# Seriation, Spectral Clustering and de novo genome assembly 

Antoine Recanati, CNRS \& ENS

with Alexandre d'Aspremont, Thomas Kerdreux, Thomas Brüls, CNRS - ENS Paris \& Genoscope.

## Seriation

## The Seriation Problem.

- Pairwise similarity information $A_{i j}$ on $n$ variables.
- Suppose the data has a serial structure, i.e. there is an order $\pi$ such that

$$
A_{\pi(i) \pi(j)} \text { decreases with }|i-j| \quad \text { (R-matrix) }
$$

Recover $\pi$ ?


Similarity matrix


Input


Reconstructed

## Genome Assembly

## Seriation has direct applications in (de novo) genome assembly.

- Genomes are cloned multiple times and randomly cut into shorter reads ( $\sim 400 \mathrm{bp}$ to 100 kbp ), which are fully sequenced.
- Reorder the reads to recover the genome.



## Genome Assembly

## Overlap Layout Consensus (OLC). Three stages.

- Compute overlap between all read pairs.

■ Reorder overlap matrix to recover read order.

- Average the read values to create a consensus sequence.


The read reordering problem is a seriation problem.

## Genome Assembly in Practice

Noise. In the noiseless case, the overlap matrix is a R-matrix. In practice. . .

- There are base calling errors in the reads, typically $2 \%$ to $20 \%$ depending on the process.
- Entire parts of the genome are repeated, which breaks the serial structure.

Sequencing technologies

- Next generation: short reads ( $\sim 400 b p$ ), few errors ( $\sim 2 \%$ ). Repeats are challenging
- Third generation: long reads ( $\sim 10 \mathrm{kbp}$ ), more errors ( $\sim 15 \%$ ). Can resolve some repeats, but not all of them + noise can be challenging


## Genome Assembly in Practice

## Current assemblers.

- With short accurate reads, the reordering problem is solved by combinatorial methods using the topology of the assembly graph and additional pairing information.
- With long noisy reads, reads are corrected before assembly (hybrid correction or self-mapping).
- Layout and consensus not clearly separated, many heuristics . . .
- minimap+miniasm : first long raw reads straight assembler (but consensus sequence is as noisy as raw reads).


## Outline

- Introduction
- Spectral relaxation of Seriation (Spectral Ordering)
- Multi-dimensional Spectral Ordering
- Results (Application to genome assembly)


## 2-SUM and the Graph Laplacian

## The 2-SUM Combinatorial Problem.

- The 2-SUM problem is written

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2}
$$

or alternatively,

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{i j}(\pi(i)-\pi(j))^{2}
$$

- optimal permutation $\pi^{*}$ : high values of $A \Leftrightarrow \operatorname{low}|\pi(i)-\pi(j)|$, i.e., $i$ and $j$ lay close to each other.


## 2-SUM and the Graph Laplacian

## Graph Laplacian

- A : adjacency matrix of a undirected weighted graph ( $A_{i j}>0$ iff. there is an edge between nodes $i$ and $j$ ).
- Node $i$ has degree $d_{i}=\sum_{j} A_{i j}$. Degree matrix $D=\operatorname{diag}(A 1)=\operatorname{diag}(d)$.
- Laplacian matrix $L=D-A$.
- The Laplacian can be viewed as a quadratic form,

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} A_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

## 2-SUM and the Graph Laplacian

## Mathematical reminder

- For a vector $f=\left(f_{1}, \ldots, f_{n}\right)^{T} \in \mathbb{R}^{n}$ and a matrix $M \in \mathbb{R}^{n \times n}$, we have, $f^{T} M f=\sum_{i, j=1}^{n} M_{i j} f_{i} f_{j}$

■ $\left(\lambda \in \mathbb{R}, u \in \mathbb{R}^{n}\right)$ is a eigenvalue-eigenvector couple of $L \in \mathbb{R}^{n \times n}$ iff $L u=\lambda u$

## 2-SUM and the Graph Laplacian

The Laplacian can be viewed as a quadratic form,

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} A_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Indeed for any $f \in \mathbb{R}^{n}$,

$$
\begin{array}{rlrl}
f^{T} L f & = & & f^{T} D f-f^{T} A f \\
& = & \sum_{i=1}^{n} f_{i}^{2} D_{i i}-\sum_{i, j=1}^{n} A_{i j} f_{i} f_{j} \\
& = & \sum_{i=1}^{n} f_{i}^{2}\left(\sum_{j=1}^{n} A_{i j}\right)-\sum_{i, j=1}^{n} A_{i j} f_{i} f_{j} \\
& = & \sum_{i, j=1}^{n} A_{i j}\left(f_{i}^{2}-f_{i} f_{j}\right) \\
& = & \frac{1}{2} \sum_{i, j=1}^{n} A_{i j}\left(f_{j}^{2}+f_{i}^{2}-2 f_{i} f_{j}\right) \\
& = & \frac{1}{2} \sum_{i, j=1}^{n} A_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{array}
$$

## 2-SUM and the Graph Laplacian

The Laplacian can be viewed as a quadratic form,

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} A_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

- $L$ is symmetric and positive semi-definite.
- $L$ has $n$ non-negative, real-valued eigenvalues, $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
- $\mathbf{1}=(1, \ldots, 1)^{T}$ is eigenvector associated to eigenvalue 0 .
- If $A$ has $K$ connected components, the eigenvalue 0 has multiplicity $K+1$, with eigenvectors being indicators of the connected components.
- If $f \in\{-1,+1\}^{n}$, objective of min-cut (clustering).


## 2-SUM and the Graph Laplacian

- The 2-SUM problem is written

$$
\begin{array}{lll} 
& \min _{\pi \in \mathcal{P}} & \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2} \\
\text { or alternatively, } & \min _{\pi \in \mathcal{P}} & \sum_{i, j=1}^{n} A_{i j}(\pi(i)-\pi(j))^{2} \\
\text { i.e., } & \min _{\pi \in \mathcal{P}} & \pi^{T} L \pi
\end{array}
$$

■ For certain matrices $A, 2-$ SUM $\Longleftrightarrow$ seriation. ([Fogel et al., 2013])

- NP-Complete for generic matrices $A$.
- Constraints $\pi \in \mathcal{P}$ ?


## Spectral relaxation

$$
\begin{equation*}
\min _{\pi \in \mathcal{P}} \pi^{T} L_{A} \pi \tag{2SUM}
\end{equation*}
$$

Set of permutation vectors:

$$
\begin{aligned}
& \pi(i) \in\{1, \ldots, n\}, \quad \forall 1 \leq i \leq n \\
& \pi^{T} \mathbf{1}=n(n+1) / 2 \\
& \|\pi\|_{2}^{2}=n(n+1)(2 n+1) / 6
\end{aligned}
$$

- Since $L \mathbf{1}=0$, (2SUM) is invariant by $\pi \leftarrow \pi-\frac{(n+1)}{2} \mathbf{1}$, so enforce $\pi^{T} \mathbf{1}=0$.
- Up to a dilatation, we can chose $\|\pi\|_{2}^{2}=1$.
- Relax the integer constraints and let $\pi(i) \in \mathbb{R}$.


## Spectral relaxation

Spectral Seriation. Define the Laplacian of $A$ as $L=\operatorname{diag}(A 1)-A$. The Fiedler vector of $A$ is written

$$
f=\underset{\substack{\mathbf{1}^{T} x=0 \\ \\ \\\|x\|_{2}=1}}{\operatorname{argmin}} x^{T} L_{A} x .
$$

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

## Theorem [Atkins, Boman, and Hendrickson, 1998]

Spectral seriation. Suppose $A \in \mathbf{S}_{n}$ is a pre-R matrix, with a simple Fiedler value whose Fiedler vector $f$ has no repeated values. Suppose that $\Pi \in \mathcal{P}$ is such that the permuted Fielder vector $\Pi v$ is monotonic, then $\Pi A \Pi^{T}$ is an $R$-matrix.

## Spectral Ordering Algorithm

## The Algorithm.

Input: Connected similarity matrix $A \in \mathbb{R}^{n \times n}$
1: Compute Laplacian $L=\operatorname{diag}(A 1)-A$
2: Compute second smallest eigenvector of $L, \mathrm{x}^{*}$
3: Sort the values of $\mathbf{x}^{*}$
Output: Permutation $\pi: \mathrm{x}^{*}{ }_{\pi(1)} \leq \mathrm{x}^{*}{ }_{\pi(2)} \leq \ldots \leq \mathrm{x}^{*}{ }_{\pi(n)}$


Similarity matrix


Fiedler vector

## Spectral Solution

- Spectral solution easy to compute and scales well (polynomial time)
- But sensitive and not flexible (hard to include additional structural constraints)
- Other (convex) relaxations can handle structural constraints and solve more robust objectives than 2SUM


## Genome assembly pipeline

- Overlap : computed from $\mathbf{k}$-mers, yielding a similarity matrix $A$
- Layout : $A$ is thresholded to remove noise-induced overlaps, and reordered with spectral ordering algorithm. Layout fine-grained with overlap information.
- Consensus: Genome sliced in windows


## Spectral Solution vs Noisy Synthetic data



Similarity matrix


Fiedler vector

- Gaussian noise over perfect R-matrix.


## Spectral Solution vs Real DNA data



Similarity matrix


Fiedler vector

- Repeats are a more structured noise that makes the method fail.


## Outline

- Introduction
- Spectral relaxation of Seriation (Spectral Ordering)
- Multi-dimensional Spectral Ordering
- Results (Application to genome assembly)


## Multi-dimensional Spectral Embedding

(Spoiler Alert!)
There is information in the rest of the eigenvectors of $L$


3d scatter plot of the 3 first non-zero eigenvectors of $L$

## Multi-Dim 2-SUM and the Graph Laplacian

Generalize the quadratic expression involving the Laplacian,

$$
\operatorname{Tr}\left(\tilde{\Phi}^{T} L_{A} \tilde{\Phi}\right)=\frac{1}{2} \sum_{i, j=1}^{n} A_{i j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2}
$$

- Let $0=\lambda_{0}<\lambda_{1} \leq \ldots \leq \lambda_{n-1}, \Lambda \triangleq \boldsymbol{\operatorname { d i a g }}\left(\lambda_{0}, \ldots, \lambda_{n-1}\right)$, $\Phi=\left(\mathbf{1}, f_{(1)}, \ldots, f_{(n-1)}\right)$, be the eigendecomposition of $L=\Phi \Lambda \Phi^{T}$.
- For any $K<n, \Phi^{(K)} \triangleq\left(f_{(1)}, \ldots, f_{(K)}\right)$ defines a $K$-dimensional embedding

$$
\begin{equation*}
\boldsymbol{y}_{i}=\left(f_{(1)}(i), f_{(2)}(i), \ldots, f_{(K)}(i)\right)^{T} \in \mathbb{R}^{K}, \text { for } i=1, \ldots, n . \tag{K-LE}
\end{equation*}
$$

which solves the following embedding problem,

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i, j=1}^{n} A_{i j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2} \\
\text { such that } & \tilde{\Phi}=\left(\boldsymbol{y}_{1}^{T}, \ldots, \boldsymbol{y}_{n}^{T}\right)^{T} \in \mathbb{R}^{n \times K}, \tilde{\Phi}^{T} \tilde{\Phi}=\mathbf{I}_{K}, \tilde{\Phi}^{T} \mathbf{1}_{n}=\mathbf{0}_{K}
\end{array}
$$

## Intermission : Spectral Clustering

Spectral Clustering usually leverages the first few eigenvectors of $L$. To partition data in $K$ clusters,

- Compute the $K$ lowest non-zero eigenvectors of $L$, $\Phi^{(K)}=\left(f_{(1)}, \ldots, f_{(K)}\right) \in \mathbb{R}^{n \times K}$.
- Run the K-means algorithm on this $K$-dimensional embedding.


## Multi-Dimensional Spectral Ordering (MDSO)

How to extract ordering from multidimensional embedding ?

- Construct new similarity matrix $S$
- For each point $u$, take k-NN in the embedding, fit by a line, use projection on the line to define similarity $S_{i j}$ between points $i, j \in \operatorname{kNN}(u)$.
- Run basic Spectral Ordering on $S$.
- If $S$ is not connected, reorder each connected component, and use $A$ to merge the ends.


## Multi-Dimensional Spectral Ordering (MDSO)

- Simple generalization of Spectral Ordering
- Acts like a pre-preocessing on the similarity matrix
- Improves robustness to noise
- Handles circular orderings (with 2D embedding in a circle)


2D spectral embedding from similarity between single-cell Hi-C contact matrices

## Outline

- Introduction
- Spectral relaxation of Seriation (Spectral Ordering)
- Multi-dimensional Spectral Ordering
- Results (Application to genome assembly)


## Application to genome assembly

## Bacterial genome.

- Escherichia coli reads sequenced by Loman et al. [2015]. ~ 4Mbp
- Oxford Nanopore Technology MinION's device (third generation long reads).
- minimap2 used to compute overlap-based similarity between reads.



## Application to genome assembly

## Layout.

- MDSO new similarity matrix $S$ is disconnected.
- Connected components can be merged by looking at the similarity between their ends from the original matrix $A$.
■ Kendall-Tau score with reference ordering : 99.5\%
■ Full assembly pipeline yields $\sim 99 \%$ avg. identity (using MSA in sliding window)


Order in connected components


Merged ordering

## Conclusion

- Equivalence 2-SUM $\Longleftrightarrow$ seriation.
- Spectral ordering : simple relaxation of 2-SUM using spectrum of the Laplacian. Related to widespread Spectral Clustering algorithm.
- Spectral ordering is sensitive to repeats.
- Multi-dimensional Spectral Ordering can overcome this issue (and solve circular seriation).

■ Straightforward assembly pipeline with MSA to perform consensus.

## References

Jonathan E Atkins, Erik G Boman, and Bruce Hendrickson. A spectral algorithm for seriation and the consecutive ones problem. SIAM Journal on Computing, 28(1):297-310, 1998.
Fajwel Fogel, Rodolphe Jenatton, Francis Bach, and Alexandre d'Aspremont.
Convex relaxations for permutation problems. In Advances in Neural Information Processing Systems, pages 1016-1024, 2013.
Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature methods, 12(8):733, 2015.
Antoine Recanati, Thomas Brüls, and Alexandre dAspremont. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads. Bioinformatics, 33(20):3188-3194, 2017.
Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.

## Application to genome assembly

## Eukaryotic genome : S. Cerevisiae

- 16 chromosomes
- Many repeats
- Higher threshold on similarity matrix $\Rightarrow$ many connected components




## Conclusion

## Straightforward assembly pipeline.

- Equivalence 2-SUM $\Longleftrightarrow$ seriation.
- Layout correctly found by spectral relaxation for bacterial genomes (with limited number of repeats)
- Consensus computed by MSA in sliding windows $\Rightarrow \sim 99 \%$ avg. identity with reference


## Future work.

- Additional information could help assemble more complex genomes (e.g. with topological constraints on the similarity graph, or chromosome assignment...)
- Other problems involving Seriation ?
- Convex relaxations can also handle constraints (e.g. $|\pi(i)-\pi(j)| \leq k$ ) for different problems


## Consensus

- Once layout is computed and fined-grained, slicing in windows
- Multiple Sequence Alignment using Partial Order Graphs (POA) in windows
- Windows merging

consensus (1+2)
consensus $((1+2)+3)$


## Seriation

## Combinatorial problems.

- The 2-SUM problem is written

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2} \quad \text { or equivalently } \min _{\pi \in \mathcal{P}} \pi^{T} L_{A} \pi
$$

where $L_{A}$ is the Laplacian of $A$.

- NP-Complete for generic matrices $A$.


## Convex Relaxation

Seriation as an optimization problem.

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2}
$$

## What's the point?

- Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices.
- Write a convex relaxation for 2-SUM and seriation.
- Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)
- Not very robust. . .
- Not flexible. . . Hard to include additional structural constraints.


## Convex Relaxation

- Let $\mathcal{D}_{n}$ the set of doubly stochastic matrices, where

$$
\mathcal{D}_{n}=\left\{X \in \mathbb{R}^{n \times n}: X \geqslant 0, X \mathbf{1}=\mathbf{1}, X^{T} \mathbf{1}=\mathbf{1}\right\}
$$

is the convex hull of the set of permutation matrices.

- Notice that $\mathcal{P}=\mathcal{D} \cap \mathcal{O}$, i.e. $\Pi$ permutation matrix if and only $\Pi$ is both doubly stochastic and orthogonal.
- Solve

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(Y^{T} \Pi^{T} L_{A} \Pi Y\right)-\mu\|P \Pi\|_{F}^{2} \\
\text { subject to } & e_{1}^{T} \Pi g+1 \leq e_{n}^{T} \Pi g \\
& \Pi \mathbf{1}=\mathbf{1}, \Pi^{T} \mathbf{1}=\mathbf{1}  \tag{1}\\
& \Pi \geq 0
\end{array}
$$

in the variable $\Pi \in \mathbb{R}^{n \times n}$, where $P=\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{T}$ and $Y \in \mathbb{R}^{n \times p}$ is a matrix whose columns are small perturbations of $g=(1, \ldots, n)^{T}$.

## Convex Relaxation

Objective. $\operatorname{Tr}\left(Y^{T} \Pi^{T} L_{A} \Pi Y\right)-\mu\|P \Pi\|_{F}^{2}$

- 2-SUM term $\operatorname{Tr}\left(Y^{T} \Pi^{T} L_{A} \Pi Y\right)=\sum_{i=1}^{p} y_{i}^{T} \Pi^{T} L_{A} \Pi y_{i}$ where $y_{i}$ are small perturbations of the vector $g=(1, \ldots, n)^{T}$.
- Orthogonalization penalty $-\mu\|P \Pi\|_{F}^{2}$, where $P=\mathbf{I}-\frac{1}{n} \mathbf{1 1}{ }^{T}$.
- Among all DS matrices, rotations (hence permutations) have the highest Frobenius norm.
- Setting $\mu \leq \lambda_{2}\left(L_{A}\right) \lambda_{1}\left(Y Y^{T}\right)$, keeps the problem a convex QP.


## Constraints.

- $e_{1}^{T} \Pi g+1 \leq e_{n}^{T} \Pi g$ breaks degeneracies by imposing $\pi(1) \leq \pi(n)$. Without it, both monotonic solutions are optimal and this degeneracy can significantly deteriorate relaxation performance.
- $\Pi \mathbf{1}=\mathbf{1}, \Pi^{T} \mathbf{1}=\mathbf{1}$ and $\Pi \geq 0$, keep $\Pi$ doubly stochastic.


## Convex Relaxation

## Other relaxations.

- Relaxations for orthogonality constraints, e.g. SDPs in [???]. Simple idea: $Q^{T} Q=\mathbf{I}$ is a quadratic constraint on $Q$, lift it. This yields a $O(\sqrt{n})$ approximation ratio.
- $O(\sqrt{\log n})$ approximation bounds for Minimum Linear Arrangement [??????].
- All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.

## Semi-Supervised Seriation

## Convex Relaxation.

- Semi-Supervised Seriation. We can add structural constraints to the relaxation, where

$$
a \leq \pi(i)-\pi(j) \leq b \quad \text { is written } \quad a \leq e_{i}^{T} \Pi g-e_{j}^{T} \Pi g \leq b
$$

which are linear constraints in $\Pi$.

- Sampling permutations. We can generate permutations from a doubly stochastic matrix $D$
- Sample monotonic random vectors $u$.
- Recover a permutation by reordering $D u$.
- Algorithms. Large QP, projecting on doubly stochastic matrices can be done very efficiently, using block coordinate descent on the dual. Extended formulations by [?] can reduce the dimension of the problem to $O(n \log n)$ [?].


## Numerical results: nanopores

Nanopores DNA data. New sequencing hardware.


Oxford nanopores MinION.

## Numerical results: nanopores

## Nanopores.



## Numerical results

## Nanopores DNA data.

- Longer reads. Average 10k base pairs in early experiments. Compared with $\sim 100$ base pairs for existing technologies.

■ High error rate. About 20\% compared with a few percents for existing technologies.

■ Real-time data. Sequencing data flows continuously.

