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Seriation

The Seriation Problem.

� Pairwise similarity information Aij on n variables.

� Suppose the data has a serial structure, i.e. there is an order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Recover π?

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Similarity matrix Input Reconstructed

A. Recanati Institut Curie, Octobre 2016, 2/17



Genome Assembly

Seriation has direct applications in (de novo) genome assembly.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp to 10kbp), which are fully sequenced.

� Reorder the reads to recover the genome.
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Genome Assembly

Overlap Layout Consensus (OLC). Three stages.

� Compute overlap between all read pairs.

� Reorder overlap matrix to recover read order.

� Average the read values to create a consensus sequence.

The read reordering problem is a seriation problem.
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Genome Assembly in Practice

Noise. In the noiseless case, the overlap matrix is a R-matrix. In practice. . .

� There are base calling errors in the reads, typically 2% to 20% depending on
the process.

� Entire parts of the genome are repeated, which breaks the serial structure.

Sequencing technologies

� Next generation : short reads (∼ 400bp), few errors (∼ 2%). Repeats are
challenging

� Third generation : long reads (∼ 10kbp), more errors (∼ 15%). Can resolve
repeats, but noise is challenging
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Genome Assembly in Practice

Current assemblers.

� With short accurate reads, the reordering problem is solved by
combinatorial methods using the topology of the assembly graph and
additional pairing information.

� With long noisy reads, reads are corrected before assembly (hybrid correction
or self-mapping).

� Layout and consensus not clearly separated, many heuristics . . .

� miniasm : first long raw reads straight assembler (but consensus sequence is as
noisy as raw reads).
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Outline

� Introduction

� Combinatorial problem

� Spectral relaxation

� Results (Application to genome assembly)
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Combinatorial problem (2-SUM)

2-SUM.

� The 2-SUM problem is written

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2

� Define LA = diag(A1)−A is the Laplacian of A. The 2-SUM problem is
equivalently written

min
π∈P

πTLAπ

Indeed for any x ∈ Rn,

xTLAx = xT diag(A1)x− xTAx
=

∑n
i=1 x

2
i (
∑n
j=1Aij)−

∑n
i,j=1Aijxixj

=
∑n
i,j=1Aij(x

2
i − xixj)

= 1
2

∑n
i,j=1Aij(x

2
j + x2i − 2xixj)

= 1
2

∑n
i,j=1Aij(xi − xj)2
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Seriation and 2-SUM

Combinatorial Solution.

For certain matrices A, 2-SUM ⇐⇒ seriation. ([Fogel et al., 2013])
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Spectral relaxation

2-SUM problem :
min
π∈P

πTLAπ

NP-Complete for generic matrices A.

Set of permutation vectors :

πi ∈ {1, ..., n}, ∀1 ≤ i ≤ n

πT1 = n(n+1)
2

‖π‖22 = n(n+1)(2n+1)
6

Let c = n+1
2 1. LA1 = 0. Withdrawing c from any vector π does not change the

objective value. Up to a constant factor, the Fiedler vector f defined as follows
solves a continuous relaxation of 2-SUM

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.
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Spectral relaxation

Spectral Seriation. Define the Laplacian of A as LA = diag(A1)−A, the
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Spectral Solution

� Spectral solution easy to compute and scales well

� But sensitive and not flexible (hard to include additional structural constraints)

� Other (convex) relaxations handle structural constraints

Genome assembly pipeline

� Overlap : computed from k-mers, yielding a similarity matrix A

� Layout : A is thresholded to remove noise-induced overlaps, and reordered
with spectral ordering algorithm. Layout fine-grained with overlap
information.

� Consensus : Genome sliced in windows
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Application to genome assembly

Bacterial genomes.

� Long raw reads (Oxford Nanopore Technology)

� Overlaps computed with minimap : hashing k-mers

� Threshold on similarity matrix to remove false-overlaps
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Application to genome assembly

Layout.

� Two bacterial genomes : E. Coli and A. Baylyi

� Circular genomes, size ∼ 4Mbp

� A few connected components after threshold
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Application to genome assembly

Eukaryotic genome : S. Cerevisiae

� 16 chromosomes

� Many repeats

� Higher threshold on similarity matrix ⇒ many connected components

true ordering (from BWA)
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Conclusion

Straightforward assembly pipeline.

� Equivalence 2-SUM ⇐⇒ seriation.

� Layout correctly found by spectral relaxation for bacterial genomes (with
limited number of repeats)

� Consensus computed by MSA in sliding windows ⇒∼ 99% avg. identity with
reference

Future work.

� Additional information could help assemble more complex genomes (e.g.
with topological constraints on the similarity graph, or chromosome
assignment...)

� Other problems involving Seriation ?

� Convex relaxations can also handle constraints (e.g. |π(i)− π(j)| ≤ k) for
different problems
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Consensus

� Once layout is computed and fined-grained, slicing in windows

� Multiple Sequence Alignment using Partial Order Graphs (POA) in windows

� Windows merging

window 1

window 2

window 3

POA in windows

consensus 1

consensus 2

consensus 3

consensus (1+2)

consensus ((1+2) +3)
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Seriation

Combinatorial problems.

� The 2-SUM problem is written

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2 or equivalently min
π∈P

πTLAπ

where LA is the Laplacian of A.

� NP-Complete for generic matrices A.
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Convex Relaxation

Seriation as an optimization problem.

min
π∈P

n∑
i,j=1

Aπ(i)π(j)(i− j)2

What’s the point?

� Gives a spectral (hence polynomial) solution for 2-SUM on some R-matrices.

� Write a convex relaxation for 2-SUM and seriation.

◦ Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)

◦ Not very robust. . .

◦ Not flexible. . . Hard to include additional structural constraints.
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Convex Relaxation

� Let Dn the set of doubly stochastic matrices, where

Dn = {X ∈ Rn×n : X > 0, X1 = 1, XT1 = 1}

is the convex hull of the set of permutation matrices.

� Notice that P = D ∩O, i.e. Π permutation matrix if and only Π is both
doubly stochastic and orthogonal.

� Solve
minimize Tr(Y TΠTLAΠY )− µ‖PΠ‖2F
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1,
Π ≥ 0,

(1)

in the variable Π ∈ Rn×n, where P = I− 1
n11

T and Y ∈ Rn×p is a matrix
whose columns are small perturbations of g = (1, . . . , n)T .
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Convex Relaxation

Objective. Tr(Y TΠTLAΠY )− µ‖PΠ‖2F

� 2-SUM term Tr(Y TΠTLAΠY ) =
∑p
i=1 y

T
i ΠTLAΠyi where yi are small

perturbations of the vector g = (1, . . . , n)T .

� Orthogonalization penalty −µ‖PΠ‖2F , where P = I− 1
n11

T .

◦ Among all DS matrices, rotations (hence permutations) have the highest
Frobenius norm.

◦ Setting µ ≤ λ2(LA)λ1(Y Y
T ), keeps the problem a convex QP.

Constraints.

� eT1 Πg + 1 ≤ eTnΠg breaks degeneracies by imposing π(1) ≤ π(n). Without it,
both monotonic solutions are optimal and this degeneracy can significantly
deteriorate relaxation performance.

� Π1 = 1, ΠT1 = 1 and Π ≥ 0, keep Π doubly stochastic.
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Convex Relaxation

Other relaxations.

� Relaxations for orthogonality constraints, e.g. SDPs in [Nemirovski, 2007,
Coifman et al., 2008, So, 2011]. Simple idea: QTQ = I is a quadratic
constraint on Q, lift it. This yields a O(

√
n) approximation ratio.

� O(
√

log n) approximation bounds for Minimum Linear Arrangement [Even
et al., 2000, Feige, 2000, Blum et al., 2000, Rao and Richa, 2005, Feige and
Lee, 2007, Charikar et al., 2010].

� All these relaxations form extremely large SDPs.

Our simplest relaxation is a QP. No approximation bounds at this point however.
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Semi-Supervised Seriation

Convex Relaxation.

� Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a ≤ π(i)− π(j) ≤ b is written a ≤ eTi Πg − eTj Πg ≤ b.

which are linear constraints in Π.

� Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

◦ Sample monotonic random vectors u.

◦ Recover a permutation by reordering Du.

� Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. Extended
formulations by [Goemans, 2014] can reduce the dimension of the problem to
O(n log n) [Lim and Wright, 2014].

A. Recanati Institut Curie, Octobre 2016, 25/17



Numerical results: nanopores

Nanopores DNA data. New sequencing hardware.

Oxford nanopores MinION.
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Numerical results: nanopores

Nanopores.
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Numerical results

Nanopores DNA data.

� Longer reads. Average 10k base pairs in early experiments. Compared with
∼ 100 base pairs for existing technologies.

� High error rate. About 20% compared with a few percents for existing
technologies.

� Real-time data. Sequencing data flows continuously.

A. Recanati Institut Curie, Octobre 2016, 28/17


