Seriation and de novo genome assembly

Antoine Recanati, CNRS \& ENS
with Alexandre d'Aspremont, Fajwel Fogel, Thomas Brüls, CNRS - ENS Paris \& Genoscope.

Seriation

The Seriation Problem.

- Pairwise similarity information $A_{i j}$ on n variables.
- Suppose the data has a serial structure, i.e. there is an order π such that

$$
A_{\pi(i) \pi(j)} \text { decreases with }|i-j| \quad \text { (R-matrix) }
$$

Recover π ?

Similarity matrix

Input

Reconstructed

Genome Assembly

Seriation has direct applications in (de novo) genome assembly.

- Genomes are cloned multiple times and randomly cut into shorter reads ($\sim 400 \mathrm{bp}$ to 10 kbp), which are fully sequenced.
- Reorder the reads to recover the genome.

Genome Assembly

Overlap Layout Consensus (OLC). Three stages.

- Compute overlap between all read pairs.
- Reorder overlap matrix to recover read order.
- Average the read values to create a consensus sequence.

The read reordering problem is a seriation problem.

Genome Assembly in Practice

Noise. In the noiseless case, the overlap matrix is a R-matrix. In practice. . .

- There are base calling errors in the reads, typically 2% to 20% depending on the process.
- Entire parts of the genome are repeated, which breaks the serial structure.

Sequencing technologies

- Next generation: short reads ($\sim 400 b p$), few errors ($\sim 2 \%$). Repeats are challenging
- Third generation: long reads ($\sim 10 \mathrm{kbp}$), more errors ($\sim 15 \%$). Can resolve repeats, but noise is challenging

Genome Assembly in Practice

Current assemblers.

- With short accurate reads, the reordering problem is solved by combinatorial methods using the topology of the assembly graph and additional pairing information.
- With long noisy reads, reads are corrected before assembly (hybrid correction or self-mapping).
- Layout and consensus not clearly separated, many heuristics . . .
- miniasm : first long raw reads straight assembler (but consensus sequence is as noisy as raw reads).

Outline

- Introduction
- Combinatorial problem
- Spectral relaxation
- Results (Application to genome assembly)

Combinatorial problem (2-SUM)

2-SUM.

- The 2-SUM problem is written

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2}
$$

- Define $L_{A}=\operatorname{diag}(A 1)-A$ is the Laplacian of A. The 2-SUM problem is equivalently written

$$
\min _{\pi \in \mathcal{P}} \pi^{T} L_{A} \pi
$$

Indeed for any $x \in \mathbb{R}^{n}$,

\[

\]

Seriation and 2-SUM

Combinatorial Solution.

For certain matrices A, 2-SUM \Longleftrightarrow seriation. ([Fogel et al., 2013])

Spectral relaxation

2-SUM problem :

$$
\min _{\pi \in \mathcal{P}} \pi^{T} L_{A} \pi
$$

NP-Complete for generic matrices A.
Set of permutation vectors :

$$
\begin{aligned}
& \pi_{i} \in\{1, \ldots, n\}, \quad \forall 1 \leq i \leq n \\
& \pi^{T} \mathbf{1}=\frac{n(n+1)}{2} \\
& \|\pi\|_{2}^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Let $c=\frac{n+1}{2} \mathbf{1} . L_{A} \mathbf{1}=0$. Withdrawing c from any vector π does not change the objective value. Up to a constant factor, the Fiedler vector f defined as follows solves a continuous relaxation of 2-SUM

$$
\begin{gathered}
f=\underset{A}{\operatorname{argmin}} x^{T} L_{A} x . \\
\quad \mathbf{1}^{T} x=0 \\
\quad\|x\|_{2}=1
\end{gathered}
$$

Spectral relaxation

Spectral Seriation. Define the Laplacian of A as $L_{A}=\operatorname{diag}(A 1)-A$, the Fiedler vector of A is written

$$
f=\underset{\substack{1^{T} x=0 \\ \\ \\\|x\|_{2}=1}}{\operatorname{argmin}} x^{T} L_{A} x .
$$

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose $A \in \mathbf{S}_{n}$ is a pre-R matrix, with a simple Fiedler value whose Fiedler vector f has no repeated values. Suppose that $\Pi \in \mathcal{P}$ is such that the permuted Fielder vector Πv is monotonic, then $\Pi A \Pi^{T}$ is an R-matrix.

Spectral Solution

- Spectral solution easy to compute and scales well
- But sensitive and not flexible (hard to include additional structural constraints)
- Other (convex) relaxations handle structural constraints

Genome assembly pipeline

- Overlap : computed from \mathbf{k}-mers, yielding a similarity matrix A
- Layout : A is thresholded to remove noise-induced overlaps, and reordered with spectral ordering algorithm. Layout fine-grained with overlap information.
- Consensus : Genome sliced in windows

Outline

- Introduction
- Combinatorial problem
- Spectral relaxation
- Results (Application to genome assembly)

Application to genome assembly

Bacterial genomes.

- Long raw reads (Oxford Nanopore Technology)
- Overlaps computed with minimap : hashing k-mers
- Threshold on similarity matrix to remove false-overlaps

Application to genome assembly

Layout.

- Two bacterial genomes : E. Coli and A. Baylyi
- Circular genomes, size $\sim 4 \mathrm{Mbp}$
- A few connected components after threshold

Application to genome assembly

Eukaryotic genome : S. Cerevisiae

- 16 chromosomes
- Many repeats
- Higher threshold on similarity matrix \Rightarrow many connected components

Conclusion

Straightforward assembly pipeline.

- Equivalence 2-SUM \Longleftrightarrow seriation.
- Layout correctly found by spectral relaxation for bacterial genomes (with limited number of repeats)
- Consensus computed by MSA in sliding windows $\Rightarrow \sim 99 \%$ avg. identity with reference

Future work.

- Additional information could help assemble more complex genomes (e.g. with topological constraints on the similarity graph, or chromosome assignment...)
- Other problems involving Seriation ?
- Convex relaxations can also handle constraints (e.g. $|\pi(i)-\pi(j)| \leq k$) for different problems

References

J.E. Atkins, E.G. Boman, B. Hendrickson, et al. A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput., 28 (1):297-310, 1998.

Avrim Blum, Goran Konjevod, R Ravi, and Santosh Vempala. Semidefinite relaxations for minimum bandwidth and other vertex ordering problems. Theoretical Computer Science, 235(1):25-42, 2000.
Moses Charikar, Mohammad Taghi Hajiaghayi, Howard Karloff, and Satish Rao. l_{2}^{2} spreading metrics for vertex ordering problems. Algorithmica, 56(4):577-604, 2010.
R. Coifman, Y. Shkolnisky, F.J. Sigworth, and A. Singer. Cryo-EM structure determination through eigenvectors of sparse matrices. working paper, 2008.
Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation algorithms via spreading metrics. Journal of the ACM (JACM), 47(4):585-616, 2000.
Uriel Feige. Approximating the bandwidth via volume respecting embeddings. Journal of Computer and System Sciences, 60(3):510-539, 2000.

Uriel Feige and James R Lee. An improved approximation ratio for the minimum linear arrangement problem. Information Processing Letters, 101(1):26-29, 2007.
F. Fogel, R. Jenatton, F. Bach, and A. d'Aspremont. Convex relaxations for permutation problems. NIPS 2013, arXiv:1306.4805, 2013.

Michel X. Goemans. Smallest compact formulation for the permutahedron. Mathematical Programming, pages 1-7, 2014.
David G Kendall. Incidence matrices, interval graphs and seriation in archeology. Pacific Journal of mathematics, 28(3):565-570, 1969.
Cong Han Lim and Stephen J Wright. Beyond the birkhoff polytope: Convex relaxations for vector permutation problems. arXiv preprint arXiv:1407.6609, 2014.
A. Nemirovski. Sums of random symmetric matrices and quadratic optimization under orthogonality constraints. Mathematical programming, 109(2):283-317, 2007.
Satish Rao and Andréa W Richa. New approximation techniques for some linear ordering problems. SIAM Journal on Computing, 34(2): 388-404, 2005.
Anthony Man-Cho So. Moment inequalities for sums of random matrices and their applications in optimization. Mathematical programming, 130(1):125-151, 2011.

Consensus

- Once layout is computed and fined-grained, slicing in windows
- Multiple Sequence Alignment using Partial Order Graphs (POA) in windows
- Windows merging

consensus (1+2)
consensus $((1+2)+3)$

Seriation

Combinatorial problems.

- The 2-SUM problem is written

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2} \quad \text { or equivalently } \quad \min _{\pi \in \mathcal{P}} \pi^{T} L_{A} \pi
$$

where L_{A} is the Laplacian of A.

- NP-Complete for generic matrices A.

Convex Relaxation

Seriation as an optimization problem.

$$
\min _{\pi \in \mathcal{P}} \sum_{i, j=1}^{n} A_{\pi(i) \pi(j)}(i-j)^{2}
$$

What's the point?

- Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices.
- Write a convex relaxation for 2-SUM and seriation.
- Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)
- Not very robust. . .
- Not flexible. . . Hard to include additional structural constraints.

Convex Relaxation

- Let \mathcal{D}_{n} the set of doubly stochastic matrices, where

$$
\mathcal{D}_{n}=\left\{X \in \mathbb{R}^{n \times n}: X \geqslant 0, X \mathbf{1}=\mathbf{1}, X^{T} \mathbf{1}=\mathbf{1}\right\}
$$

is the convex hull of the set of permutation matrices.

- Notice that $\mathcal{P}=\mathcal{D} \cap \mathcal{O}$, i.e. Π permutation matrix if and only Π is both doubly stochastic and orthogonal.
- Solve

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(Y^{T} \Pi^{T} L_{A} \Pi Y\right)-\mu\|P \Pi\|_{F}^{2} \\
\text { subject to } & e_{1}^{T} \Pi g+1 \leq e_{n}^{T} \Pi g \\
& \Pi \mathbf{1}=\mathbf{1}, \Pi^{T} \mathbf{1}=\mathbf{1} \tag{1}\\
& \Pi \geq 0
\end{array}
$$

in the variable $\Pi \in \mathbb{R}^{n \times n}$, where $P=\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{T}$ and $Y \in \mathbb{R}^{n \times p}$ is a matrix whose columns are small perturbations of $g=(1, \ldots, n)^{T}$.

Convex Relaxation

Objective. $\operatorname{Tr}\left(Y^{T} \Pi^{T} L_{A} \Pi Y\right)-\mu\|P \Pi\|_{F}^{2}$

- 2-SUM term $\operatorname{Tr}\left(Y^{T} \Pi^{T} L_{A} \Pi Y\right)=\sum_{i=1}^{p} y_{i}^{T} \Pi^{T} L_{A} \Pi y_{i}$ where y_{i} are small perturbations of the vector $g=(1, \ldots, n)^{T}$.
- Orthogonalization penalty $-\mu\|P \Pi\|_{F}^{2}$, where $P=\mathbf{I}-\frac{1}{n} \mathbf{1 1}{ }^{T}$.
- Among all DS matrices, rotations (hence permutations) have the highest Frobenius norm.
- Setting $\mu \leq \lambda_{2}\left(L_{A}\right) \lambda_{1}\left(Y Y^{T}\right)$, keeps the problem a convex QP.

Constraints.

- $e_{1}^{T} \Pi g+1 \leq e_{n}^{T} \Pi g$ breaks degeneracies by imposing $\pi(1) \leq \pi(n)$. Without it, both monotonic solutions are optimal and this degeneracy can significantly deteriorate relaxation performance.
- $\Pi \mathbf{1}=\mathbf{1}, \Pi^{T} \mathbf{1}=\mathbf{1}$ and $\Pi \geq 0$, keep Π doubly stochastic.

Convex Relaxation

Other relaxations.

- Relaxations for orthogonality constraints, e.g. SDPs in [Nemirovski, 2007, Coifman et al., 2008, So, 2011]. Simple idea: $Q^{T} Q=\mathbf{I}$ is a quadratic constraint on Q, lift it. This yields a $O(\sqrt{n})$ approximation ratio.
- $O(\sqrt{\log n})$ approximation bounds for Minimum Linear Arrangement [Even et al., 2000, Feige, 2000, Blum et al., 2000, Rao and Richa, 2005, Feige and Lee, 2007, Charikar et al., 2010].
- All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.

Semi-Supervised Seriation

Convex Relaxation.

- Semi-Supervised Seriation. We can add structural constraints to the relaxation, where

$$
a \leq \pi(i)-\pi(j) \leq b \quad \text { is written } \quad a \leq e_{i}^{T} \Pi g-e_{j}^{T} \Pi g \leq b
$$

which are linear constraints in Π.

- Sampling permutations. We can generate permutations from a doubly stochastic matrix D
- Sample monotonic random vectors u.
- Recover a permutation by reordering $D u$.
- Algorithms. Large QP, projecting on doubly stochastic matrices can be done very efficiently, using block coordinate descent on the dual. Extended formulations by [Goemans, 2014] can reduce the dimension of the problem to $O(n \log n)$ [Lim and Wright, 2014].

Numerical results: nanopores

Nanopores DNA data. New sequencing hardware.

Oxford nanopores MinION.

Numerical results: nanopores

Nanopores.

Numerical results

Nanopores DNA data.

- Longer reads. Average 10k base pairs in early experiments. Compared with ~ 100 base pairs for existing technologies.

■ High error rate. About 20\% compared with a few percents for existing technologies.

■ Real-time data. Sequencing data flows continuously.

