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Seriation

The Seriation Problem.

� Pairwise similarity information Aij on n variables.

� Suppose the data has a serial structure, i.e. there is an order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Recover π?

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Similarity matrix Input Reconstructed

A. Recanati Symbiose Seminar, Juin 2018, 2/29



Genome Assembly

Seriation has direct applications in (de novo) genome assembly.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp to 100kbp), which are fully sequenced.

� Reorder the reads to recover the genome.
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Genome Assembly

Overlap Layout Consensus (OLC). Three stages.

� Compute overlap between all read pairs.

� Reorder overlap matrix to recover read order.

� Average the read values to create a consensus sequence.

The read reordering problem is a seriation problem.
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Genome Assembly in Practice

Noise. In the noiseless case, the overlap matrix is a R-matrix. In practice. . .

� There are base calling errors in the reads, typically 2% to 20% depending on
the process.

� Entire parts of the genome are repeated, which breaks the serial structure.

Sequencing technologies

� Next generation : short reads (∼ 400bp), few errors (∼ 2%). Repeats are
challenging

� Third generation : long reads (∼ 10kbp), more errors (∼ 15%). Can resolve
some repeats, but not all of them + noise can be challenging
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Genome Assembly in Practice

Current assemblers.

� With short accurate reads, the reordering problem is solved by
combinatorial methods using the topology of the assembly graph and
additional pairing information.

� With long noisy reads, reads are corrected before assembly (hybrid correction
or self-mapping).

� Layout and consensus not clearly separated, many heuristics . . .

� minimap+miniasm : first long raw reads straight assembler (but consensus
sequence is as noisy as raw reads).
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Outline

� Introduction

� Spectral relaxation of Seriation (Spectral Ordering)

� Multi-dimensional Spectral Ordering

� Results (Application to genome assembly)

A. Recanati Symbiose Seminar, Juin 2018, 7/29



2-SUM and the Graph Laplacian

The 2-SUM Combinatorial Problem.

� The 2-SUM problem is written

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2

or alternatively,

min
π∈P

n∑
i,j=1

Aij(π(i)− π(j))2

� optimal permutation π∗ : high values of A ⇔ low |π(i)− π(j)|, i.e., i and j
lay close to each other.
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2-SUM and the Graph Laplacian

Graph Laplacian

� A : adjacency matrix of a undirected weighted graph (Aij > 0 iff. there is an
edge between nodes i and j).

� Node i has degree di =
∑
j Aij. Degree matrix D = diag(A1) = diag(d).

� Laplacian matrix L = D −A.

� The Laplacian can be viewed as a quadratic form,

fTLf =
1

2

n∑
i,j=1

Aij(fi − fj)2
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2-SUM and the Graph Laplacian

Mathematical reminder

� For a vector f = (f1, . . . , fn)T ∈ Rn and a matrix M ∈ Rn×n, we have,
fTMf =

∑n
i,j=1Mijfifj

� (λ ∈ R, u ∈ Rn) is a eigenvalue-eigenvector couple of L ∈ Rn×n iff Lu = λu
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2-SUM and the Graph Laplacian

The Laplacian can be viewed as a quadratic form,

fTLf =
1

2

n∑
i,j=1

Aij(fi − fj)2

Indeed for any f ∈ Rn,

fTLf = fTDf − fTAf
=

∑n
i=1 f

2
iDii −

∑n
i,j=1Aijfifj

=
∑n
i=1 f

2
i (
∑n
j=1Aij)−

∑n
i,j=1Aijfifj

=
∑n
i,j=1Aij(f

2
i − fifj)

= 1
2

∑n
i,j=1Aij(f

2
j + f2i − 2fifj)

= 1
2

∑n
i,j=1Aij(fi − fj)2
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2-SUM and the Graph Laplacian

The Laplacian can be viewed as a quadratic form,

fTLf =
1

2

n∑
i,j=1

Aij(fi − fj)2

� L is symmetric and positive semi-definite.

� L has n non-negative, real-valued eigenvalues, 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

� 1 = (1, . . . , 1)T is eigenvector associated to eigenvalue 0.

� If A has K connected components, the eigenvalue 0 has multiplicity K + 1,
with eigenvectors being indicators of the connected components.

� If f ∈ {−1,+1}n, objective of min-cut (clustering).
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2-SUM and the Graph Laplacian

� The 2-SUM problem is written

minπ∈P
∑n
i,j=1Aπ(i)π(j)(i− j)2

or alternatively,
minπ∈P

∑n
i,j=1Aij(π(i)− π(j))2

i.e.,
minπ∈P πTLπ

� For certain matrices A, 2-SUM ⇐⇒ seriation. ([Fogel et al., 2013])

� NP-Complete for generic matrices A.

� Constraints π ∈ P ?
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Spectral relaxation

min
π∈P

πTLAπ (2SUM)

Set of permutation vectors :

π(i) ∈ {1, ..., n}, ∀1 ≤ i ≤ n

πT1 = n(n+ 1)/2

‖π‖22 = n(n+ 1)(2n+ 1)/6

� Since L1 = 0, (2SUM) is invariant by π ← π − (n+1)
2 1, so enforce πT1 = 0.

� Up to a dilatation, we can chose ‖π‖22 = 1.

� Relax the integer constraints and let π(i) ∈ R.
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Spectral relaxation

Spectral Seriation. Define the Laplacian of A as L = diag(A1)−A. The
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, and Hendrickson, 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Spectral Ordering Algorithm

The Algorithm.

Input: Connected similarity matrix A ∈ Rn×n
1: Compute Laplacian L = diag(A1)−A
2: Compute second smallest eigenvector of L, x∗

3: Sort the values of x∗

Output: Permutation π : x∗π(1) ≤ x∗π(2) ≤ ... ≤ x∗π(n)
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Spectral Solution

� Spectral solution easy to compute and scales well (polynomial time)

� But sensitive and not flexible (hard to include additional structural constraints)

� Other (convex) relaxations can handle structural constraints and solve more
robust objectives than 2SUM

Genome assembly pipeline

� Overlap : computed from k-mers, yielding a similarity matrix A

� Layout : A is thresholded to remove noise-induced overlaps, and reordered
with spectral ordering algorithm. Layout fine-grained with overlap
information.

� Consensus : Genome sliced in windows
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Spectral Solution vs Noisy Synthetic data
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� Gaussian noise over perfect R-matrix.
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Spectral Solution vs Real DNA data
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� Repeats are a more structured noise that makes the method fail.
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Outline

� Introduction

� Spectral relaxation of Seriation (Spectral Ordering)

� Multi-dimensional Spectral Ordering

� Results (Application to genome assembly)
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Multi-dimensional Spectral Embedding

(Spoiler Alert!)

There is information in the rest of the eigenvectors of L

3d scatter plot of the 3 first non-zero eigenvectors of L
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Multi-Dim 2-SUM and the Graph Laplacian

Generalize the quadratic expression involving the Laplacian,

Tr
(

Φ̃TLAΦ̃
)

=
1

2

n∑
i,j=1

Aij‖yi − yj‖22

� Let 0 = λ0 < λ1 ≤ . . . ≤ λn−1, Λ , diag (λ0, . . . , λn−1),
Φ =

(
1, f(1), . . . , f(n−1)

)
, be the eigendecomposition of L = ΦΛΦT .

� For any K < n, Φ(K) ,
(
f(1), . . . , f(K)

)
defines a K-dimensional embedding

yi =
(
f(1)(i), f(2)(i), . . . , f(K)(i)

)T ∈ RK, for i = 1, . . . , n. (K-LE)

which solves the following embedding problem,

minimize
∑n
i,j=1Aij‖yi − yj‖22

such that Φ̃ =
(
yT1 , . . . ,y

T
n

)T ∈ Rn×K , Φ̃T Φ̃ = IK , Φ̃T1n = 0K
(Lap-Emb)
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Intermission : Spectral Clustering

Spectral Clustering usually leverages the first few eigenvectors of L. To partition
data in K clusters,

� Compute the K lowest non-zero eigenvectors of L,
Φ(K) =

(
f(1), . . . , f(K)

)
∈ Rn×K.

� Run the K-means algorithm on this K-dimensional embedding.
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Multi-Dimensional Spectral Ordering (MDSO)

How to extract ordering from multidimensional embedding ?

� Construct new similarity matrix S

� For each point u, take k-NN in the embedding, fit by a line, use projection on
the line to define similarity Sij between points i, j ∈ kNN(u).

� Run basic Spectral Ordering on S.

� If S is not connected, reorder each connected component, and use A to merge
the ends.
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Multi-Dimensional Spectral Ordering (MDSO)

� Simple generalization of Spectral Ordering

� Acts like a pre-preocessing on the similarity matrix

� Improves robustness to noise

� Handles circular orderings (with 2D embedding in a circle)

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

0.04

0.02

0.00

0.02

0.04

initial laplacian embedding of Hic

2D spectral embedding from similarity between single-cell Hi-C contact matrices

A. Recanati Symbiose Seminar, Juin 2018, 25/29



Outline
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� Spectral relaxation of Seriation (Spectral Ordering)

� Multi-dimensional Spectral Ordering

� Results (Application to genome assembly)
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Application to genome assembly

Bacterial genome.

� Escherichia coli reads sequenced by Loman et al. [2015]. ∼ 4Mbp

� Oxford Nanopore Technology MinION’s device (third generation long reads).

� minimap2 used to compute overlap-based similarity between reads.
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Application to genome assembly

Layout.

� MDSO new similarity matrix S is disconnected.

� Connected components can be merged by looking at the similarity between
their ends from the original matrix A.

� Kendall-Tau score with reference ordering : 99.5%

� Full assembly pipeline yields ∼ 99% avg. identity (using MSA in sliding
window)
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Conclusion

� Equivalence 2-SUM ⇐⇒ seriation.

� Spectral ordering : simple relaxation of 2-SUM using spectrum of the
Laplacian. Related to widespread Spectral Clustering algorithm.

� Spectral ordering is sensitive to repeats.

� Multi-dimensional Spectral Ordering can overcome this issue (and solve
circular seriation).

� Straightforward assembly pipeline with MSA to perform consensus.
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Application to genome assembly

Eukaryotic genome : S. Cerevisiae

� 16 chromosomes

� Many repeats

� Higher threshold on similarity matrix ⇒ many connected components

true ordering (from BWA)
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Conclusion

Straightforward assembly pipeline.

� Equivalence 2-SUM ⇐⇒ seriation.

� Layout correctly found by spectral relaxation for bacterial genomes (with
limited number of repeats)

� Consensus computed by MSA in sliding windows ⇒∼ 99% avg. identity with
reference

Future work.

� Additional information could help assemble more complex genomes (e.g.
with topological constraints on the similarity graph, or chromosome
assignment...)

� Other problems involving Seriation ?

� Convex relaxations can also handle constraints (e.g. |π(i)− π(j)| ≤ k) for
different problems
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Consensus

� Once layout is computed and fined-grained, slicing in windows

� Multiple Sequence Alignment using Partial Order Graphs (POA) in windows

� Windows merging
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POA in windows
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Seriation

Combinatorial problems.

� The 2-SUM problem is written

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2 or equivalently min
π∈P

πTLAπ

where LA is the Laplacian of A.

� NP-Complete for generic matrices A.
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Convex Relaxation

Seriation as an optimization problem.

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2

What’s the point?

� Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices.

� Write a convex relaxation for 2-SUM and seriation.

◦ Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)

◦ Not very robust. . .

◦ Not flexible. . . Hard to include additional structural constraints.
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Convex Relaxation

� Let Dn the set of doubly stochastic matrices, where

Dn = {X ∈ Rn×n : X > 0, X1 = 1, XT1 = 1}

is the convex hull of the set of permutation matrices.

� Notice that P = D ∩O, i.e. Π permutation matrix if and only Π is both
doubly stochastic and orthogonal.

� Solve
minimize Tr(Y TΠTLAΠY )− µ‖PΠ‖2F
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1,
Π ≥ 0,

(1)

in the variable Π ∈ Rn×n, where P = I− 1
n11

T and Y ∈ Rn×p is a matrix
whose columns are small perturbations of g = (1, . . . , n)T .
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Convex Relaxation

Objective. Tr(Y TΠTLAΠY )− µ‖PΠ‖2F

� 2-SUM term Tr(Y TΠTLAΠY ) =
∑p
i=1 y

T
i ΠTLAΠyi where yi are small

perturbations of the vector g = (1, . . . , n)T .

� Orthogonalization penalty −µ‖PΠ‖2F , where P = I− 1
n11

T .

◦ Among all DS matrices, rotations (hence permutations) have the highest
Frobenius norm.

◦ Setting µ ≤ λ2(LA)λ1(Y Y
T ), keeps the problem a convex QP.

Constraints.

� eT1 Πg + 1 ≤ eTnΠg breaks degeneracies by imposing π(1) ≤ π(n). Without it,
both monotonic solutions are optimal and this degeneracy can significantly
deteriorate relaxation performance.

� Π1 = 1, ΠT1 = 1 and Π ≥ 0, keep Π doubly stochastic.
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Convex Relaxation

Other relaxations.

� Relaxations for orthogonality constraints, e.g. SDPs in [???]. Simple idea:
QTQ = I is a quadratic constraint on Q, lift it. This yields a O(

√
n)

approximation ratio.

� O(
√

log n) approximation bounds for Minimum Linear Arrangement
[??????].

� All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.
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Semi-Supervised Seriation

Convex Relaxation.

� Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a ≤ π(i)− π(j) ≤ b is written a ≤ eTi Πg − eTj Πg ≤ b.

which are linear constraints in Π.

� Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

◦ Sample monotonic random vectors u.

◦ Recover a permutation by reordering Du.

� Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. Extended
formulations by [?] can reduce the dimension of the problem to O(n log n) [?].
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Numerical results: nanopores

Nanopores DNA data. New sequencing hardware.

Oxford nanopores MinION.
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Numerical results: nanopores

Nanopores.
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Numerical results

Nanopores DNA data.

� Longer reads. Average 10k base pairs in early experiments. Compared with
∼ 100 base pairs for existing technologies.

� High error rate. About 20% compared with a few percents for existing
technologies.

� Real-time data. Sequencing data flows continuously.
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