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Introduction



Genome sequencing
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...TACCGCACGTTAC...
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DNA sequencing

Image: Nik Spencer/Nature

Genome is cut into
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Assembly

Goal: assemble reads together to reconstruct the full sequence.

The position and ordering of the reads are unknown.


CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

	
ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG
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Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: mapping

If reference genome available: map the fragments to it, then derive

consensus sequence

CGTGCAA

ATGGCGT

TGCAATG

GGCGTGC

AAGGCGTGCATTG (ref. (proxy))

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG (assembly)

4



Genome assembly: de novo

No reference available. Greedy assembly: take one read, “add” the

one with largest overlap, etc., until all reads are included.
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De novo assembly paradigms

• Greedy methods

• De Bruijn graphs

• Overlap-Layout-Consensus
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Overlap-Layout-Consensus

• Compute overlaps between all read pairs

• Find tiling of reads consistent with overlaps

• Average reads values to create consensus sequence

ATGGCGT

CGTGCAA

TGCAATG

GGCGTGC

GGCGT

CGTGC

TGCAACGT

TGC

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG
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Modern sequencing technologies

• 2nd gen. (SGS): short (∼100bp), accurate (< 2% err.)reads

(Illumina/Solexa), with pairing information. De Bruijn

graphs methods (on k-mers based graph) preferred.

• 3rd. gen.: long (∼10000bp), noisy (∼10%) reads (Pacific

Biosciences [PacBio], Oxford Nanopore Technology [ONT]).

Come-back of OLC methods.

• Can be combined to have both accuracy and length (hybrid

methods)
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De novo assembly methods with ONT reads

State of the art: Canu (ex. Celera Assembler). Heavy

pre-processing, many heuristics

• correction: (uses [hash-based] overlaps for consensus)

• trimming: recalculate overlaps to filter

low-coverage/high-error regions

• re-computation of overlaps with specific target errors (uses a

priori model of errors)

• assemble unitigs (unambiguous sequences) first, then

incremental scaffolding
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De novo assembly methods with ONT reads

• ONT-only assemblers (non-hybrid): active field of research

2015-now

• Canu: complex pipeline, high quality consensus.

• Miniasm: ideas of Canu assembly, no pre-processing, smart

heuristics. Ultra-fast, low-quality.

• Naive OLC approach with clean mathematical formulation ?
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Application of the Spectral Method to Genome Assembly
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Multi-dimensional spectral ordering

Conclusion
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Introduction: The Seriation Problem

• Pairwise similarity information Aij on n variables.

• Suppose the data has a serial structure, i.e. there is an

order π such that

Aπ(i)π(j) decreases with |i − j | (R-matrix)

Recover π?
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100

120

140
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Similarity matrix Input Reconstructed
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Seriation in OLC assembly

Reorder the reads ?

ATGGCGT

CGTGCAA

TGCAATG

GGCGTGC

GGCGT

CGTGC

TGCAACGT

TGC

• • • •


CGTGCAA 7 3 5 5

ATGGCGT 3 7 0 5

TGCAATG 5 0 7 3

GGCGTGC 5 5 3 7
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Seriation in OLC assembly (ctd.)

Solve Seriation to reorder reads:

• • • •


CGTGCAA 7 3 5 5

ATGGCGT 3 7 0 5

TGCAATG 5 0 7 3

GGCGTGC 5 5 3 7

	
• • • •


ATGGCGT 7 5 3 0

GGCGTGC 5 7 5 3

CGTGCAA 3 5 7 5

TGCAATG 0 3 5 7
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Seriation in OLC assembly (ctd.)

The ordering yields the layout:

• • • •


ATGGCGT 7 5 3 0

GGCGTGC 5 7 5 3

CGTGCAA 3 5 7 5

TGCAATG 0 3 5 7

	
ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG

ATGGCGTGCAATG
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The 2-SUM combinatorial problem

• The 2-SUM problem is written

min
π∈P

n∑
i ,j=1

Aij(π(i)− π(j))2 (2-SUM)

• optimal π∗: high Aij ⇔ low |π(i)− π(j)|, i.e., i and j are

nearby.

16



The 2-SUM combinatorial problem

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

• • • •


CGTGCAA 7 3 5 5

ATGGCGT 3 7 0 5

TGCAATG 5 0 7 3

GGCGTGC 5 5 3 7

	
f2SUM = (1/2) ∗ 4 ∗ 7 ∗ 12

+ 2 ∗ 3 ∗ 22

+ 2 ∗ 5 ∗ 32

+ 1 ∗ 5 ∗ 42

= 416
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The 2-SUM combinatorial problem

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

• • • •


ATGGCGT 7 5 3 0

GGCGTGC 5 7 5 3

CGTGCAA 3 5 7 5

TGCAATG 0 3 5 7

	
f2SUM = (1/2) ∗ 4 ∗ 7 ∗ 12

+ 3 ∗ 5 ∗ 22

+ 2 ∗ 3 ∗ 32

+ 1 ∗ 0 ∗ 42

= 142
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Seriation vs 2SUM

• The optimal permutation for 2SUM solves Seriation [Fogel].

• Solve 2-SUM ?
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Seriation vs 2SUM

• The optimal permutation for 2SUM solves Seriation [Fogel].

• Solve 2-SUM ?
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2-SUM is a quadratic

The 2-SUM objective is quadratic in π

f2SUM(π) =
n∑

i ,j=1

Aij(πi − πj)2

=
n∑

i ,j=1

Lijπiπj

= πTLπ.

with L = diag(A1)− A

(i.e., Lii =
∑

j 6=i Aij , Lij = −Aij , i 6= j).

20



2-SUM is a quadratic

f2SUM(x) =
n∑

i ,j=1

Aij(xi − xj)
2 = xTLx . (1)

• L is symmetric and positive semi-definite.

• L has n non-negative, real-valued eigenvalues,

0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

• 1 = (1, . . . , 1)T is eigenvector associated to eigenvalue 0.

• Used in Spectral Clustering.
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Relaxations of the set of permutations

How to optimize over the set of permutations ?

Set of permutation vectors

π = (π1, . . . , πn):

∑
i πi = n(n + 1)/2

‖π‖22 = n(n + 1)(2n + 1)/6

πi ∈ {1, ..., n}

22
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Spectral relaxation

Drop integer constraints

Relaxed set

π = (π1, . . . , πn):
∑

i πi = n(n + 1)/2

‖π‖22 = n(n + 1)(2n + 1)/6

πi ∈ R

x

z

y

Hn

cn

{x | ‖x‖ = n(n+ 1)(2n+ 1) + 6}
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Spectral relaxation

minimize xTLx

such that
∑

i xi = n(n + 1)/2,

‖x‖22 = n(n + 1)(2n + 1)/6.

• L1 = 0: x ← x − (n+1)
2 1

• homogeneous function optimize over sphere:

x ← x/ (n(n + 1)(2n + 1)/6) .
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Spectral relaxation

minimize xTLx

such that
∑

i xi = 1,

‖x‖22 = 1.

• L1 = 0: x ← x − (n+1)
2 1

• homogeneous function optimize over sphere:

x ← x/ (n(n + 1)(2n + 1)/6) .

24



Spectral relaxation

minimize xTLx

such that xT1 = 0,

‖x‖22 = 1.

• eigenvalue problem on L (1 is first eigenvector).

• From NP hard to O(n2) (extremal eigenvalue)
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Spectral ordering

Define the Laplacian of A as L = diag(A1)−A. The Fiedler vector

f of A is the second smallest eigenvector of L:

f = argmin
1T x=0, ‖x‖2=1

xTLAx .

f reorders a R-matrix in the noiseless case.

Theorem ([Atkins)

Spectral Seriation] Suppose A ∈ Sn is a pre-R matrix, with a simple

Fiedler value whose Fiedler vector f has no repeated values. Suppose

that Π ∈ P is such that the permuted Fielder vector Πv is monotonic,

then ΠAΠT is an R-matrix.
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Spectral Ordering Algorithm

Input: Connected similarity matrix A ∈ Rn×n

1: Compute Laplacian L = diag(A1)− A

2: Compute second smallest eigenvector of L, f

3: Sort the values of f

Output: Permutation π : fπ(1) ≤ fπ(2) ≤ ... ≤ fπ(n)

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80 100

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Similarity matrix Fiedler vector
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Application of the Spectral Method

to Genome Assembly



Related publication

This section is based on the following publication:

Antoine Recanati, Thomas Brüls, and Alexandre d’Aspremont. A

spectral algorithm for fast de novo layout of uncorrected long

nanopore reads. Bioinformatics, 2016.

https://github.com/antrec/spectrassembler
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Data: ONT and PacBio long noisy reads

• bacteria: E. coli and A. baylyi.

Circular, prokaryotic, small

(∼4Mbp) genomes, nreads ∼20000,

cov∼30X.

• yeast: S. cerevisiae. Eukaryotic

genome, 16 chromosomes,

∼12Mbp, nreads ∼100000,

cov∼80X.
read length

0 5000 15000 25000

fr
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q
u

e
n

c
y
 (

c
o

u
n

t)

0

Mean:    6863
Median: 7002
Min:         327
Max:    25494
>7Kbp:  50%

(E. coli read length hist.)
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Overlap Layout Consensus (OLC) pipeline

Input: Sequenced reads

1: Compute overlaps for all read pairs

2: Define similarity matrix from overlaps

3: Solve Seriation to reorder reads

4: Refine layout with overlap information

5: Compute consensus sequence by multiple sequence alignment

Output: Assembled sequence

30



Overlap-based similarity matrices

Repeats induce false overlaps between far-apart reads. In general

shorter than “real” overlaps.

(thr=0%) (thr=90%)

31



Basic spectral ordering method

Repeats make spectral method fail

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

(thr=50%)

0 2500 5000 7500 10000 12500 15000 17500
partial orderings
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1000000

2000000

3000000

4000000

tru
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(true vs spectral order)
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Band heuristic

Keep only large overlaps to remove repeat-induced overlaps.

Input: Overlap-similarity matrix S

1: for all Connected component A of S do

2: Reorder A with spectral algorithm

3: if bandwidth of Areordered ≥ 2× Coverage then

4: increase threshold on A and try again

5: end if

6: Compute layout from the ordering found and overlaps

7: Derive consensus sequence (contig)

8: end for

Output: Contig consensus sequences

33



Results: ONT bacterial genomes (layout)

Yields correct but fragmented assemblies.

(E. coli ONT layout)

Contigs may overlap and be merged (one contig)

34



Results: ONT yeast genome (layout)

Even more fragmented assemblies. Cannot be merged into

chromosome sized contigs.

(S. cerevisiae ONT layout)

35



Results (assembly quality)

Avg. identity with ref. (%) [# contigs]

Ours Canu Miniasm

A. baylyi 98.17 97.59 87.31

E. coli 98.80 99.40 89.28

S. cerevisiae1 98.00 [71] 98.33 [36] 89.00 [29]

S. cerevisiae2 98.81 [48] 99.02 [26] 93.55 [30]

1(R7.3 chemistry, coverage 68X)
2(R9 chemistry, coverage 86X)
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Robust Seriation
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Related publication

This section is based on the following preprint:

Antoine Recanati, Nicolas Servant, Jean-Philippe Vert, and

Alexandre d’Aspremont. Robust seriation and applications to

cancer genomics. arXiv preprint arXiv:1806.00664, 2018.
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Overlap-based similarity matrices

Similarity matrices arising in de novo

assembly are the sum of a banded

matrix (overlaps between neighboring

reads) and a sparse matrix

(repeat-induced overlaps).

39



Overlap-based similarity matrices

f2SUM =
1

2

n∑
i ,j=1

Aij(πi − πj)2

The 2-SUM function strongly penalizes

out-of-band terms, although there are

few of them.

39



Stylized similarity matrices

(Definition) Mn(δ, s): binary matrices

that are the sum of a band matrix of

bandwidth δ and a sparse out-of-band

matrix with s non-zero elements.

40



Robust Seriation

Goal: Solve Seriation on an approximation of the matrix yielding

cleaner serial structure.

find Π ∈ P
such that ΠAΠT ∈ R.

(Seriation)

minimize ‖S − ΠAΠT‖
such that Π ∈ P, S ∈ R∗.

(Robust Seriation)

41



Robust 2-SUM

Goal: Solve 2-SUM on an approximation of the matrix yielding

cleaner serial structure.

minimize
∑n

i ,j=1 Sij |πi − πj |2 + λ‖A− S‖1
such that π ∈ P, S ∈ S+.

(R2S(λ))

Can be re-written as:

minimize
∑n

i ,j=1 Aij min(λ, |πi − πj |2)

such that π ∈ P.
(R2SUM(λ))

42



Robust Seriation vs. Robust 2-SUM

We proved that both problems are equivalent for stylized matrices:

Proposition

For s ≤ slim , (n − δ − 1) and A ∈ Sn, if A can be permuted to

belong toMn(δ, s), i.e., if there is Π ∈ Pn : ΠAΠT ∈Mn(δ, s),

then Π solves both Robust Seriation and R2SUM(λ) with

parameter λ = δ2, and the `1 norm in Robust Seriation.
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Convex relaxation of Robust 2-SUM

minimize
∑n

i ,j=1 Aij min(λ, |πi − πj |2)

such that π ∈ P.

• Relax the objective:

Huber-loss instead of

quadratic

• Relax set of permutation

vectors

3 2 1 0 1 2 3
0

1

2

3

4

5

6
2

1
Huber
trunc- 2
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Convex relaxation of Robust 2-SUM

minimize
∑n

i ,j=1 Aijhλ(|πi − πj |)
such that π ∈ P.

• Relax the objective:

Huber-loss instead of

quadratic

• Relax set of permutation

vectors

(3,1,2)

(2,1,3) (1,2,3)

(1,3,2)

(2,3,1)(3,2,1)
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Results on synthetic Mn(δ, s) matrices

Kendall-Tau scores

s/slim: 2.5 5 7.5 10

spectral 0.91 0.86 0.84 0.80

HGnCR 0.99 0.89 0.85 0.83

η-Spectral 0.98 0.97 0.96 0.94

H-UBI 0.98 0.97 0.96 0.94
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Results on ONT bacterial genomes
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Multi-dimensional spectral ordering
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Related publication

This section is based on the following preprint:

Antoine Recanati, Thomas Kerdreux, and Alexandre d’Aspremont.

Reconstructing latent orderings by spectral clustering. arXiv

preprint arXiv:1807.07122, 2018.

https://github.com/antrec/mdso
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Spectral method for Seriation

• Scalable (hence, widely used by practitioners)

• Theoretical guarantee to solve Seriation in noiseless setting

• Sentitive to noise in practice

• Limited to linear orderings

49



Bacterial genomes are circular

AATTGGCATGCTGATGTGCTGATGCGTAGTGCTGTGCTAGTGCTGATC

AATTGGCATGC
TTGGCATGCTGATGTG

GCTGATGTGCT

TGCTAGTG
CTAGTGCTG

TGCTGATC

50



Bacterial genomes are circular

1

2

3

n-3

n-2

n-1

n
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Circular-Robinson matrices

1

2

3

4

56

• Analog of Linear Seriation results ?
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Laplacian embedding

Generalize Spectral relaxation of 2-SUM with multiple

dimensions (d)

minimize
∑n

i ,j=1 Aij (xi − xj)
2 = xTLx

such that x ∈ Rn

xT1 = 1,

‖x‖22 = 1.

52



Laplacian embedding

Generalize Spectral relaxation of 2-SUM with multiple

dimensions (d)

minimize
∑n

i ,j=1 Aij‖xi − xj‖2 = Tr(XTLX )

such that X ∈ Rn×d

XT1n = 1d ,

XTX = Id .

(2)
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Laplacian embedding

Let Φ =
(
1, f(1), . . . , f(n−1)

)
eigenvectors of L.

For d < n, Φ(d) ,
(
f(1), . . . , f(d)

)
is a d-dim. embedding:

xi =
(
f(1)(i), f(2)(i), . . . , f(d)(i)

)T ∈ Rd (d-LE)

The Laplacian embedding solves the multi-dimensional 2-SUM

problem (2).
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Laplacian embedding for R-matrices

Observation: Laplacian embedding: 1d manifold
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Laplacian embedding for R-matrices

Observation: Laplacian embedding: 1d manifold
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Laplacian embedding for circular R-matrices

Observation: Laplacian embedding: closed 1d manifold
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Laplacian embedding for circular R-matrices

Observation: Laplacian embedding: closed 1d manifold
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In theory ?

Only asymptotical results with stronger assumptions on the data

than in linear Seriation results.

• Toeplitz (circular) R matrices converge towards an operator

whose eigenfunctions are harmonic (frequency increases with

eigenvalues).

• No result for n finite
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Spectral circular ordering method [1]

Input: Connected similarity matrix A

1: Compute Laplacian L

2: Compute the two first non-trivial eigenvectors of L, (f1, f2)

3: Sort the values of θ(i) , tan−1 (f2(i)/f1(i)) + 1[f1(i) < 0]π

Output: Permutation σ : θ(σ(1)) ≤ . . . ≤ θ(σ(n))
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Theoretical guarantee for circular seriation

We proved the following non-asymptotical result, analog to linear

seriation.

Proposition (Circular Spectral Seriation)

For Toeplitz, circulant R-matrices, the previous 2d Spectral

ordering algorithm solves Circular Seriation.
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3-LE of overlap similarity matrix (E. coli)

(3d)
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Multi-dimensional spectral ordering

Claim: the latent ordering of points is easier to recover with

multi-dimensional embeddings in noisy settings.

Input: Similarity matrix

1: Compute d-LE

2: For all points, locally fit NNs by a line

3: Use projections on line to define new pairwise distance

4: Solve Seriation on the new matrix

Output: Ordering
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Results on synthetic, noisy data

0 1 2 3 4 5
noise level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ke
nd

al
l-t

au

baseline
dim = 3
dim = 5
dim = 7
dim = 10
dim = 15

(linear)

0 1 2 3 4 5
noise level

0.6

0.7

0.8

0.9

1.0

Ke
nd

al
l-t

au

baseline
dim = 3
dim = 5
dim = 7
dim = 10
dim = 15

(circular)

61



Results on ONT bacterial genomes

Successfully reorders the reads
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Conclusion



Summary

• Seriation: clean mathematical framework for layout in OLC

• Competitive in practice, although challenged by repeats

• Robust Seriation: essentially going from `2 to Huber loss.

• Robust Seriation increases robustness in practice but

repeats remain challenging

• Multi-dimensional Spectral Ordering: simple extension of

spectral baseline method, significant gains, notably in de novo

context.
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Extensions

• Seriation with Duplications: motivated by assembly of

genomes with structural variants from Hi-C data. Related to

Robust Seriation framework.

• Take multiple chromosomes into account ?
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