Automated verification of termination certificates

Kim Quyen LY

9 October 2014

rd

INVENTELURS DU MONDE NUMERIQUE

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Outline

© Introduction

© Framework
@ Languages and tools
@ Termination of rewriting and its certification

© Contributions
o XSD-guided XML-parser generator
@ Definition and proof of a CPF verifier in Coq
@ Results

© Conclusion

Kim Quyen LY Automated verification of termination certificate

9 October 2014

2/68

Introduction

Why /how to certify software?

@ Software have bugs, sometimes difficult to detect.

@ Bugs are merely annoying and inconvenient,
but some can have extremely serious consequences.

Solutions:
@ Tests are necessary but cannot cover all cases.
@ Model checking is powerful but cannot check all properties.

@ Formal certification maybe very difficult and time-consuming.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Introduction

Why /how to certify software?

@ Software have bugs, sometimes difficult to detect.

@ Bugs are merely annoying and inconvenient,
but some can have extremely serious consequences.

Solutions:

@ Tests are necessary but cannot cover all cases.
@ Model checking is powerful but cannot check all properties.
@ Formal certification maybe very difficult and time-consuming.

@ Using certificates.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Introduction

Using certificates

Instead of proving that a source code is correct for every possible input:

@ has to be redone each time the source code is changed,
o difficult when the tool uses complex heuristics.

Check that its result is correct each time it is run
by providing a certificate and verifying it

@ does not depend on the source code,

e finding a solution to a problem is generally more difficult
than checking that a solution is correct (P#£NP).

input w3 § Software ——Jp output + certificate ——Jp l Certificate verifier]] =3 Yes/No

Kim Quyen LY Automated verification of termination certificate 9 October 2014 4 /68

Introduction

How to certify a software?

Proof on paper? long, difficult, error-prone
(e.g. "Proof of a program: Find", Hoare, 1971)

= Use a proof assistant!

Generally provides:
@ A language for defining functions and properties.
@ Libraries of definitions and theorems.

@ Proof tactics and decision procedures.

Examples of works done in a proof assistant:
@ 4-color theorem (2005); odd-order theorem (Gonthier et al, 2012).
@ Definition and verification of a realistic C compiler (Leroy 2009) in Cog.
@ Verification of an OS kernel (Klein et al, 2009) in Isabelle.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Introduction

Termination certificates: motivation

Termination competition organized since 2003.

Tools become more and more complex.
They unevitably contain bugs.

Every year some tools are disqualified because of mistakes found in their
proofs.

We need more trust in their results.

o In 2007 certified category introduced in the competition.

@ In this category the output of the termination tool must be verified by some
established theorem prover/checker.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 6 /68

Introduction

CPF: a language for termination certificates

For the certified competition:

o CPF: Certification Problem Format was introduced,

@ with clear syntax and semantics.
@ Defined as an XSD (XML schema) file (2,800 LOC, 100 types).

Current certificate verifiers:
@ Rainbow (uncertified Coq script generator).
o CiME3 (uncertified Coq script generator).
@ CeTA (certified standalone tool).

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Introduction

PhD goal

Develop a fast and safe standalone termination certificate verifier.

Our solution:

o Write a CPF verifier New-Rainbow in Coq.

@ Prove its correctness by using the Coq libraries on rewriting theory and
termination: CoLoR and Coccinelle.

@ Extract it to OCaml.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Introduction

Old-Rainbow architecture: generate a Coq script

iy

certificate.xml

—

LY

Rainbow executable

certificate.v

1)
H—
ColoR Coq files &
coq
- CERTIFIED
- REJECTED
- UNSUPPORTED

Kim Quyen LY Automated verifi 9 October 2014

Introduction

Old-Rainbow architecture: generate a Coq script

iy Cxamiy
cpf.ml cp'f. xsd

|

xml-light library ~ Rainbow OCaml files

certificate.xml

compiled 2"
Calll] ——— e

OCami compiler Rainbow executable

|

certificate.v

|
!

ColoR Coq files rj

=
coq

- CERTIFIED
- REJECTED
- UNSUPPORTED

Advantages Termination proofs can be re-used in Coq

Disadvantages Coq is too slow
Rainbow is not certified

Kim Quyen LY Automated v

9 October 2014

Introduction

New-Rainbow architecture: standalone tool

Cxmiy

certificate.xml

—

Rainbow executable

- CERTIFIED
- REJECTED
- UNSUPPORTED

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Introduction

New-Rainbow architecture: formalize Rainbow itself

Camiy

certificate.xml

8
‘ = compiled ==
,) extracted [.__j MC ﬂ I p ‘
Rainbow Coq files - Rainbow OCaml files ocaml compiler Rainbow
Coq executable

] - CERTIFIED
- REJECTED
- UNSUPPORTED

ColoR Coq files

Kim Quyen LY Automated verification of termination certificate 9 October 2014 12 / 68

Introduction

New-Rainbow architecture: XML-parser generator

L N Gty on

xsd2coq cpf.xsd xsd2ml
cpf_data.v cpf_parsing.ml Comid

certificate.xml

J‘) J

(= r’) extracted I’\E MCEHII lcompiled &

Rainbow Coq files) Rainbow OCaml files 0Caml compiler Rainbow
Coq execltable
- CERTIFIED
- REJECTED
— - UNSUPPORTED
ColLoR Coq files xml-light library
Advantages

Disadvantages Ceg-is-too-slow

Kim Quyen LY Automated verification of termination cer 9 October 2014 13 / 68

Framework Languages and tools

Outline

© Framework
@ Languages and tools

Kim Quyen LY Automated verifi 9 October 2014 14 / 68

Framework Languages and tools

XML: a language for describing trees

A (non)termination certificate is an XML file.

<term>
<funapp=> ‘
<name> add </name>
<arg>
<funapp>
<name> s </name>
<arg>
<var> x <fvar>
<larg> | |
</funapp> @
<larg>
arg> (A)
<var> y </var>

<larg> o
</funapp>

<fterm> |

Kim Quyen LY

Automated verification of termination certificate 9 October 2014 15 / 68

Framework Languages and tools

XSD (XML Schema): a language for describing sets of trees

XSD is the format used to define the grammar of (non)termination certificates.

XSD type T corresponding set of trees or sequences of trees

<element name="tag"
minOccurs="i"
maxOccurs="j">

<complextType> T set of sequences of i to j trees whose roots are labeled by "tag"
</complexType> and whose children belong to the set described by T
</element>

(i, j€ NU{"unbounded"})

<sequence> Ty ... T, set of sequences of trees t1, ..., t, such that t; belongs
</sequence> to the set described by T;

<choice> Ty ... T, . .

</choice> union of the sets described by T1,..., T,

Kim Quyen LY Automated verification of termination certificate 9 October 2014 16 / 68

Framework

XSD: example from cpf.xsd

Languages and tools

XSD valid XML file
<group name= "term">
<choice>
<element ref="var"/> <funapp>
<element name="funapp"> <name> add </name>
<complexType> <arg>
<sequence> <funapp>
<group ref="symbol"/> <name> s </name>
<element name= "arg" <arg>
maxOccurs="unbounded" <var> x </var>
minOccurs="0"> </arg>
<complexType> </funapp>
<group ref="term"/> </arg>
</complexType> <arg>
</element> <var> y </var>
</sequence> </arg>
</complexType> </funapp>
</element>
</choice>
</group>

Automated verific:

of termination certificate

9 October 2014

Framework Languages and tools

¥ Objective Caml

Functional programming language

Functions are first-class objects:

a function can take as argument a function and return a function.

Polymorphic inductive types.
Automatic garbage collection.
Functions can be defined by pattern matching.

Exceptions.

Programs must be well typed at compile time.
Type inference.

Module system.

Kim Quyen LY Automated verification of termination certificate

9 October 2014

Framework Languages and tools

The Coq proof assistant

Interactive theorem prover

o Powerful logical system (calculus of (co)inductive constructions).
Functions and proofs are first-class objects.
Polymorphic and dependent inductive types/predicates.
Functions and predicates can be defined by pattern matching.
Large standard library (150,000 LOC) and numerous contributions.

Powerful tactic language.

Powerful type inference mechanism.

Extraction:
functions and proofs can be compiled to OCaml, Haskell or Scheme.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Framework Languages and tools

Coq libraries on rewriting theory and termination

@ ColLoR (83,000 LOC by Blanqui, Koprowski, Strub, Coupet-Grimal, ...)
e Coccinelle (56,000 LOC by Contejean, Courtieu, Pons, ...)

@ Mathematical structures: relations/graphs, (ordered) semi-rings.

@ Data structures: vectors/arrays, matrices, finite multisets, integer polynomials with
multiple variables, finite graphs.

@ Term structures: strings, varyadic terms, algebraic terms with symbols of fixed
arity, A-terms with de Bruijn indices, A-terms with named variables.

@ Transformation techniques: dependency pairs transformation, dependency graph
decomposition, arguments filtering, semantic labelling, SRS reversal.

(Non-)termination criteria: loops, polynomial/matrix interpretations, RPO,
subterm criterion, HORPO, Tait-Girard computability closure for HOR, ...

Remark: CoLoR includes a function for translating Coccinelle terms into CoLoR terms
and reuse results from Coccinelle (only RPO for the moment).

Kim Quyen LY Automated verification of termination certificate 9 October 2014 20 / 68

Framework Termination of rewriting and its certification

Outline

© Framework

@ Termination of rewriting and its certification

Kim Quyen LY Automated verification of termination cer 9 October 2014 21 / 68

Framework Termination of rewriting and its certifi

Term rewriting

Dershowitz-Jouannaud 1990

“Rewrite systems are directed equations used to compute by repeatedly replacing
subterms of a given formula with equal terms until the simplest form possible is
obtained.”

o Particular case: first-order functional programs.
o It is Turing-complete (termination is undecidable even with one rule only).
@ Programming languages based on rewriting: CafeOBJ, ELAN, Maude, ...

Kim Quyen LY Automated verification of termination certificate 9 October 2014 22 / 68

Framework

First-order terms/trees

o Terms: x|f(ty,...
o Position: Pos(t)
o {lifteXx
o {e}U{i-plie[l,n],pe Pos(t)}
if t =f(tx,...,tn)
@ Substitution: o : X — T(X, X)
@ X0 = O'(X)

o f(tr,...,ta)o =Tf(t1o,...,ta0)

Jth) € T(X, X)

Example: f(a, g(h(y),x)

Kim Quyen LY

Automated verification of termination certificate

Termination of rewriting and its certification

9 October 2014

23 / 68

Framework Termination of rewriting and its certifi

Rewriting

@ Rewrite rule: pair of terms | — r

@ Rewrite relation: -z C T(X,X) x T(X,X) is defined as
t —»r uiff 3(/,r) € R, p € Pos(t) and a substitution ¢ such that
tlp =lo and u = t[ro],

t u

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Framework Termination of rewriting and its certification

Example of rewrite sequence

rule 1: add (zero, x) -> x rule 2: add (s(x),y) -> s(add(x, y))

D — ©) — O
OO OO (=)
O OO

add (s(s(zero)), s(s(zero)))

Kim Quyen LY Automated verification of termination certificate 9 October 2014 25 / 68

Framework Termination of rewriting and its certification

Example of rewrite sequence

rule 1: add (zero, x) -> x rule 2: add (s(x),y) -> s(add(x, y))

50 FY

add (s(s(zero)), s(s(zero))) s(add(s(zero), s(s(zero))))

=) — O

Kim Quyen LY Automated verification of termination certificate 9 October 2014 26 / 68

Framework Termination of rewriting and its certification

Example of rewrite sequence

rule 1: add (zero, X) -> x rule 2: add (s(x),y) -> s(add(x, y))

50 FY

add (s(s(zero)), s(s(zero))) s(add(s(zero), s(s(zero)))) s(s(add(zero, s(s(zero))))) s(s(s(s(zero))))

(()

O O O O,
OO © & O,
O O O O © O,
@ @ @O & O O

© OO
©

Kim Quyen LY Automated verification of termination certificate 9 October 2014 27 / 68

Framework Termination of rewriting and its certification

ColoR: Variables, function symbols and term

Notation variable := nat.

Record Signature : Type := mkSignature {
symbol :> Type;
arity : symbol -> nat;
beq_symb : symbol -> symbol -> bool;
beq_symb_ok : forall x y, beq_symb x y = true <-> x = y}.

Inductive term : Type :=
| Var : variable -> term
| Fun : forall f : Sig, vector term (arity f) -> term.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Framework Termination of rewriting and its certification

ColLoR: Rewriting

Record rule : Type := mkRule { lhs : term; rhs : term }.

Definition red (R: list rule): term -> term -> Prop :=
exists 1 r ¢ s,
In (mkRule 1 r) R A u = fill ¢ (sub s 1) A v = fill ¢ (sub s r).

Kim Quyen LY Automated verification of termination certificate 9 October 2014 29 / 68

Framework Termination of rewriting and its certification

CoLoR: (Non)-Termination

Termination:

Inductive SN A (R: relation A) x : Prop :=
SN_intro : (forall y, Rxy -> SN R y) -> SN R x.

Definition WF A (R: relation A) := forall x, SN R x.

Non-termination:

Definition IS A (R: relation A)(f: nat -> A) :=
forall i, R (f i)(f (S i)).

Definition EIS A (R: relation A) := exists f, ISR f.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Framework Termination of rewriting and its certifi

How to prove termination of TRSs?

A reduction ordering is a well-founded, stable and monotone ordering on terms.

Theorem
(X, R) terminates iff there is a reduction ordering > such that R C >.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 31 /68

Framework Termination of rewriting and its certifi

Reduction pair

Theorem

(X, R) terminates if there is a monotone reduction pair (>, >) such that
R C > and (X, R — >) terminates.

A reduction pair is a pair (>, >) of relations on terms such that:
@ > is reflexive, transitive, stable and monotone;
@ > is well-founded and stable;
e > ->C>o0r > 2>2C>.

It is monotone if > is monotone.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 32 /68

Framework Termination of rewriting and its certification

Special case of reduction pair: interpretations

Let (A,>4) be a well-founded domain and /¢ : A" — A an interpretation function
for every f € ¥ of arity n.

Definition: t >, u if Vp: X — 1, [t]i(p) >a [u]i(p)

Theorem

> is a reduction ordering if, for all f, Ir is monotone in every variable.

I is monotone in its i-th argument if, for all x1,...,xn, X/ € A,

/ /
le(X1, ooy Xiy ooy Xn) > le(xq, ..., x!, ..., xp) whenever x; > x!.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 33 /68

Framework Termination of rewriting and its certification

Special case of reduction pair: interpretations

Let (A,>4) be a well-founded domain and /¢ : A" — A an interpretation function
for every f € ¥ of arity n.

Definition: t >, u if Vp: X — 1, [t]i(p) >a [u]i(p)

Theorem

> is a reduction ordering if, for all f, Ir is monotone in every variable.

I is monotone in its i-th argument if, for all x1,...,xn, X/ € A,

/ /
le(X1, ooy Xiy ooy Xn) > le(xq, ..., x!, ..., xp) whenever x; > x!.

Theorem

In a monotone algebra (A, (If)fes, >), (>1,>) is a monotone reduction pair.
In a weak monotone algebra (A, (/f)fes, >), (>/,>/) is a reduction pair.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 33 /68

Framework Termination of rewriting and its certification

Special case of interpretation: integer polynomials

AeNand Ir € Alxy, ..., Xa]

Theorem

A program defined by a set R of rules terminates if:
@ For all f, Ir is monotone in every variable.

e For all rule | — r, we have [/] >/ [r]-

Kim Quyen LY Automated verification of termination certificate 9 October 2014 34 / 68

Framework Termination of rewriting and its certification

Example of polynomial interpretation on N

Rewrite system:

add(zero,x) — x
add(succ(x),y) — succ(add(x,y))

Polynomial interpretation:

/add(Xay) = 2X+y
lsuec(x) = x+1

lrero = 1
Termination proof:

[add(zero, x)] =24 x >n [x] = x
[add(succ(x), y)] = 2(x + 1) + y > [succ(add(x,y))] = 2x+y) +1

whatever are the values of x,y € N

Kim Quyen LY Automated verification of termination certificate 9 October 2014

35 / 68

Framework Termination of rewriting and its certifi

Certificate for polynomial interpretation on N7

o Certificate: the polynomials /r.

@ How to verify its correctness?
monotony and compatibility are undecidable in general.

Instead one can use simpler sufficient conditions:
e Ir is monotone in its i-th argument
if it has non-negative coefficients only and the coefficient of x; is positive.

o [11>1]

if [/T — [r] — 1 has non-negative coefficients only.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 36 / 68

Contributions =~ XSD-guided XML-parser generator

Outline

© Contributions
o XSD-guided XML-parser generator

Kim Quyen LY Automated verification of termination cer 9 October 2014 37 / 68

Contributions =~ XSD-guided XML-parser generator

CPF: a grammar for (non-)termination certificates

Since the CPF format is regularly modified and extended with new certificates, it
is useful to have a tool that can automatically generate in OCaml and Coq:

o data structures,

@ parsers.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 38 / 68

Contributions =~ XSD-guided XML-parser generator

XSD-guided XML-parser generator

xsd2coq cpf.xsd xsd2mil

Bty Cxmiy L

) ~|
D— lrr) extractedD D

cpf_data.v — cpf_data.ml cpf_parsing.ml
data structures parsing functions

Kim Quyen LY Automated verification of termination certificate 9 October 2014 39 / 68

Contributions

Example

XSD-guided XML-parser generator

<xs:element nam
Y<xs:igroup name=
ve<xs:choice>
<xs:element ref="var"/>
vexs:element name="funapp">
wexs:complexType>
vexs:sequence>
<xs:group ref="symbol"/>
vexs:element name="arg" maxOccurs="unbounded"
v<xs : complexType>
<xs:group ref="term"/>
</xs:complexTypes
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:group>

var" type="xs:string"/>
erm">

xsd2caq

cpf_data.v cpf]

Inductive term :=

| Term var : var - term
| Term_funapp : symbol - list term - term.

 extraction | Element ("var",

cpf_data.ml
type term =
| Term_var of wvar
| Term_funapp of symbol * term list

| Element ("funapp", _,
let item_symbol, xs =
let item_arg, xs =
check_emptyness xs
Term_funapp (item_symbol,item_arg)

minOccurs="0">

ﬁﬁlrsmg.m\

and term x = get_first_son "term" term_val x

and term_val x = match x with

_., Xs) -> Term_var (var_val xs)

_» X8) ->

parse_first_elt symbol_val xs in
parse_list (get_first_son "arg" term_val)

| x -> error_xml x "not a term"

Automated verification of termination cert

9 October 2014

Contributions =~ XSD-guided XML-parser generator

Representation of XSD types in Coq

<group name = "n"> Inductive n :=
<complexType> | n_tagy : 6(T1)
<choice> ce
<element name="tagi"> T1</element> | n_tagy : 9(7})_

<element name="tag,"> Tr</element>
</choice>
</complexType>
</group>

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Contributions =~ XSD-guided XML-parser generator

Representation of XSD types in Coq

Definition n := 6(t).

. Coq type
XSD type expression t 9P
expression (t)
<sequence>us . . .U,</sequence> O(ur) * ... % 0(u,)
<group ref="m"/> <element
name/ref="m"/> m
<group ref="m" minOccurs = "0"/> .
<element name/ref="m" minOccurs = "0"/> option m
<group ref= "m" maxOccurs = "k"/> m+..xm
<element name/ref= "m" maxOccurs = "k"/> (kX times)
<group ref = "m" maxUccurs = "unbounded"/> list m
<element name/ref = "m" maxOccurs="unbounded"/>

Kim Quyen LY Automated verification of termination certificate 9 October 2014 42 / 68

Contributions =~ XSD-guided XML-parser generator

Conclusion of the first contribution

@ Developed tools (xsd2coq, xsd2ml) that are independent of CPF and could
be used with other XSD documents.

Problems:

@ Not every Coq value corresponds to a valid XML file.
= use dependent data types?

@ These tools are not certified.

Work on parsing certification:
@ a TRX parser (Koprowski, and Binsztok, 2010),
@ an LR(1) parser (Jourdan, Pottier, and Leroy, 2012) in Coq.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Contributions Definition and proof of a CPF verifier in Coq

Outline

© Contributions

@ Definition and proof of a CPF verifier in Coq

Kim Quyen LY Automated verification of termination cer 9 October 2014 44 / 68

Contributions Definition and proof of a CPF verifier in Coq

Define and prove correct a function:

check : certificateProblem -> bool

Formal correctness statement?

Theorem check_ok: forall c, check ¢ = true ->
not_if (is_termin_cert c) (EIS (rel_of_cert c)).

Definition not_if b P := if b then P else 7P.

Kim Quyen LY Automated verification of termination certificate

9 October 2014

Contributions Definition and proof of a CPF verifier in Coq

Rewrite relation associated to a certificate?

Definition certificationProblem := input * proof *

Inductive proof :=
| Proof_trsTerminationProof : trsTerminationProof -> proof
| Proof_trsNonterminationProof : trsNonterminationProof -> proof

Inductive input :=
| Input_trsInput : trsInput -> input
|

Definition trsInput := rules *

Kim Quyen LY Automated verification of termination certificate 9 October 2014 46 / 68

Contributions Definition and proof of a CPF verifier in Coq

Rewrite relation associated to a certificate?

Definition rules := list rule.
Definition rule := term * term.

Inductive term :=
| Term_var : var -> term
| Term_funapp : symbol -> list term -> term.

Inductive symbol :=
| Symbol_name : name -> symbol
| Symbol_sharp : symbol -> symbol
| Symbol_labeledSymbol : symbol -> label -> symbol.

Kim Quyen LY Automated verification of termination certificate

9 October 2014

Contributions Definition and proof of a CPF verifier in Coq

Translation of CPF terms to ColLoR terms

Problems:
@ In ColoR, terms are defined with respect to some signature defining the set
of symbols and their arity.
@ CPF does not explicitly give the arity of function symbols.
@ The arity of a function can change in the course of the verification of a
certificate.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 48 / 68

Contributions Definition and proof of a CPF verifier in Coq

Translation of CPF terms to ColLoR terms

Problems:

@ In ColoR, terms are defined with respect to some signature defining the set
of symbols and their arity.

@ CPF does not explicitly give the arity of function symbols.

@ The arity of a function can change in the course of the verification of a
certificate.

Our solution:
o Consider a fixed infinite set of function symbols, namely the type symbol
@ Take the arity function as parameter = the translation may fail.
@ The initial arity function can be computed by inspecting the rules.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 48 / 68

Contributions Definition and proof of a CPF verifier in Coq

Error monad

For returning useful information in case of failure, instead of bool we use:

Inductive result (A: Type): Type :=
| Ok : A -> result A
| Ko : message -> result A.

check: forall a:symbol->nat, color_rules a -> proof -> result unit

Theorem check_ok : forall i p,
let a := arity_in_input i in
forall R, rel_of_input a i = 0k R ->
check a R p = Ok unit ->
not_if (is_termin_proof p) (EIS R).

Kim Quyen LY Automated verification of termination certificate 9 October 2014 49 / 68

Contributions Definition and proof of a CPF verifier in Coq

Example: polynomial interpretation on N

Certificate for a proof by polynomial interpretation:

Inductive trsTerminationProof :=
| TrsTerminationProof_ruleRemoval : ... ->
orderingConstraintProof -> rules -> trsTerminationProof ->

Inductive orderingConstraintProof :=
| OrderingConstraintProof_redPair : redPair ->

Inductive redPair :=
| RedPair_interpretation : type -> list (symbol * arity * function)

Inductive type :=
| Type_polynomial : domain ->

Kim Quyen LY Automated verification of termination certificate 9 October 2014 50 / 68

Contributions Definition and proof of a CPF verifier in Coq

Fixpoint trsTerminationProof n a R p :=
match n with
| 0 =>Ko
| Sm =>

match p with
| TrsTerminationProof_rIsEmpty => rIsEmpty R
| TrsTerminationProof_ruleRemoval None ocp rs p =>

(* We check the correctness of the rule removal.

In case of success, we get the remaining rules. *)
Match ruleRemoval R ocp With R’ ===>

(* We translate the list of rules given by the user. *)
Match color_rules a nat_of_string rs With rs’ ===>
(* We check that the two lists of rules are equivalent. *)

if equiv_rules R’ rs’ then trsTerminationProof m R’ p
else Ko

Kim Quyen LY

Automated verification of termination certificate

9 October 2014 51 / 68

Contributions Definition and proof of a CPF verifier in Coq

Definition ruleRemoval a R ocp :=
match ocp with
| OrderingConstraintProof_redPair rp => redPair a R rp

Definition redPair a R rp :=
match rp with
| RedPair_interpretation t is => redPair_interpretation a R t is

Definition redPair_interpretation a R t :=
match t with
| Type_polynomial dom _ =>
polynomial_interpretation a R is dom

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Contributions Definition and proof of a CPF verifier in Coq

Definition polynomial_interpretation a R is dom :=
(* We check the correctness of the polynomial interpretation.
In case of success, we get functions for deciding (>=_I,>_I). *)
Match type_polynomial a is dom With (bge, bgt) ===>
(* We check that every rule is in >=_I. %)
if forallb (brule bge) R then
(* We return the rules not included in >_I. *)
Ok (filter (brule (neg bgt)) R)
else Ko

Definition type_polynomial a is dom :=
match dom with
| Domain_naturals => poly_nat a is

Kim Quyen LY Automated verification of termination certificate 9 October 2014 53 / 68

Contributions Definition and proof of a CPF verifier in Coq

Definition poly_nat a is :=
(* We first check that interpretation functions can be translated
into polynomials with a number of variables less than the arity
of the function symbols. *)
Match map_rev (color_interpret a) is With 1 ===>
(* We then check that polynomials are monotone. *)
if conditions_poly_nat 1 then
(* We return the boolean functions for checking (>=_I,>_I). *)
let pi := fun £ : Sig => fun_of_pairs_list a £ 1 in
Ok (fun t u => redpair_poly_nat_bge t u pi,
fun t u => redpair_poly_nat_bgt t u pi)
else Ko

Kim Quyen LY Automated verification of termination certificate 9 October 2014 54 / 68

Contributions Definition and proof of a CPF verifier in Coq

Correctness proof

Lemma poly_nat_ok : forall a is bge bgt R,
poly_nat a is = Ok (bge, bgt) -> forallb (brule bge) R = true ->
WF (red (filter (brule (neg bgt)) R)) -> WF (red R).

Lemma redPair_interpretation_ok : forall a R t is R’,
redPair_interpretation a R t is = Ok R’>->WF(red R’)-> WF (red R).

Lemma trsTerminationProof_ok : forall n a R t,
trsTerminationProof n a Rt = 0Ok _ -> WF (red R).

Kim Quyen LY Automated verification of termination certificate 9 October 2014 55 / 68

Contributions Definition and proof of a CPF verifier in Coq

Extraction to OCaml

@ Function definitions only (we do not need proof extraction).

@ Time to extract: 240s, and compile: 15s.

Kim Quyen LY Automated verification of termination certificate 9 October 2014 56 / 68

Contributions ~ Results

Outline

© Contributions

@ Results

Automated verification of termination certifi 9 October 2014

Contributions ~ Results

CeTA

Developed since 2009 by Sternagel, Thiemann, Zankl, ...
Extracted verifier from the IsaFoR library (128,000 LOC).
Developed in the Isabelle/HOL proof assistant.

Supports many more (non-)termination techniques.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Contributions ~ Results

AProVE

Results of AProVE on the 1463 TRS_Standard
CERTIFIED

1200+
11004
1000+
9004
8004
700+
600+
5004
4004
3004
2004

paly poly_mat poly_mat_arc color full
Strategy

B YES+MO O MAYBE

y

Kim Quyen LY Automated verification of termination certificate 9 October 2014 59 / 68

Contributions ~ Results

Old Rainbow vs. New Rainbow vs. CeTA (Cont.)

Results of Old Rainbow vs. New Rainbow vs. CeTA

Time ()

10000-
9000
8000
70004
6000
5000
4000
30004
2000
10004

0

5820

paly

H Cld Rainbow O Mew Rainbow M CeTA

GE00

5400

poly_mat poly_mat_arc caolar full
Strategy

y

Kim Quyen LY

Automated verification of termination certificate 9 October 2014

60 / 68

Contributions ~ Results

Old Rainbow vs. New Rainbow vs. CeTA

Results of Old Rainbow vs. New Rainbow vs. CeTA

CERTIFIED
900+
8004
7004
600 519
500 458468468 44046

342350350

3004
2004
1004
o-
poly poly_mat poly_mat_arc calar full
Strategy

B Cld Rainbow O Mew Rainbhow H CeTA

A" r

Kim Quyen LY Automated verification of termination certificate 9 October 2014 61 / 68

Conclusion

Outline

© Conclusion

Automated verification of termination certifi 9 October 2014 62 / 68

Conclusion

Conclusion

xsd2coq: 400 LOC OCaml.
xsd2ml: 600 LOC OCaml.
CPF verifier: 6800 LOC Cog.

Techniques currently supported in New Rainbow:

Polynomial interpretations over N or Q.

Matrix interpretations over N, NU {+o00}, NU {—o0} or Z U {—o0}.
Recursive path ordering (RPO).

Dependency pairs transformation.

Dependency graph decomposition.

Argument filtering.

Loops.

Kim Quyen LY Automated verification of termination certificate 9 October 2014

Conclusion

Trusted computing base

extraction (Cogq -> OCaml)

: l)
<Y
con

L

xsd2coq

weam

ocaml compiler

ol

'?[.'45— 3

o

xmizmi| xml-light library

Hii-rdware

05

-

ady

L
~
_~e

9 October 2014

64 / 68

Kim Quyen LY

Automated verification of termination certificate

Conclusion

Trusted computing base

Compcert: Leroy et al

S. Glondu, 2012 m l
Ca ARM: Fox et al

\ extraction (Coq -> OCamI)l ocaml compiler

‘ ‘)

v o
«©
- y |
Coq 4 .' \ Hardware

Las ot b
LY e ?" 1 w
xsd2coq
% selL4: Klein et al

xmi2ml xml-light library

TRX: Koprowski et
al, LR1: Jourdan et al

9 October 2014

Automated verification of termination certificate

Kim Quyen LY

Conclusion

Future work

@ Improve error handling.
@ Improve efficiency (e.g. using first-order data structures for maps).

@ Handle techniques already proved in CoLoR or Coccinelle (linear polynomial
interpretations over matrices, subterm criterion, SRS reversal, semantic
labeling, ...).

e Extend ColLoR and Coccinelle with more termination techniques (usable
rules, innermost termination, ...).

@ Handle other classes of termination problems (e.g. logic programs, Haskell
programs, ...).

Kim Quyen LY Automated verification of termination certificate 9 October 2014 66 / 68

Conclusion

https://gforge.inria.fr/projects/rainbow

Kim Quyen LY Automated verifi 9 October 2014 67 / 68

Conclusion

Thank you for your attention!!!

Kim Quyen LY ification of termination certificate 9 October 2014 68 / 68

	Introduction
	Framework
	Languages and tools
	Termination of rewriting and its certification

	Contributions
	XSD-guided XML-parser generator
	Definition and proof of a CPF verifier in Coq
	Results

	Conclusion

