly in
order to create dynamic structures, like lists or trees. This pattern is
much more complex and harder to get correct than using a regular
memory allocator, due to the intricacy of the underlying invariants.
In essence, it embeds the memory manager into the user code.

We show an instance of this pattern in Figure 1, that consists of
a task manager taken from a proprietary real-time embedded OS
designed for aerospace (that we later refer to as AOS). This task
manager maintains three disjoint sets of tasks, that are respectively
ready, sleeping, and suspended. Each group of tasks corresponds to
a singly linked list, and the three corresponding lists are stored in a
single array, which serves as a memory cells pool. Three variables
ready, sleep, and suspend store the index of the �rst element of
each list. Moreover, each list element stores a reference to the next
element de�ned as its index in the array in �eld next. Tasks in state
ready are ordered by their order of priority, which is stored in �eld
prio. The declaration is shown in Figure 1(a), and an example state
is depicted in Figure 1(b). Moreover, the task manager implements
system calls (not shown), that operate on this structure, including
init (initialization of the array and variables), create (search of a

s t ruc t {
in t used ;
in t next ;
in t prio ;

} a [ 1 0 0 ] ;
in t ready ;
in t sleep ;
in t suspend ;
(a) Declaration

ready = 0 sleep = 1 suspend = 2

[0] :

[1] :

[2] :

[3] :

used = 1

used = 1

used = 1

used = 0

next = 96

next = 50

next = 30

prio = 1
[96] :

[97] :

[98] :

[99] :

used = 1

used = 0

used = 1

used = 0

next = 98

next = �1

prio = 2

prio = 3

(b) Concrete memory state

Figure 1: Process tables in a proprietary embedded OS

free slot in the array, and insertion in the list of tasks that are ready),
stop (removal of a task —the corresponding cell becomes free), and
schedule (move of a task from one list to another). Similar code
can be found in many OS services that need to manage tasks, or in
device drivers that need to manage resources. It is also common in
low-level embedded codes, as it alleviates the need for a separate
memory allocator. On the other hand, it makes the code of the
operations on the table (that we later refer as primitive operations,
or for short, primitives) very complex, and hard to get right. Indeed,
the operations over the pool of cells mix direct array cell accesses,
or accesses following chains of pointers to list elements encoded
as indexes. They also involve tricky side conditions, such as cases
where any of the lists is or becomes empty. Moreover, they need to
preserve sophisticated invariants, such as the well-formedness and
the disjointness of the lists of tasks. In the context of embedded
systems or critical softwares, such programming patterns induce
serious safety concerns. To guarantee the correct behavior of com-
ponents such as the task manager described above, we need to
verify not only memory safety but also the preservation of complex
structural invariants by all the primitive operations. For example,
the process table of Figure 1 should be consistent at all times, which
means the three lists should be well-formed, acyclic and disjoint,
and variables should point to the head of each list. If either of these
conditions ever gets broken, the task manager will not be able to
operate correctly anymore, and will lose or ignore some tasks.

The veri�cation of the task manager boils down to checking that
all calls preserve the structural invariant of the cells pool: if any of
these is called in a state that satis�es the structural invariants, it
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should return into a state that satis�es it as well. Due to the numbers
of possible memory states and of execution paths in each primitive,
veri�cation by exhaustive testing does not appear feasible. Static
analysis by abstract interpretation [7] aims at computing automat-
ically sound program invariants, and avoids this path explosion
issue. Applying this approach to the AOS case of Figure 1 requires
the choice of an abstract domain, that is a set of abstract predicates
supporting automatic analysis operations, and which can express
all the properties that a manual proof would manipulate.

In the case of structural properties such as the internal state of
Figure 1, a static analysis would need to describe both the lists and
the array structure, and the relation between them. The structure
of the task lists is highly dynamic since their size, topology and
order vary. Thus describing these structures requires to summarize
them, that is, to abstract them in a way independent from their
size, topology and order. Shape analysis tools [5, 6, 23, 27] utilize
abstract domains to compactly summarize inductive data-structures
such as lists or trees, and can compute precise structural invariants.
However, the structure shown in Figure 1 is beyond the scope of
these tools, as it also heavily relies on the array structure, and prim-
itives manipulate both array indexes and pointers. Array abstract
domains [8, 12, 21] are designed to dynamically segment arrays into
groups of cells with similar properties, and that can be abstracted
together. While they could deal with pure value properties, they
are unable to handle inductive dynamic structures like the lists of
tasks of Figure 1. Thus, neither of these two classes of analyses can
cope both with the array structure and with the nested lists.

In this paper, we propose a novel memory abstraction technique,
which ties summary predicates of two very di�erent forms through-
out the analysis. It partitions the array into groups of cells that
respectively correspond to each of the three lists of tasks, and to
the free cells. Moreover, it ties to each group a composite summary
predicate, that describes it both as a set of array cells, and as an
inductive structure. An abstract state can be seen as a separating
conjunction [22] of summary predicates. Furthermore, it allows to
combine in a systematic manner the automatic analysis operations
that handle both the array and the nested structures. It makes it
possible to re-utilize most components of existing array and shape
analyses, and turn them into a single, automatic analysis, able to
cope with structures as shown in Figure 1. Due to this tight combi-
nation, we call this abstraction a coalescing of the underlying array
and shape abstractions.

We make the following contributions: (1) we introduce (Sec-
tion 2) and formalize (Section 3) memory abstraction coalescing,
and construct a parametric abstraction for memory cells pools, (2)
we present automatic static analysis algorithms to verify programs
using pools of memory cells (Section 4), and (3) we report on the ver-
i�cation of a series of programs that manipulate pools of memory
cells in OSes, drivers and embedded components (Section 5).

2 OVERVIEW
In this section, we describe the main principles of the coalescing
abstraction, and show how it supports the veri�cation of primitives
manipulating memory pools. We focus on the structure displayed
in Figure 1, and study the veri�cation of the primitive in charge of
the task creation system call, that is shown in Figure 2.

1 void create ( in t priority ) {
2 in t i = 0 ;
3 while ( i < 100 ) {
4 i f ( a [ i ] . used == 0 ) {
5 a [ i ] . used = 1 ;
6 a [ i ] . prio = priority ;
7 break ;
8 }
9 i ++;
10 }
11 /* ... */ // insert a[i] into the �ready� list
12 }

Figure 2: Excerpt from the task creation system call (create)

Structural correctness property and veri�cation. Before we discuss
the veri�cation itself, we summarize the structural consistency that
should hold at all times, between calls to primitives. We note C the
conjunction of the three properties:
(C0) variables ready, sleep and suspend should point to the

heads of three disjoint, well-formed acyclic singly-linked
lists stored in the array, and such that the next element
reference is stored as an index, in the next �eld of each cell,
and that the end-of-list is encoded by index �1; the used
�eld of all these elements should store value 1;

(C1) the set of array cells that appear in none of these three lists
form the set of free slots; the used �eld of all these elements
should store value 0;

(C2) the list with head ready is sorted with respect to the values
in �eld prio.

Thus the array should be divided into four groups (three lists of
current tasks and a set of free slots). We note that the regions that
correspond to each of these four groups are non-contiguous in
general. The overall layout of this structure is shown in Figure 3(a),
with the convention that jagged lines delimit the boarder of non
necessarily contiguous groups of cells. Each group of tasks is de-
scribed by a set of array indexes, and is tied to speci�c content
properties. For instance, ready tasks are described by Gr, which
stores a sorted list, and each cell in this group has a �eld used equal
to 1, and ready stores the index of the �rst element of this list.

It is expected that the consistency property C gets temporarily
broken in the middle of a primitive call, however, upon primitive
completion, the property should hold again. Besides preserving C,
primitives also typically have additional input/output requirements.
As an example, when create is called in a state where there is at
least one free slot, it will return in a state where a new task was
created. Using a Hoare triple notation, the correctness of this primi-
tive writes down as {C ^ P }create(n){C ^ Q }. The veri�cation of
this triple by static analysis boils down to: (1) specifying an abstract
state that soundly over-approximates the pre-condition C ^ P ; (2)
letting the analysis compute a sound abstract post-condition, and
letting it check that it entails the post-condition C ^ Q .

Coalescing abstraction. To carry out this automatic veri�cation,
we �rst need to identify an abstraction that is able to express the con-
sistency property C, and all the properties that the analysis should
manipulate. To make the speci�cation of C simple, the abstraction
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Gr Gu Gs Gf
sorted list list list
used = 1 used = 1 used = 1 used = 0

ready head of Gr
sleep head of Gs
suspend head of Gu

(a) High-level structure layout

Gr Gu Gs Gf
slist(�r,�1) list(�s,�1) list(�u,�1) true
V used
r = 1 V used

s = 1 V used
u = 1 V used

f = 0
Sr 2 [0, 99] Ss 2 [0, 99] Su 2 [0, 99] Sf 2 [0, 99]

ready = �r 2 Gr sleep = �s 2 Gs suspend = �u 2 Gu

Groups of array cells
Structural predicates

Numerical predicates

(b) Abstract state

Gr Gu Gs Gn Gf
slist(�r,�1) list(�s,�1) list(�u,�1) true true
V used
r = 1 V used

s = 1 V used
u = 1 V used

n = 0 V used
f = 0

Sr 2 [0, 98] Ss 2 [0, 98] Su 2 [0, 98] Sf 2 [0, 98]Sn = 1
ready = �r 2 Gr sleep = �s 2 Gs suspend = �u 2 Gu i 2 Gn

Groups
Struct.

Num.

(c) Analysis intermediate state

Gr Gu Gs Gn Gf
slist(�r,�1) list(�s,�1) list(�u,�1) true true
V used
r = 1 V used

s = 1 V used
u = 1 V used

n = 1 V used
f = 0

Sr 2 [0, 98] Ss 2 [0, 98] Su 2 [0, 98] Sf 2 [0, 98]V next
n = �r

sleep = �s 2 Gs suspend = �u 2 Guready 2 Gn i 2 Gn

Groups
Struct.

Num.

(d) Analysis exit state

Figure 3: Abstraction of a memory pool state and analysis

should follow the high-level layout of Figure 3(a). Moreover, to be
e�ective, it should build on top of the existing memory abstractions
used in shape analysis and array analyses, so as to reuse existing
predicates and algorithms.

First, the array can be divided into four disjoint areas, which
naturally invites to use separation logic [22]. Thus, we describe
the state with a formula of the form Gr ⇤ Gs ⇤ Gu ⇤ Gf, where
Gr,Gs,Gu and Gf denote memory predicates representing regions
in the array and ⇤ is the separating conjunction and asserts that
these four terms describe pairwise disjoint memory regions. This
abstract state is represented graphically in Figure 3(b). Array anal-
yses such as [8, 14] build upon abstract states that partition arrays
in this manner, and [21] proposed an abstraction able to deal with
non-contiguous regions, as found in Figure 3(a). These analyses
describe the value of numerical �elds using summary numerical
dimensions [12], that is, abstract variables, which may describe
several concrete cells. We follow this convention here, and letV used

r
denote a numerical dimension describing the values stored in the
�eld used of the elements of Gr. In our case, V used

r is equal to 1,
as shown in Figure 3(b). Similarly,V used

s ,V used
u andV used

f describe
the value of this �eld in the other groups. We also note the number
of elements of each group can be bounded. For instance, we have
Sr 2 [0, 99], where Sr is the size of group Gr.

Secondly, the structures of the task lists can be described using
inductive predicates in separation logic. As an example, if � ,� 0
denote symbolic addresses, a segment of a singly linked list starting
at address � and ending at address � 0 can be described as follows
(for the sake of concision, we do not expand all the �elds):

list(� ,� 0) ::= emp ^ � = � 0 _ 9� 00, � · next 7! � 00 ⇤ list(� 00,� 0)

Therefore, the formula list(�s,�1) (where sleep = �s) describes
the structure of the list of sleeping tasks in Gs. Similar formulas
describe the structure of Gr and of Gu (note that Gr requires a
di�erent inductive predicate slist since it consists of a sorted list).

The coalescing abstraction aims at tying together the array and
inductive summaries one by one. Thus the coalesced abstract state
writes down Gr ⇤ Gs ⇤ Gu ⇤ Gf where Gk = Ak ^ Ik and:
• Ak summarizes a group of cells of the array, and ties numerical

predicates to summary dimensions representing the �elds;
• Ik summarizes an inductive structure.

As an example, in the case of Gs, As expresses that V used
s = 1,

sleep = �s and Ss 2 [0, 99], and Is is list(�s,�1). In the case of Gf,
If is true, as the next �elds de�ne no structure over the elements
of this group. We formalize this abstraction in Section 3.

Static analysis and veri�cation. We now overview the principles
of the automatic static analysis to verify functions like create
(Figure 2), starting from the pre-condition de�ned by C and Sf �
1. The post-condition computation proceeds by forward abstract
interpretation [7], which means the analysis implements functions
to compute an over-approximation of each construction of the
language, in terms of coalesced abstract states. In particular, a sound
loop invariant is obtained as the widening of a sequence of abstract
iterates. Moreover, the veri�cation that a post-condition is satis�ed
boils down to a conservative implication checking among abstract
states. In the following of this section, we discuss two analysis steps
that are representative of the whole analysis, namely the analysis of
an assignment statement, and the generalization process underlying
widening and abstract states implication checking.

We �rst consider the assignment a[i ].used = 1 at line 5 in Fig-
ure 2. To compute a post-condition for such a statement, the analysis
needs to (1) localize the cell designated by a[i ].used, that is, to
identify to which group(s) it belongs, and (2) update the predicates
of that group. Due to the condition at line 4, the constraints over
used in all groups entail that a[i] may only belong to Gf. However,
Gf may contain several elements, thus the update step needs to
account for the case where most elements of Gf are unchanged.
This situation is called a weak update, and it reduces the accuracy of
analysis results. To avoid this issue, the analysis should split group
Gf before it performs the update. This step is called materialization,
and isolates a[i] into a group of length 1, which supports a strong
update. The corresponding state is shown in Figure 3(c). In that
abstract state, not only the assignment at line 5 but also the subse-
quent assignments can be analyzed very precisely. More generally,
the analysis of statements such as condition tests and assignments
will also perform materialization. In Figure 2, materialization only
operates on groups of array cells and numerical predicates (Ak ),
but in general, it also needs to re�ne (Ik ) simultaneously, as we
will show in Section 4.3.

Conversely, the analysis of loops and the veri�cation of abstract
post-conditions require to generalize abstract states. We consider
the abstract state observed after create locates a free slot (Fig-
ure 3(c)) and inserts it into the ready list. In Figure 3(d), we show
the abstract state obtained over the branch where the new task
is inserted at the head of the list of ready tasks. Intuitively, that
state corresponds to a particular con�guration of the property C
shown in Figure 3(b), and where Gr has at least one element, up to



Jiangchao Liu, Liqian Chen, and Xavier Rival

the merging of Gn and Gr in Figure 3(d). To establish this abstract
state inclusion, the analysis needs to reconstruct a summary for the
group of ready tasks. This folding process is at the basis of abstract
states join, widening and implication checking (Section 4.4).

3 THE COALESCING ABSTRACTION
In this section, we formalize the coalescing abstraction: we de�ne
the abstract states (the predicates that the analysis manipulates),
and their concretization (the concrete states that they represent).
The coalescing construction that we present is generic, and agnostic
with regard to the underlying abstractions even though we focus
on the case where they describe arrays and inductive structures.

Notations. To simplify notations, and without loss of generality,
we assume that programs use a single array a, the elements of
which are C structures. We let F denote the set of �elds of these
structures. We let I stand for the set of indexes. We write V (resp.,
X) for the set of values (resp., variables). We also assume all array
accesses are of the form a[v], where v is an integer variable. A
concrete memory state is a partial function mapping basic cells
(variables and �elds of array cells) into values, denoted as � . The
set of concrete states is de�ned by � 2 S = (I ⇥ F [ X) ! V.

To represent abstract constraints, we assume a set of symbolic
abstract variables Ā (typically noted �i ) that denote values or sets
of values. We also assume a numerical abstract domain [7] with
summary dimensions [12]. We write N̄ for this abstract domain,
and �N̄ : N̄ ! P (Ā ! V ] P (V)) for its concretization function
where ] denotes disjoint union.

Summarizing memory abstractions. As observed in Section 2,
coalescing combines two memory abstractions to produce a new
memory abstraction, thus we �rst set up a general de�nition of
this concept. In this paper, we always consider abstract memory
states that write down as a separating conjunction of terms, so we
follow this layout here. As we noted, the analysis of the examples
of Figure 2 requires to describe either individual cells, or summary
areas, where individual cells can be either materialized out of a
summary predicate for materialization, or folded into a summary
predicate for generalization. The de�nition below formalizes this,
while keeping the precise structure of summaries abstract, as it will
be instantiated later with several di�erent kinds of summaries:

D��������� 1 (M����� �����������). A memory abstraction
consists of a triple (M̄,�M̄,$) made of:
• a set of abstract memories M̄ de�ned by the grammar shown
in Figure 4; an element t̄ 2 T̄ (resp., m̄ 2 M̄) is called an
abstract term (resp., an abstract state);
• a concretization function �M̄ : M̄ ! P (S) de�ned following
the principles of separation logic, as shown in Figure 4;
• a summarization relation$ between summaries and �nite
sets of abstract memories, such that, for all summary sum(�i ),
numerical constraints n̄ and �nite set M̄ 2 P�n (M̄), we have:

(sum(�i ) ^ n̄) $ M̄ =) �M̄ (sum(�i ) ^ n̄) = [{�M̄ (m̄) | m̄ 2 M̄ }
Intuitively, an abstract state is a separating conjunction of for-

mulas, and each of these formulas is the conjunction of a basic
memory predicate (that we refer to as a term) and a collection of
numerical predicates. A basic memory predicate describes either

m̄ (2 M̄) ::= 9�0, . . . ,�m , (t̄0 ^ n̄0) ⇤ . . . ⇤ (t̄p ^ n̄p )
t̄ (2 T̄) ::= emp (empty region)

| v 7! �i (variable)
| �i · f 7! � j (array cell)
| sum(�i ) (summary predicate)

n̄i 2 N̄ (numerical abstract predicates)
�i 2 Ā (symbolic abstract variables)

� 2 �M̄ (9�0, . . . ,�m , (t̄0 ^ n̄0) ⇤ . . . ⇤ (t̄p ^ n̄p ))

() 9� 2 Ā ! P (V),
(
8i, � 2 �N̄ (n̄i )
� ,� ` t̄0 ⇤ . . . ⇤ t̄p

� ,� ` emp () � = ;
� ,� ` t̄0 ⇤ . . . ⇤ t̄p () 9�0, . . . ,�p ,

(
8i, �i ,� ` t̄i
� = �0 ] . . . ] �p

� ,� ` v 7! �i () � = {v 7! � (�i )}
� ,� ` �i · f 7! � j () � = {(� (�i ), f) 7! � (� j )}

Figure 4: Summarizingmemory abstractions syntax and con-
cretization (parameterized by the de�nition of sum)

a single memory cell (variable, or array cell, with one or several
�elds), or some sort of inductive predicate. Moreover, the summa-
rization relation describes how summaries may be turned into more
concrete memory descriptions, as part of materialization.

In this section, we assume that n̄ expresses conjunctions of linear
inequalities and set constraints. As this paper is not speci�cally
focusing on value abstract domains, we represent these constraints
as logical formulas, although our implementation relies on a proper
abstract domain, and static analysis algorithms perform sound ap-
proximation of value constraints whenever required.

Abstraction of arrays. The description of the array properties
considered in Section 2 requires an array abstraction that can tie
numerical properties to possibly non-contiguous groups of cells. It
boils down to a memory abstraction in the sense of De�nition 1,
with the appropriate notion of summary.

In this paragraph, we assume F = {f0, f1}. An array summary is
a summary ar(� sz,� ix,�0,�1), that describes a group of array cells,
where � sz describes the number of cells in the group, � ix the set
of their indexes, and �0,�1 the sets of values stored in their �elds.
Such a summary predicate may either be turned into the memory
predicate emp that stands for the empty region when it is empty,
or to the disjoint union of a single cell and of a smaller group when
it is not empty. This actually de�nes a summarization relation$a:

(ar(� sz,� ix,�0,�1) ^ � ix = ; ^ n̄) $a {emp}
(ar(� sz,� ix,�0,�1) ^ � sz > 0 ^ �� 2 � ix ^ n̄) $a
(
9� 00,� 01, (�� · f0 7! � 00 ⇤ �� · f1 7! � 01 ⇤ ar(� szu ,� ixu ,�0,�1))
^ (� sz = � szu + 1 ^ � ix = � ixu ] {�� } ^ n̄ ^ n̄[�0/� 00,�1/�

0
1])

)

The second case duplicates �0,�1 and creates � 00,�
0
1 to account for

the value of the �elds of the materialized cell. This array predi-
cate generalizes to any number of �elds, and leads to a memory
abstraction that can summarize array regions:

D��������� 2 (N������������� ����� �����������). The
non-contiguous array abstraction (or for short, array abstraction)
is the triple (M̄a,� a

M̄
,$a) where M̄a is de�ned as the instance of M̄
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�0

i = 0
next
used

[0] :
1
1

[1] :
1
6

[2] :
0
0

[3] :
1
�1

[4] :
0
0

[5] :
0
0

[6] :
1
3

[7] :
0
0

[8] :
0
0

�1

i = 0
next
used

[0] :
1
8

[1] :
0
0

[2] :
1
�1

[3] :
0
0

[4] :
0
0

[5] :
1
2

[6] :
1
5

[7] :
0
0

[8] :
1
6

(a) Concrete states

list(�0,�1) true
�used0 = 1 �used1 = 0

ar(� sz0 ,�
ix
0 ,�

used
0 ,�next0 ) ar(� sz1 ,�

ix
1 ,�

used
1 ,�next1 )

i 7! �0 2 � ix0

Array summaries
Num. constraints
Ind. summaries
Variable term

(b) Coalesced abstract state

Figure 5: Coalescing abstraction example

where summary predicates are occurrences of ar, where $a is the
above summarization relation, and where � a

M̄
is de�ned by$a.

We note that the concretization � a
M̄
is de�ned by the summariza-

tion relation$a, which is expected since summary predicates aim
at supporting abstract predicates folding / unfolding.

E������ 1. As an example, we consider a simpli�ed memory
cells pool, which is based on a single list of active elements, and on
two �elds used and next. An element of index i is in the list if and
only if a[i ].used is equal to 1; then, a[i ].next denotes the index of
the next element; otherwise, a[i ].used is equal to 0. Two example
concrete states are shown in Figure 5(a). Elements in the active list are
shown in red. This set of states can be described by an abstract state
(t̄0 ^ n̄0) ⇤ (t̄1 ^ n̄1) ⇤ (t̄2 ^ n̄2), where:
• t̄0 = ar(� sz0 ,�

ix
0 ,�

used
0 ,�next0 ) and n̄0 = (�used0 = 1) describe

the group of active elements;
• t̄1 = ar(� sz1 ,�

ix
1 ,�

used
1 ,�next1 ) and n̄1 = (�used1 = 0) describe

the group of non-active elements;
• t̄2 = i 7! �0 and n̄2 = �0 2 � ix0 describe variable i.

Abstraction of inductive structures. So far, we have considered
only the description of the properties relative to the array structure,
so we now turn our attention to the inductive structures stored in
each region. In Section 2, we have observed that these structures
can be represented using inductive summaries, we de�ned a sum-
mary list for singly linked lists, and we noted sorted singly linked
lists can also be described using an inductive summary predicate.
More generally, an inductive summary predicate i is de�ned by a
summarization relation of the form i(�0, . . . ,�k ) $i {m̄0, . . . ,m̄p }
where m̄0, . . . ,m̄p are made of terms the memory part of which
consists either in individual memory cells or in other instances
of the summary predicate i itself. Each of the terms m̄0, . . . ,m̄p
accounts for one of the ways to construct a structure; as an example
the predicate list introduced in Section 2 comprises two such cases.
We write M̄i for the set of memory predicates where all summary
predicates are either of the above form or the true predicate that
describes any memory region.

D��������� 3 (I�������� �����������). The inductivememory
abstraction is the triple (M̄i,� i

M̄
,$i) where M̄i and$i are de�ned as

above, and � i
M̄
is the concretization function de�ned by$i.

Note that the summarization relation de�nes the concretization
function as in the case of the array abstraction (De�nition 2).

E������ 2. We consider the same structure as in Example 1. The
region formed by the active elements stores a singly linked list whereas
the other array cells satisfy no particular inductive property. As a
consequence, this set of states can be described by an abstract state
(t̄0 ^ n̄0) ⇤ (t̄1 ^ n̄1) ⇤ (t̄2 ^ n̄2), where: t̄0 = list(�0,�1) and
n̄0 = true describe the group of active elements, t̄1 = true and
n̄1 = true describe the group of non-active elements, and t̄2 = i 7! �0
and n̄2 = true describe the state of variable i. In particular, we note
that these constraints convey the fact that i points to the head of a
singly linked list.

Coalescing abstraction. We remarked in Section 2 that the anal-
ysis of programs like the create function of Figure 2 requires to
reason simultaneously about arrays and inductive structures in a
same region. To achieve this, the coalescing abstraction combines
summaries locally:

D��������� 4 (C��������� �����������). Let (M̄0,� 0
M̄
,$0) and

(M̄1,� 1
M̄
,$1) be two memory abstractions in the sense of De�nition 1,

with di�erent sets of summary predicates. We call coalescing abstrac-
tion the memory abstraction (M̄./,� ./

M̄
,$./ ) such that:

• the summary predicates in M̄./ are of the form sum0 ^ sum1

where sum0 2 M̄0 and sum1 2 M̄1 are summary predicates;
• the summarization relation$./ is de�ned by:

(sum0 ^ sum1 ^ n̄) $./ M̄ ()
(

(sum0 ^ n̄) $0 M̄
^ (sum1 ^ n̄) $1 M̄

• the concretization function � ./
M̄

is de�ned by � ./
M̄
(sum0 ^

sum1 ^ n̄) = � 0
M̄
(sum0 ^ n̄) \ � 1

M̄
(sum1 ^ n̄).

In the rest of the paper, we focus on the case where (M̄0,� 0
M̄
,$0)

is the array abstraction (M̄a,� a
M̄
,$a) and (M̄1,� 1

M̄
,$1) is the induc-

tive abstraction (M̄i,� i
M̄
,$i) although the De�nition 4 sets up a

general notion of coalescing abstraction. We remark an important
characteristic of coalescing: the structure of a coalesced summary
sum0 ^ sum1 deeply ties the structures of summary predicates
sum0 and sum1. Indeed, when we consider sum0 = ar(. . .) and
sum1 = list(. . .), then a memory region described by sum0 ^
sum1 is either empty or non empty, thus the materialization of
ar(. . .) ^ list(. . .) produces a disjunction of two elements which
correspond to the case where both summaries unfold to the empty
(resp., non empty) region.

E������ 3. We consider the structure of Example 1. Two abstrac-
tions of this structure were presented in Example 1 and Example 2,
which respectively account for the array view and for the inductive
view of the structure. Each abstraction consists of the separating con-
junction of two summary predicates and one points-to predicate over
a variable. The terms of these two abstractions describe regions that
coincide, thus the whole structure can be accurately represented in
the coalescing abstraction. For instance, the �rst group can be rep-
resented by ar(� sz0 ,�

ix
0 ,�

used
0 ,�next0 ) ^ list(�0,�1) ^ (�used0 = 1).
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cond : M̄ ⇥ Cond �! M̄ local condition test
upd : M̄ ⇥ Lv ⇥ Expr �! M̄ local update
mat : T̄ ⇥ Ā �! P�n (M̄) materialization
abs : M̄ �! T̄ summarization
sel : T̄ ⇥ T̄ �! N selection
t,O : M̄ ⇥ M̄ �! M̄ join, widening
v: M̄ ⇥ M̄ �! Bool inclusion check

Figure 6: Abstract operations of a memory domain M̄

The whole abstract state is shown in Figure 5(b) and highlights the
coalescing of terms.

The structure shown in Figure 3(b) is similar, and requires four
coalesced summaries, and three atomic terms for the variables.

4 STATIC ANALYSIS BY ABSTRACT
INTERPRETATION

In this section, we elaborate automatic static analysis algorithms for
the coalescing abstraction set up in Section 3. Static analyses based
on the components of the coalescing abstraction rely on complex
algorithms, and reinventing a novel static analysis directly from
De�nition 4 would duplicate a large part of this work. Instead, we
aim at integrating existing analysis algorithms.

4.1 Language and concrete semantics
For the sake of concision, we focus on the smallest set of program
constructions that require all the important analysis operations:

s ::= lv = expr assignment to cell �eld or variable
| if ( cond ) s condition
| while( cond ) s loop
| s0; s1 sequence

Moreover, we let the semantics of a statement s be the function
JsK : P (S) ! P (S) that maps a set of states observed before
executing s into the set of states that are observed after executing
it (if s does not terminate, it returns the empty set). This semantics
is adequate to tackle the veri�cation problem stated in Section 2,
as we are interested in proving properties of the form “any call
starting in a state that satis�es C ^ P exits in a state that satis�es
C ^ Q”. Therefore, the remaining of the section aims at computing
an over-approximation for JsK.

4.2 Abstract domain and analysis
In this section, we use the abstract domain M̄./ obtained by coalesc-
ing M̄a and M̄i. The over-approximation of JsK takes the form of a
function JsK] : M̄./ ! M̄./ , and such that JsK�� ./

M̄
✓ � ./

M̄
� JsK] . As

an example, Js0; s1K = Js1K � Js0K so that Js0; s1K] = Js1K] �
Js0K] satis�es this soundness property. To construct this analysis,
we de�ne abstract operations in the coalescing domain from opera-
tions in M̄a and M̄i. Figure 6 lists the operations that we use in the
rest of this section. Each operation satis�es a soundness condition.
For instance, cond computes a sound post-condition for a condition
test statement: given abstract pre-condition m̄ and condition cond,
cond(m̄, cond) returns an over-approximation of the set of states

in �M̄ (m̄) that satisfy cond. To de�ne the coalescing analysis, we as-
sume that the underlying domains M̄a and M̄i provide each of these
functions (e.g., we note them conda, condi), and we build a similar
function in the coalescing domain (noted cond./). Similarly, upd
over-approximates assignment. The functions mat and abs respec-
tively re�ne and weaken abstract states, following$. The function
sel computes a measure of similarity of two abstract states. Last,
t,O and v conserviatively approximate concrete unions, widening
and inclusion checking. In the following, we assume M̄a and M̄i

provide these operations, and construct similar operations for M̄./ .

4.3 Post-condition and materialization
Localization. When an assignment or a condition test in the

analyzed program accesses an l-value, the analysis �rst needs to
identify what part of the abstract state represents this l-value, using
either array or list information. If the l-value is a variable i, the cell
is represented as a points-to term, since M̄./ summarizes only array
regions. If the l-value is of the form a[i ].f, then the localization
of the cell is done based on numerical and set constraints over the
indexes, by checking for each group whether i may belong to it.
When several solutions are found, the analysis needs to make case
splits and to consider one case per solution.

Assignment to a materialized cell. We �rst consider an assign-
ment operation lv = expr, and an abstract pre-condition m̄ where
each memory cell read or written in the assignment is described by
a points-to term. Then, the computation of a post-condition boils
down to the update of numerical constraints. The function upd
(Figure 6) provides such a sound post-condition. When applied to a
single term, the de�nition of upd./ boils down to upd./ (t̄a0 ^ t̄ i0 ^
n̄0) = (t̄a1 ^ t̄ i1) ^ (n̄a1 ^ n̄i1), where upd

a (t̄a0 ^ n̄0) = t̄a1 ^ n̄a1 and
updi (t̄ i0 ^ n̄0) = t̄ i1 ^ n̄i1. This simple de�nition generalizes to pre-
conditions made of several terms, provided each cell read or written
is present as a points-to term. However, it does not generalize to
the case where either of the cells manipulated by the assignment is
part of a summary.

Materialization. The algorithm to extract a cell is called materi-
alization. It is present both in shape analyses [5, 23] and in array
analyses [8, 12, 21]. The operationmat (Figure 6) achieves this:mat
inputs an abstract term t̄ , and a symbolic variable that denotes an
address in the region described by t̄ , and utilizes the summarization
relation$ to produce an abstract state that over-approximates t̄
and where the cell of address � is represented exactly. The sound-
ness of mat follows from the de�nition based on$:

mat(sum(� , . . .) ^ n̄,� ) ::= M̄ where (sum(� , . . .) ^ n̄) $ M̄

Given mata,mati, the de�nition of mat./ is done component-wise,
and also following the de�nition of$./ (De�nition 4):

mat./ (t̄a0 ^ t̄ i0 ^ n̄0,� )
= {(t̄a1 ^ t̄ i1) ^ (n̄a1 ^ n̄i1) | (t̄a1 ^ n̄a1) 2 mata (t̄a0 ^ n̄0,� )

^ (t̄ i1 ^ n̄i1) 2 mati (t̄ i0 ^ n̄0,� )}
While this formula seems to follow straightforwardly from De�-
nition 4, it also conveys an important property. The conjunction
of numerical constraints may lead to pruning away some terms
that have empty concretization. As an example, we observed in
Section 3 that the summarization relation of the coalescing product
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of an array abstraction and an abstraction based on list predicates
generates simultaneously states where either the region is empty
(so that we have an empty array region and an empty list), or non
empty (so that, a same element can be extracted simultaneously
from the array structure and from the list structure).

Assignment into a summary. We can now state the algorithm for
the analysis of an assignment:

(1) localize each of the cells read or written, that is, determine
to which term of the abstract pre-condition it belongs to;

(2) materialize the localized terms using mat./ ;
(3) apply upd./ to compute the post-condition.

The algorithm for the analysis of condition tests is similar. Due to
the materialization phase, this algorithm returns a disjunction of
abstract states in general, and we will address this with an abstract
join operator in Section 4.4. We demonstrate these two algorithms
in the following example.

E������ 4. We consider the abstract state of Example 3 (in Fig-
ure 5(b)), with an additional variable j, the constraint 0  j < 9, and
code if (a[j ].used==0) { a[j ].next=i; a[j ].used=1; i=j; } :
• the condition reads the value of a[j], which leads to the materi-

alization of this cell; this materialization step produces a disjunction
of two cases where a[j] denotes a group made of a single cell; the
constraint on j implies it may belong to either pre-existing array
regions, however the condition on the �eld used entails it may only
belong to the group of free slots;
• as the condition step materializes a[j], the subsequent assign-

ments do not require further materialization, and simply apply upd./ .
The resulting abstract state is shown in the graphical form below.
Array regions are shown in the top, and variables in the bottom.
Remark that the �rst two array regions contain summaries, whereas
the rightmost one contains a single cell.

ar(� sz0 ,�
ix
0 ,�

used
0 ,�next0 ) ar(� sz1 ,�

ix
1 ,�

used
1 ,�next1 )

list(�0,�1) true
�2 · used 7! �used2⇤ �2 · next 7! �next2

�used0 = 1 �used1 = 0 �used2 = 1 ^ �next2 = �0
i 7! �2 ⇤ j 7! �2

This shows an important property of coalescing abstraction:
when a cell is localized in either underlying domains, it can imme-
diately be materialized in both. The symmetric case (localization
based on inductive predicates) is similar.

4.4 Analysis of loops and generalization
The materialization involved in the computation of post-conditions
splits summary terms and increases the size of abstract states. Not
only the computation of loop invariants but also the comparison of
abstract states make it necessary to perform the opposite transfor-
mation. This transformation naturally divides into the selection of
regions to abstract, and the application of folding based on$. We
�rst consider the latter, as it is more simple.

Folding of regions and creation of summary terms. By de�nition
of the summarization relation, if m̄ is an abstract state, and t̄ is a
summary term such that t̄ $ M̄ and m̄ 2 M̄ , then we can conclude
that �M̄ (m̄) ✓ �M̄ (t̄ ), which means that the abstract state m̄ can
be conservatively weakened into the summary abstract term t̄ . As
stated in Figure 6, we require memory abstractions to provide a

partial function abs that turns an abstract state into a single sum-
mary term. This function is partial as many abstract states cannot
be accurately approximated by any summary term. The analyses
based on array abstractions or inductive structures abstractions
shown in Section 3 generally support a variant of this function.
Therefore, we show how to construct abs./ from absa and absi:

if absa ((t̄a0 ^ n̄0) ⇤ . . . ⇤ (t̄ak ^ n̄k )) = (suma ^ n̄a)

and absi ((t̄ i0 ^ n̄0) ⇤ . . . ⇤ (t̄ ik ^ n̄k )) = (sumi ^ n̄i)
then abs./ ((t̄a0 ^ t̄ i0 ^ n̄0) ⇤ . . . ⇤ (t̄ ik ^ t̄ ik ^ n̄k ))

= ((suma ^ sumi) ^ (n̄a ^ n̄i))

While this folding principle is rather simple, its implementation
is more challenging. A �rst di�culty is that corresponding sets of
terms should be summarized simultaneously, otherwise abs./ does
not apply. A second di�culty is that the numerical predicates may
need to be weakened during this folding step.

E������ 5. We consider the abstract state obtained in the end
of Example 4, and merge the �rst and third array regions into one,
using abs./ . In M̄a, this results in the creation of a summary predicate
described by ar(� sz3 ,�

ix
3 ,�

used
3 ,�next3 ) that contains all the cells de-

scribed by ar(� sz0 ,�
ix
0 ,�

used
0 ,�next0 ) and the cell �2 ·used 7! �used2 ⇤

�2 · next 7! �next2 . In M̄i, a segment summary is synthesized, since,

abs./ ((list(�0,�1) ⇤ �2 · used 7! �used2 ⇤ �2 · next 7! �next2 )
^ (�next2 = �0)) = list(�2,�1)

The diagram below depicts the result, with a new summary region
in the left (in orange on the �gure). To avoid confusion, we let the
summaries of the new group be labeled with subscript 3.

ar(� sz3 ,�
ix
3 ,�

used
3 ,�next3 ) ar(� sz1 ,�

ix
1 ,�

used
1 ,�next1 )

list(�3,�1) true
�used3 = 1 �used1 = 0

i 7! �3 ⇤ j 7! �3

Selection of groups for abstract join and widening. The analysis of
a condition statement should compute an over-approximation for
the union of �ow paths. Moreover, the abstract interpretation of a
loop requires the computation of a sequence of iterates the conver-
gence of which should be ensured by a widening operator [7]. These
operators should merge groups and create summaries using abs./ .
However this operator may not always be able to produce a precise
result, thus the analysis should determine which terms to merge. To
perform this selection, we require memory abstractions to supply
an operation sel that computes a measure of logical similarity of
terms, and returns a non-positive value that is greater in absolute
value when applied to terms that carry very di�erent properties.
As an example, a measure of the similarity of array summaries
and points-to terms in an array region is provided by the opposite
of the number of di�erent associated numerical predicates. Then,
the abstract join (resp., widening) of two abstract states m̄0,m̄1 is
computed as follows:

(1) compute the measure of similarity of each pair (t̄0, t̄1) where
t̄0 is a term of m̄0 and t̄1 a term of m̄1;

(2) based on these measures of similarity, build a relation ⇡,
such that t̄0 ⇡ t̄1 if and only if t̄0 and t̄1 are very similar;

(3) when t̄0 ⇡ t̄1 and t̄ 00 ⇡ t̄1, replace t̄0 ⇤ t̄ 00 with abs(t̄0, t̄ 00);
repeat this step, and similar rewritings inm̄1 until⇡ describes
a bijection between terms of m̄0 and m̄1;
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(4) apply t (resp., O) component-wise, following ⇡.

E������ 6. To illustrate this algorithm, we consider the program:

in t j = f ( ) ;
i f ( 0 <= j && j < 9 && a [ j ] . used == 0 ) {

a [ j ] . next = i ; a [ j ] . used = 1 ; i = j ; }

We assume that executions start from states described by the abstract
state shown in Example 3 (Figure 5(b)). The states observed after
executing the body of the if branch are described by the abstract state
shown in Example 4, and the states that do not enter the body of the
if branch are described by the abstract state shown in Figure 5(b).
Thus, the abstract post-condition for this program is the join of these
two abstract states. The similarity relation pairs together regions
associated to the constraint used = 1, and that contain list segment
predicates. Note that �2 · next 7! �0 ⇤ . . . gets weakened into
list(�2,�0). Therefore, the similarity relation results in the merge
of the leftmost and rightmost groups of the abstract state shown
in Example 4, as discussed in Example 5. This process produces the
abstract join, hence the post-condition of the code fragment.

Inclusion checking. Inclusion checking is an abstract operation
that takes two abstract states and attempts to prove inclusion. It
is conservative and returns false when inclusion cannot be estab-
lished. It is used both to check the convergence of abstract iterations
over loops, and to check that abstract post-conditions are met. It re-
lies on a similar principle as join and widening, and using v instead
of t,O, thus we do not detail this operator here.

4.5 Analysis and soundness
The analysis computes post-conditions for programs, and is de�ned
by induction over the syntax. When the analysis of a statement cre-
ates disjunctions due to materialization (Section 4.3), it applies ab-
stract join to these disjuncts so as to produce a single post-condition.
It also applies abstract join at branch merges and widening to com-
pute loop invariants. It returns a sound post-condition, so as to
conservatively verify the speci�cation of each primitive:

T������ 1 (S��������). For all program s and abstract pre-
condition m̄./ 2 M̄./ , we have JsK � � ./

M̄
(m̄./ ) ✓ � ./

M̄
� JsK] (m̄./ ).

An important remark is that the analysis with the coalesced do-
main reuses fundamental algorithms of the underlying memory ab-
stractions and removes the need to re-implement them completely.
Instead, it ties them step by step to produce precise post-conditions
in the combined domain.

5 EXPERIMENTS
This section reports on the evaluation of the analysis based on
the coalescing abstraction for the veri�cation of components of
embedded operating systems. We evaluate (1) the expressiveness of
our abstraction, namely its ability to describe structural invariants
of programs that use an array as an allocation pool as described
in Section 1, (2) the e�ciency of the analysis to successfully verify
real programs and, (3) its usability (the analysis should be easy to
deploy and should e�ectively automate veri�cation). To this end,
we implemented the coalesced abstraction into the MemCAD static
analyzer [26], and using the Apron implementation of the domain

System TinyOS AOS Minix Linux Nordic
Module task task memory Eicon app.

sched. sched. mgmt net
driver

timer

Lists 1 3 2 1 1
Free slots Yes Yes - Yes Yes
Tail ptr Yes - - Yes -
Length - - - Yes -
info.
Sortedness - Yes - - Yes
Primitives 2 5 4 3 2
Table 1: Analyzed programs and consistency invariants

of linear inequalities [15]. This analysis tool is parameterized by
the description of the structural consistency property C (Section 2).

Experiments setup. We identi�ed a set of target programs that
implement their own memory allocation scheme using an array
that stores dynamic structures. We list them below:
• Task scheduler of TinyOS: TinyOS [20] is an embedded OS

designed speci�cally for network applications, and systems with a
low-power CPU. It is written in nesC [11], an extension of C. This
task scheduler manages tasks in a list stored in a large array.
• Task scheduler of AOS: This component was presented in

Section 1 and manages tasks in three lists stored in a single array.
• Memorymanager ofMinix: Minix [25] is a Unix-like micro-

kernel, that inspired many other kernels, including Linux. This
memory manager relies on a list stored in an array to maintain the
table of allocated memory blocks.
• The Eicon Diva network driver for Linux: Eicon [1] pro-

vides network chips for servers. This Diva network driver maintains
queues of requests received by a network adapter, and stores them
as a list in an array structure.
• The Nordic nRF51 application timer: Nordic nRF51 se-

ries [2] are chips for embedded ultra-low power wireless applica-
tions. Its timer application [3] stores information about applications
in a sorted list stored in an array.

Table 1 shows the diversity of the data-structures these programs
operate on: some store several lists in a single array whereas others
store only one list; in all cases except Minix, some elements of the
array stand for free slots; some structures maintain a tail pointer or
length information in a separate variable; last, two of the �ve test
cases use sorted lists. Moreover, each of these programs implements
a set of primitives that modify the structure, typically to handle a
system call or an operation in the management of the system.

Veri�cation and expressiveness of the coalescing abstraction. The
veri�cation process is split into two stages that consist in (1) the
speci�cation of the structural consistency property and of the prim-
itives, and (2) the automatic static analysis of a program of the
form assume(C ^ P ); prim( ); assert(C ); for each primitive
prim, where assume (resp., assert) causes the analysis to conser-
vatively assume (resp., attempt to verify) an abstract property. The
consistency property is speci�ed using a basic language to describe
memory and value properties. We show this with the speci�cation
supplied for a couple of examples from our test set.
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ar(� sz0 ,�
ix
0 ,�

next
0 ) ar(� sz2 ,�

ix
2 ,�

next
2 )

�1 · next 7! �next1list(�0,�1) true
�next0 < 255 �next1 = 255 �next2 = 255

head 7! �0 2 � ix0 ⇤ tail 7! �1

(a) TinyOS scheduler structural consistency CT

ar(� sz0 ,�
ix
0 ,�

alloc
0 ,�next0 ) ar(� sz1 ,�

ix
1 ,�

alloc
1 ,�next1 )

list(�0,�1) list(�1,�1)
hole_head 7! �0 2 � ix0 ⇤ hole_tail 7! �1 2 � ix1

(b) Minix memory manager structural consistency CM

Figure 7: Structural consistency invariants

E������ 7 (V����������� �� ��� T���OS ���������). The
TinyOS scheduler uses a singly linked list, with a variable that stores
the index of the last element. The next �eld characterizes both the
next element in the list of tasks, and also the free slots: for each free
slot, next is equal to 255, whereas used slots have a next �eld value
strictly lower than 255. Note that the last element of the list acts as
a sentinel node (its next value is 255, and it does not correspond to
a task). The consistency property CT re�ects this partition into three
groups of cells (the group of tasks in the body of the list, the last
element in the list and the free slots). The speci�cation of this nested
structure in the coalescing domain uses the list segment inductive
predicate list introduced in Section 2. It is shown in Figure 7(a). The
task scheduler implements two primitives tpush and tpop to reserve
and free elements. Based on the de�nition of CT, the veri�cation of
these primitives reduces to the static analysis of the programs below:

assume(CT ); int b = tpop (); assert(CT );
assume(CT ^ 0  id  255 ); tpush(id); assert(CT );

E������ 8 (V����������� �� ��� M���� ������ �������).
The Minix memory manager organizes memory blocks using two lists
stored in the same array and that respectively record allocated blocks
and free elements in the array. All the cells of the array belong to
either of these two lists. Therefore, CM partitions the array in exactly
two regions, and coalesces each region with a list segment summary
predicate introduced in Section 2, as shown in Figure 7(b). Moreover,
there is no speci�c �eld indicating which group an element belongs to;
instead, the partitioning of the array is solely guided by the two lists.

Four primitives manipulate this structure: tinit initializes the
structure, allocmem searches for a free block and allocates it, freemem
frees a memory block, and getmax traverses the list of allocated blocks
to search for memory allocation information. As in Example 7, the
veri�cation of all these primitives boils down to the analysis of the
following four short programs:

assume( true ); tinit( ); assert(CM );
assume(CM ); int ok = allocmem( ); assert(CM );
assume(CM ); int ok = freemem(base); assert(CM );
assume(CM ); int m = getmax( ); assert(CM );

The veri�cation of the other three examples follows the same
steps. The structural consistency property of AOS is depicted in
Figure 3(b). The invariants associated to each of these examples
can be expressed with coalesced abstract states similar to those
presented in Example 7 and Example 8. Moreover, the array and

Sample Defs. Prims. Spec. Veri�ed Time
(LOCs) (LOCs) (lines) (prims.) (s)

TinyOS 1 54 18 2 / 2 0.22
tpush 30 yes 0.11
tpop 24 yes 0.11

AOS 6 354 19 5 / 5 6.26
tinit 36 yes 0.12
tcreate 54 yes 0.81
tstop 83 yes 1.68
tsched 71 yes 1.36
tstart 110 yes 2.29

Minix 4 133 8 4 / 4 1.46
tinit 13 yes 0.19

allocmem 46 yes 0.38
freemem 59 yes 0.58
getmax 15 yes 0.31

Eicon 157 80 22 3 / 3 0.64
insert 43 yes 0.24
delete 18 yes 0.12

traversal 19 yes 0.28
Nordic 14 103 13 2 / 2 1.62

tinsert 56 yes 1.03
tdelete 47 yes 0.59

Table 2: Analysis results (Defs: size of the structure de�ni-
tions in LOCs; Prims.: size of the code of the primitives in
LOCs; Spec: size of the speci�cations supplied to the anal-
ysis tool; Veri�ed: number of primitives veri�ed out of the
total; Time: total analysis time for the test case in seconds)

inductive predicates required in the �ve test cases can be provided
as parameters to our analyzer.

Analysis e�ciency. Wenowdiscuss the analysis reports. The anal-
yses were performed on a desktop with Intel Xeon E3 at 3.2 GHz
with 16 Gb of RAM, and under Ubuntu 12.04.4. Table 2 summa-
rizes the code sizes, analysis results and averaged timings for each
primitive and for each test case (total time to verify all primitives).
While these programs are all of small size, they all involve sophis-
ticated invariants that require to reason both about array indexes
and inductive pointer structures, so that they could not be analyzed
without the coalescing domain. We distinguish the de�nition of the
data structures and the body of the primitives to verify (e.g., in the
Eicon driver, type de�nitions account for a very large part of the
implementation). The coalescing analysis successfully veri�es all
the primitives of the �ve test cases, with respect to the structural
consistency speci�cations, as shown in Example 7 and in Example 8.
The invariants that are automatically computed ensure not only
memory safety, but also the preservation of the structural consis-
tency invariants. Analysis times are all of the order of at most a few
seconds. As the programs that the analysis targets are not meant
to be large, but subtle and involving sophisticated invariants (as
is the case for all the examples in our test set), these timings are
compatible with veri�cation.

Usability of the analysis. Our veri�cation scheme requires hand
written speci�cation of the structural consistency property. While
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it would be possible to infer a candidate invariant by analyzing the
primitives manipulating the structure, we believe that this approach
would be very likely to compute an invariant that is not what the
developer intends it to be. In this context, the veri�cation approach
appears as more reliable.

For each of our test cases, the time required for a non OS ex-
pert to identify and write down the speci�cation of the structural
consistency ranged from a few minutes up to a couple of hours.
The developer of the target code would spend signi�cantly less
time to do so thanks to their knowledge of the structural consis-
tency invariants. The speci�cation language used by the tool is
close to the intuitions underlying the graphical representations
used throughout the paper.

6 RELATEDWORK
Deductive techniques have achieved great successes in verifying OS
components [13, 17]. Our goal is di�erent, as we aim at automating
the veri�cation of common programming patterns encountered in
low-level components of OSes and embedded software.

The foundation of coalescing is to carefully adjust the level of
logical connectors in memory predicates, so as to precisely capture
a family of overlaid structures while keeping the memory abstract
states simple. Reduced product [7] provides a systematic way to
introduce conjunctive reasoning in static analysis, yet its applica-
tion to memory abstraction is often di�cult. Shape analyses rely
on it [19, 26] in order to describe overlaid structures. By contrast,
our analysis applies non separating conjunction locally, hence it ex-
presses stronger properties, and allows a simple synchronization of
coalesced predicates attached to a same region. Per-�eld separating
conjunction [10] can describe linked structures, but does not apply
to index arithmetics, so it could not describe our array predicates.

Our analysis focuses on dynamic structures stored in arrays. Few
analyses have been developed to tackle such nested structures. On
one hand, a large family of works focus on numerical arrays, and
use segment abstractions [8, 12, 14], which prevents the inference
of properties of non-contiguous sets of cells. Similar abstractions
have been used in invariant generation, model checking and theo-
rem proving [4, 16, 18]. While such analyses can verify sortedness,
they cannot cope with nested structural invariants such as the
property C de�ned in Section 2. Fluid updates [9] allow a precise
tracking of container properties, and analyze precisely operations
such as a vector copy, but cannot capture nested structure proper-
ties. The analysis of [21] handles non-contiguous regions, and can
compute abstractions of numerical constraints over such regions,
but cannot infer a precise invariant like C, as it does not support
inductive structure. On the other hand, signi�cant progresses have
been achieved in the analysis of programs with dynamic struc-
tures. Such works either use three-valued logic [23] or separation
logic [22], and allow the veri�cation of programs that manipulate
dynamically linked data-structures such as variants of lists [5, 23]
and trees [6]. However, these shape analyses cannot express that
a structure lies inside an array, or a �xed contiguous space. Our
work also extends the notion of abstraction parameterized by user
supplied structure de�nitions of [6] to also deal with structures
stored in arrays. A notable exception is [24], which extends a shape
analysis with structures nested into abstractions of memory blocks.

This work can only describe a single structure composed of all
the cells in a non empty and contiguous region and will thus not
capture the structures that we consider. By contrast, our analysis
relies on coalescing of array and inductive predicates, which allows
to simplify the associated inductive predicates and reason more
e�ectively about more complex structures.

7 CONCLUSION AND PERSPECTIVES
We identify a pattern commonly encountered in embedded systems
and OS code, that constructs and manages dynamic structures in
an array, without an external memory allocator. While this pattern
yields subtle code that is hard to verify and relies on sophisticated
invariants, we propose an automatic static analysis to verify con-
sistency invariants of such structures. It is parameterized by the
structural consistency properties, and the value abstraction. The
key idea behind it is to rely on the generic coalescing abstraction
that we proposed to combine tightly abstractions for arrays and
inductive structures. Experiments show that it successfully veri�es
di�erent instances of this generic pattern in real-world low-level
OS components and device drivers.

Coalescing views the underlying memory abstractions as black
boxes, thus it opens the possibility to verify other kinds of nested
structures. A promising direction is the veri�cation of the implemen-
tation of programs such as a memory manager, a garbage collector,
or a �le system. In all these cases, the veri�cation should handle
several distinct levels of structures, that can be described by coalesc-
ing several specialized abstractions. To that end, one would need
to extend our framework so as to support an arbitrary, possibly
unbounded number of summaries stored inside a pool of cells.
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