# Automated verification of termination certificates

#### Kim Quyen LY

#### 9 October 2014





< □ > < 同 > < 回

## Outline

#### Introduction

#### 2 Framework

- Languages and tools
- Termination of rewriting and its certification

#### 3 Contributions

- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

## Why/how to certify software?

- Software have bugs, sometimes difficult to detect.
- Bugs are merely annoying and inconvenient, but some can have extremely serious consequences.

#### Solutions:

- Tests are necessary but cannot cover all cases.
- Model checking is powerful but cannot check all properties.
- Formal certification maybe very difficult and time-consuming.

## Why/how to certify software?

- Software have bugs, sometimes difficult to detect.
- Bugs are merely annoying and inconvenient, but some can have extremely serious consequences.

#### Solutions:

- Tests are necessary but cannot cover all cases.
- Model checking is powerful but cannot check all properties.
- Formal certification maybe very difficult and time-consuming.
- Using certificates.

## Using certificates

Instead of proving that a source code is correct for every possible input:

- has to be redone each time the source code is changed,
- difficult when the tool uses complex heuristics.

Check that its result is correct each time it is run by providing a certificate and verifying it

- does not depend on the source code,
- finding a solution to a problem is generally more difficult than checking that a solution is correct (P≠NP).



#### How to certify a software?

Proof on paper? long, difficult, error-prone (e.g. "Proof of a program: Find", Hoare, 1971)

 $\Rightarrow$  Use a proof assistant!

Generally provides:

- A language for defining functions and properties.
- Libraries of definitions and theorems.
- Proof tactics and decision procedures.

#### Examples of works done in a proof assistant:

- 4-color theorem (2005); odd-order theorem (Gonthier et al, 2012).
- Definition and verification of a realistic C compiler (Leroy 2009) in Coq.
- Verification of an OS kernel (Klein et al, 2009) in Isabelle.

< A > < B

## Termination certificates: motivation

- Termination competition organized since 2003.
- <u>Tools</u> become more and more complex.
- They unevitably contain bugs.
- Every year some tools are <u>disqualified</u> because of mistakes <u>found</u> in their proofs.
- We need more <u>trust</u> in their results.
- In 2007 certified category introduced in the competition.
- In this category the output of the termination tool must be <u>verified</u> by some established theorem prover/checker.

# CPF: a language for termination certificates

For the certified competition:

- CPF: Certification Problem Format was introduced,
- with clear syntax and semantics.
- Defined as an XSD (XML schema) file (2,800 LOC, 100 types).

Current certificate verifiers:

- Rainbow (uncertified Coq script generator).
- CiME3 (uncertified Coq script generator).
- CeTA (certified standalone tool).

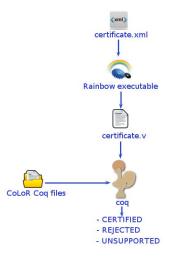
Develop a fast and safe standalone termination certificate verifier.

Our solution:

- Write a CPF verifier New-Rainbow in Coq.
- Prove its correctness by using the Coq libraries on rewriting theory and termination: CoLoR and Coccinelle.
- Extract it to OCaml.

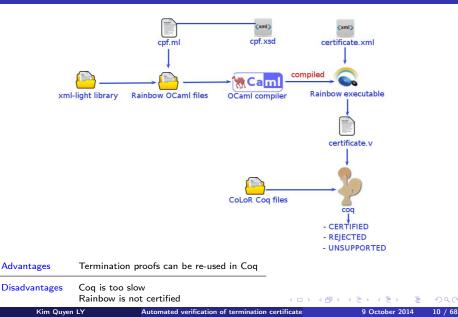
□ > < /□ > < /□</li>

## Old-Rainbow architecture: generate a Coq script



(日)

## Old-Rainbow architecture: generate a Coq script

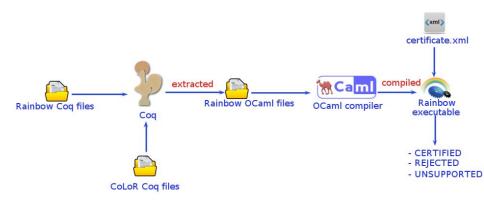


## New-Rainbow architecture: standalone tool



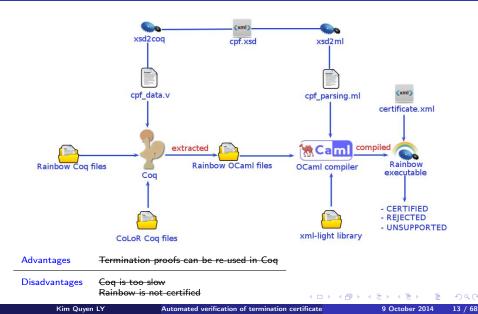
▲ 🗇 🕨 🔺

## New-Rainbow architecture: formalize Rainbow itself



< 一型 ▶

#### New-Rainbow architecture: XML-parser generator



## Outline

#### Introduction

#### 2 Framework

#### Languages and tools

• Termination of rewriting and its certification

#### 3 Contributions

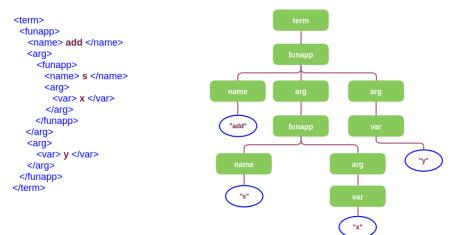
- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

< /⊒ > <

# XML: a language for describing trees

A (non)termination certificate is an XML file.



э

<ロ> (四) (四) (日) (日) (日)

# XSD (XML Schema): a language for describing sets of trees

#### XSD is the format used to define the grammar of (non)termination certificates.

| XSD type T                                                                                                                              | corresponding set of trees or sequences of trees                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <pre><element maxoccurs="j" minoccurs="i" name="tag">     <complextype> T     </complextype> T  </element> (i,j∈ N∪{"unbounded"})</pre> | set of sequences of $i$ to $j$ trees whose roots are labeled by "tag" and whose children belong to the set described by T |
| <sequence> T<sub>1</sub> T<sub>n</sub><br/></sequence>                                                                                  | set of sequences of trees $t_1, \ldots, t_n$ such that $t_i$ belongs to the set described by $T_i$                        |
| <choice> T<sub>1</sub> T<sub>n</sub><br/></choice>                                                                                      | union of the sets described by $T_1, \ldots, T_n$                                                                         |

# XSD: example from cpf.xsd

| XSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | valid XML file                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <proup name="term"><br/><choice><br/><element ref="var"></element><br/><element name="funapp"><br/><complextype><br/><sequence><br/><group ref="symbol"></group><br/><lement <br="" name="arg">maxOccurs="unbounded"<br/>minOccurs="0"&gt;<br/><complextype><br/><group ref="term"></group><br/><complextype><br/><group ref="term"></group><br/></complextype><br/><br/><!--/element--><br/><!--/element--><br/><!--/element--><br/><!--/element--><br/></complextype></lement></sequence></complextype></element></choice><br/></proup> | <funapp><br/><name> add </name><br/><arg><br/><funapp><br/><name> s </name><br/><arg><br/></arg><br/></funapp><br/></arg><br/><var> y </var><br/><br/><var> y </var><br/></funapp> |

э

・ロト ・ 日 ・ ・ 日 ・ ・



Functional programming language

- Functions are first-class objects:
  - a function can take as argument a function and return a function.
- Polymorphic inductive types.
- Automatic garbage collection.
- Functions can be defined by pattern matching.
- Exceptions.
- Programs must be well typed at compile time.
- Type inference.
- Module system.

# The Coq proof assistant

Interactive theorem prover

- Powerful logical system (calculus of (co)inductive constructions).
- Functions and proofs are first-class objects.
- Polymorphic and dependent inductive types/predicates.
- Functions and predicates can be defined by pattern matching.
- Large standard library (150,000 LOC) and numerous contributions.
- Powerful tactic language.
- Powerful type inference mechanism.
- <u>Extraction</u>:

functions and proofs can be compiled to OCaml, Haskell or Scheme.

## Coq libraries on rewriting theory and termination

- CoLoR (83,000 LOC by Blanqui, Koprowski, Strub, Coupet-Grimal, ...)
- Coccinelle (56,000 LOC by Contejean, Courtieu, Pons, ...)
- Mathematical structures: relations/graphs, (ordered) semi-rings.
- Data structures: vectors/arrays, matrices, finite multisets, integer polynomials with multiple variables, finite graphs.
- Term structures: strings, varyadic terms, algebraic terms with symbols of fixed arity,  $\lambda$ -terms with de Bruijn indices,  $\lambda$ -terms with named variables.
- **Transformation techniques**: dependency pairs transformation, dependency graph decomposition, arguments filtering, semantic labelling, SRS reversal.
- (Non-)termination criteria: loops, polynomial/matrix interpretations, RPO, subterm criterion, HORPO, Tait-Girard computability closure for HOR, ...

Remark: CoLoR includes a function for translating Coccinelle terms into CoLoR terms and reuse results from Coccinelle (only RPO for the moment).

(日) (四) (三) (三) (三)

## Outline

#### Introduction

#### 2 Framework

- Languages and tools
- Termination of rewriting and its certification

#### Contributions

- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

Image: A math a math

## Term rewriting

#### Dershowitz-Jouannaud 1990

"Rewrite systems are directed equations used to compute by repeatedly replacing subterms of a given formula with equal terms until the simplest form possible is obtained."

- Particular case: first-order functional programs.
- It is Turing-complete (termination is undecidable even with one rule only).
- Programming languages based on rewriting: CafeOBJ, ELAN, Maude, ...

## First-order terms/trees

- Terms:  $x|f(t_1,\ldots,t_n) \in T(\Sigma,\mathcal{X})$
- Position: Pos(t)
  - $\{\epsilon\}$  if  $t \in \mathcal{X}$
  - $\{\epsilon\} \cup \{i \cdot p | i \in [1, n], p \in \mathsf{Pos}(t_i)\}$ if  $t = f(t_1, \dots, t_n)$
- Substitution:  $\sigma : \mathcal{X} \to T(\Sigma, \mathcal{X})$ 
  - $x\sigma = \sigma(x)$
  - $f(t_1,\ldots,t_n)\sigma = f(t_1\sigma,\ldots,t_n\sigma)$

Example: f(a, g(h(y), x))

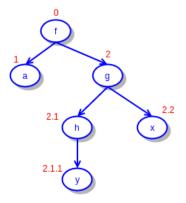
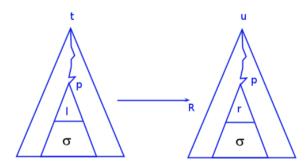


Image: A marked and A marked

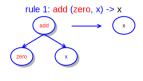
## Rewriting

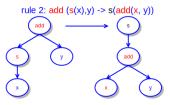
- Rewrite rule: pair of terms  $l \rightarrow r$
- Rewrite relation:  $\rightarrow_{\mathcal{R}} \subseteq T(\Sigma, \mathcal{X}) \times T(\Sigma, \mathcal{X})$  is defined as  $t \rightarrow_{\mathcal{R}} u$  iff  $\exists (l, r) \in \mathcal{R}, p \in \text{Pos}(t)$  and a substitution  $\sigma$  such that  $t|_{\rho} = l\sigma$  and  $u = t[r\sigma]_{\rho}$



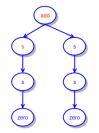
A ID > A (P) > A

## Example of rewrite sequence



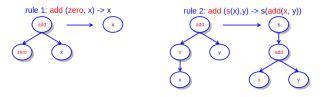


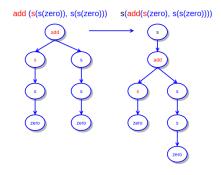
add (s(s(zero)), s(s(zero)))



3 DB F 3 -

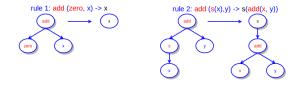
#### Example of rewrite sequence



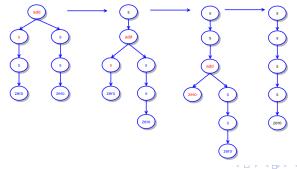


. . . . . . . . . .

#### Example of rewrite sequence



add (s(s(zero)), s(s(zero))) s(add(s(zero), s(s(zero)))) s(s(add(zero, s(s(zero))))) s(s(s(s(zero)))))



## CoLoR: Variables, function symbols and term

```
Notation variable := nat.
Record Signature : Type := mkSignature {
   symbol :> Type;
   arity : symbol -> nat;
   beq_symb : symbol -> symbol -> bool;
   beq_symb_ok : forall x y, beq_symb x y = true <-> x = y}.
Inductive term : Type :=
   | Var : variable -> term
   | Fun : forall f : Sig, vector term (arity f) -> term.
```

I SOC

イロト イポト イヨト イヨト

## CoLoR: Rewriting

```
Record rule : Type := mkRule { lhs : term; rhs : term }.
Definition red (R: list rule): term -> term -> Prop :=
exists l r c s,
In (mkRule l r) R ^ u = fill c (sub s l) ^ v = fill c (sub s r).
```

ヘロト ヘアト ヘリト ヘ

# CoLoR: (Non)-Termination

Termination:

Inductive SN A (R: relation A) x : Prop := SN\_intro : (forall y, R x y -> SN R y) -> SN R x.

Definition WF A (R: relation A) := forall x, SN R x.

Non-termination:

```
Definition IS A (R: relation A)(f: nat -> A) :=
forall i, R (f i)(f (S i)).
```

Definition EIS A (R: relation A) := exists f, IS R f.

▲ □ ▶ ▲ 骨 ▶ ▲ 国 ▶ ▲

# How to prove termination of TRSs?

A reduction ordering is a well-founded, stable and monotone ordering on terms.

#### Theorem

 $(\Sigma, \mathcal{R})$  terminates iff there is a reduction ordering > such that  $\mathcal{R} \subseteq >$ .

(日) (四) (日)

## Reduction pair

#### Theorem

 $(\Sigma, \mathcal{R})$  terminates if there is a monotone reduction pair  $(\geq, >)$  such that  $\mathcal{R} \subseteq \geq$  and  $(\Sigma, \mathcal{R} - >)$  terminates.

A reduction pair is a pair  $(\geq, >)$  of relations on terms such that:

- $\bullet \geq$  is reflexive, transitive, stable and monotone;
- > is well-founded and stable;
- $\bullet \geq \cdot > \subseteq > \text{ or } > \cdot \geq \subseteq >.$

It is monotone if > is monotone.

< ロ > < 得 > < 回 > < 回 >

#### Special case of reduction pair: interpretations

Let  $(A, >_A)$  be a well-founded domain and  $I_f : A^n \to A$  an interpretation function for every  $f \in \Sigma$  of arity n.

Definition:  $t >_I u$  if  $\forall \rho : \mathcal{X} \to I, \llbracket t \rrbracket_I(\rho) >_A \llbracket u \rrbracket_I(\rho)$ 

#### Theorem

 $>_I$  is a reduction ordering if, for all f,  $I_f$  is monotone in every variable.

 $I_f$  is monotone in its *i*-th argument if, for all  $x_1, \ldots, x_n, x'_i \in A$ ,  $I_f(x_1, \ldots, x_i, \ldots, x_n) > I_f(x_1, \ldots, x'_i, \ldots, x_n)$  whenever  $x_i > x'_i$ .

・ロト ・ 戸 ・ ・ ヨ ・ ・

## Special case of reduction pair: interpretations

Let  $(A, >_A)$  be a well-founded domain and  $I_f : A^n \to A$  an interpretation function for every  $f \in \Sigma$  of arity n.

Definition:  $t >_I u$  if  $\forall \rho : \mathcal{X} \to I, \llbracket t \rrbracket_I(\rho) >_A \llbracket u \rrbracket_I(\rho)$ 

#### Theorem

 $>_I$  is a reduction ordering if, for all f,  $I_f$  is monotone in every variable.

 $I_f$  is monotone in its *i*-th argument if, for all  $x_1, \ldots, x_n, x'_i \in A$ ,  $I_f(x_1, \ldots, x_i, \ldots, x_n) > I_f(x_1, \ldots, x'_i, \ldots, x_n)$  whenever  $x_i > x'_i$ .

#### Theorem

In a monotone algebra  $(A, (I_f)_{f \in \Sigma}, \geq)$ ,  $(\geq_I, >_I)$  is a monotone reduction pair. In a weak monotone algebra  $(A, (I_f)_{f \in \Sigma}, \geq)$ ,  $(\geq_I, >_I)$  is a reduction pair.

< ロ > < 得 > < 回 > < 回 >

# Special case of interpretation: integer polynomials

#### $A \in \mathbb{N}$ and $I_f \in A[x_1, \ldots, x_n]$

#### Theorem

A program defined by a set  $\mathcal{R}$  of rules terminates if:

- For all f,  $I_f$  is monotone in every variable.
- For all rule  $l \to r$ , we have  $\llbracket l \rrbracket >_l \llbracket r \rrbracket$ .

< □ > < □ > < □ > < □ >

# Example of polynomial interpretation on $\mathbb N$

Rewrite system:

$$\begin{array}{rcl} \mathsf{add}(\mathsf{zero},\mathsf{x}) & \to & \mathsf{x} \\ \mathsf{add}(\mathsf{succ}(\mathsf{x}),\mathsf{y}) & \to & \mathsf{succ}(\mathsf{add}(\mathsf{x},\mathsf{y})) \end{array}$$

Polynomial interpretation:

$$I_{add}(x, y) = 2x + y$$
$$I_{succ}(x) = x + 1$$
$$I_{zero} = 1$$

Termination proof:

$$\llbracket add(zero, x) \rrbracket = 2 + x >_{\mathbb{N}} \llbracket x \rrbracket = x$$
  
$$\llbracket add(succ(x), y) \rrbracket = 2(x+1) + y >_{\mathbb{N}} \llbracket succ(add(x, y)) \rrbracket = (2x+y) + 1$$

whatever are the values of  $x, y \in \mathbb{N}$ 

A A A

# Certificate for polynomial interpretation on $\mathbb{N}$ ?

- Certificate: the polynomials  $I_f$ .
- How to verify its correctness? monotony and compatibility are undecidable in general.

Instead one can use simpler sufficient conditions:

- $I_f$  is monotone in its *i*-th argument if it has non-negative coefficients only and the coefficient of  $x_i$  is positive.
- $[\![l]\!] > [\![r]\!]$ if  $[\![l]\!] - [\![r]\!] - 1$  has non-negative coefficients only.

# Outline

#### Introduction

#### 2) Framework

- Languages and tools
- Termination of rewriting and its certification

#### 3 Contributions

- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

< 同 ▶

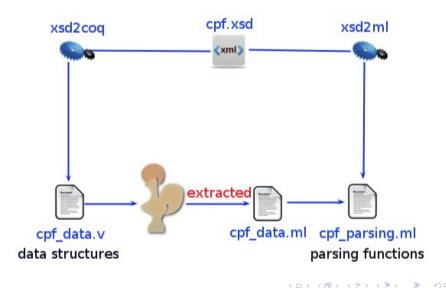
# CPF: a grammar for (non-)termination certificates

Since the CPF format is regularly modified and extended with new certificates, it is useful to have a tool that can automatically generate in OCaml and Coq:

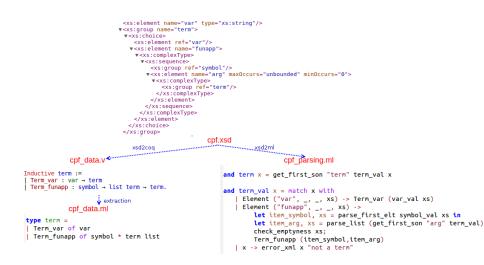
- data structures,
- parsers.

Image: A marked and A marked

# XSD-guided XML-parser generator



### Example



<ロ> (四) (四) (日) (日) (日)

# Representation of XSD types in Coq

```
Inductive n :=
| n_tag_1 : \theta(T_1)
...
| n_tag_k : \theta(T_k).
```

< ロ > < 同 > < 回 > < 回 >

### Representation of XSD types in Coq

#### Definition $n := \theta(t)$ .

| XSD type expression t                                                                                              | Coq type expression $\theta(t)$      |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <sequence>u1un</sequence>                                                                                          | $\theta(u_1) * \ldots * \theta(u_n)$ |
| <pre><group ref="m"></group> <element name="" ref="m"></element></pre>                                             | т                                    |
| <pre><group minoccurs="0" ref="m"></group> <element minoccurs="0" name="" ref="m"></element></pre>                 | option m                             |
| <pre><group maxoccurs="k" ref="m"></group> <element maxoccurs="k" name="" ref="m"></element></pre>                 | <i>m</i> * * <i>m</i><br>(k times)   |
| <pre><group maxoccurs="unbounded" ref="m"></group> <element maxoccurs="unbounded" name="" ref="m"></element></pre> | list m                               |

・ロト ・日下・ ・ 日下

# Conclusion of the first contribution

• Developed tools (xsd2coq, xsd2m1) that are independent of CPF and could be used with other XSD documents.

Problems:

- Not every Coq value corresponds to a valid XML file.
   ⇒ use dependent data types?
- These tools are not certified.

Work on parsing certification:

- a TRX parser (Koprowski, and Binsztok, 2010),
- an LR(1) parser (Jourdan, Pottier, and Leroy, 2012) in Coq.

# Outline

### Introduction

#### Framework

- Languages and tools
- Termination of rewriting and its certification

#### 3 Contributions

- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

▲ 🗇 🕨 🔺



```
Define and prove correct a function:
check : certificateProblem -> bool
```

```
Formal correctness statement?
```

```
Theorem check_ok: forall c, check c = true ->
    not_if (is_termin_cert c) (EIS (rel_of_cert c)).
```

```
Definition not_if b P := if b then P else ~P.
```

(日) (四) (日)

### Rewrite relation associated to a certificate?

```
Definition certificationProblem := input * proof * ...
```

```
Inductive proof :=
    Proof_trsTerminationProof : trsTerminationProof -> proof
    Proof_trsNonterminationProof : trsNonterminationProof -> proof
    ...
```

```
Inductive input :=
    | Input_trsInput : trsInput -> input
    | ...
```

Definition trsInput := rules \* ...

《曰》 《聞》 《臣》 《臣》

### Rewrite relation associated to a certificate?

```
Definition rules := list rule.
```

```
Definition rule := term * term.
```

```
Inductive term :=
  | Term_var : var -> term
  | Term_funapp : symbol -> list term -> term.
```

Inductive symbol :=
 | Symbol\_name : name -> symbol
 | Symbol\_sharp : symbol -> symbol
 | Symbol\_labeledSymbol : symbol -> label -> symbol.

< □ > < 同 > < 回 > <

# Translation of CPF terms to CoLoR terms

#### Problems:

- In CoLoR, terms are defined with respect to some signature defining the set of symbols and their arity.
- CPF does not explicitly give the arity of function symbols.
- The arity of a function can change in the course of the verification of a certificate.

< A > <

# Translation of CPF terms to CoLoR terms

#### Problems:

- In CoLoR, terms are defined with respect to some signature defining the set of symbols and their arity.
- CPF does not explicitly give the arity of function symbols.
- The arity of a function can change in the course of the verification of a certificate.

#### Our solution:

- Consider a fixed infinite set of function symbols, namely the type symbol
- Take the arity function as parameter  $\Rightarrow$  the translation may fail.
- The initial arity function can be computed by inspecting the rules.

### Error monad

For returning useful information in case of failure, instead of bool we use:

```
Inductive result (A: Type): Type :=
  | Ok : A -> result A
  | Ko : message -> result A.
```

check: forall a:symbol->nat, color\_rules a -> proof -> result unit

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

# Example: polynomial interpretation on $\mathbb N$

Certificate for a proof by polynomial interpretation:

```
Inductive trsTerminationProof :=
| TrsTerminationProof ruleRemoval : ... ->
  orderingConstraintProof -> rules -> trsTerminationProof -> ...
| ...
Inductive orderingConstraintProof :=
| OrderingConstraintProof_redPair : redPair -> ...
 . . .
Inductive redPair :=
| RedPair_interpretation : type -> list (symbol * arity * function)
| ...
Inductive type :=
| Type_polynomial : domain -> ...
 . . .
```

∃ <2 <</p>

< 日 > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
Fixpoint trsTerminationProof n a R p :=
 match n with
  | 0 => Ko ...
  | S m =>
    . . .
   match p with
    | TrsTerminationProof_rIsEmpty => rIsEmpty R
    | TrsTerminationProof_ruleRemoval None ocp rs p =>
     (* We check the correctness of the rule removal.
             In case of success, we get the remaining rules. *)
      Match ruleRemoval R ocp With R' ===>
      (* We translate the list of rules given by the user. *)
      Match color_rules a nat_of_string rs With rs' ===>
        (* We check that the two lists of rules are equivalent. *)
        if equiv_rules R' rs' then trsTerminationProof m R' p
        else Ko ...
```

= nan

ヘロト 人間ト ヘヨト ヘヨト

```
Definition ruleRemoval a R ocp :=
 match ocp with
  | OrderingConstraintProof_redPair rp => redPair a R rp
  . . .
Definition redPair a R rp :=
 match rp with
  | RedPair_interpretation t is => redPair_interpretation a R t is
  . . .
Definition redPair_interpretation a R t :=
 match t with
  | Type_polynomial dom _ =>
    polynomial_interpretation a R is dom
  . . .
```

< ロ > < 得 > < 回 > < 回 >

```
Definition polynomial_interpretation a R is dom :=
(* We check the correctness of the polynomial interpretation.
In case of success, we get functions for deciding (>=_I,>_I). *)
Match type_polynomial a is dom With (bge, bgt) ===>
 (* We check that every rule is in >=_I. *)
if forallb (brule bge) R then
  (* We return the rules not included in >_I. *)
  Ok (filter (brule (neg bgt)) R)
else Ko ...
```

```
Definition type_polynomial a is dom :=
  match dom with
  | Domain_naturals => poly_nat a is
```

. . .

= nan

・ロン ・聞と ・ヨン ・ヨン

```
Definition poly_nat a is :=
(* We first check that interpretation functions can be translated
into polynomials with a number of variables less than the arity
of the function symbols. *)
Match map_rev (color_interpret a) is With 1 ===>
  (* We then check that polynomials are monotone. *)
  if conditions_poly_nat 1 then
    (* We return the boolean functions for checking (>=_I,>_I). *)
   let pi := fun f : Sig => fun_of_pairs_list a f l in
   Ok (fun t u => redpair_poly_nat_bge t u pi,
        fun t u => redpair_poly_nat_bgt t u pi)
  else Ko ...
```

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

### Correctness proof

. . .

. . .

. . .

```
Lemma poly_nat_ok : forall a is bge bgt R,
poly_nat a is = Ok (bge, bgt) -> forallb (brule bge) R = true ->
WF (red (filter (brule (neg bgt)) R)) -> WF (red R).
```

Lemma redPair\_interpretation\_ok : forall a R t is R',
redPair\_interpretation a R t is = Ok R'->WF(red R')-> WF (red R).

Lemma trsTerminationProof\_ok : forall n a R t, trsTerminationProof n a R t = Ok \_ -> WF (red R).

### Extraction to OCaml

- Function definitions only (we do not need proof extraction).
- Time to extract: 240s, and compile: 15s.

(日)

#### Results

# Outline

#### Introduction

#### 2 Frameworl

- Languages and tools
- Termination of rewriting and its certification

#### 3 Contributions

- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

< /₽ > <



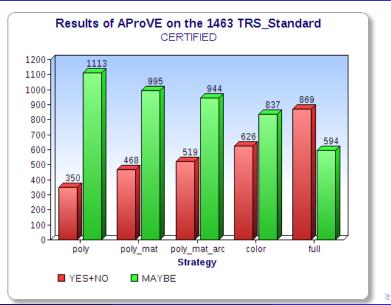




- Developed since 2009 by Sternagel, Thiemann, Zankl, ....
- Extracted verifier from the IsaFoR library (128,000 LOC).
- Developed in the Isabelle/HOL proof assistant.
- Supports many more (non-)termination techniques.

Image: A matrix and a matrix

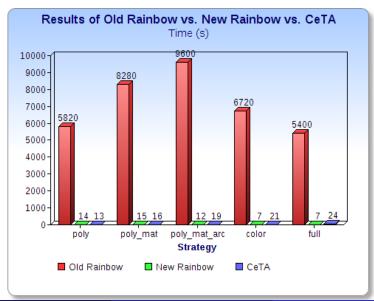




Kim Quyen LY

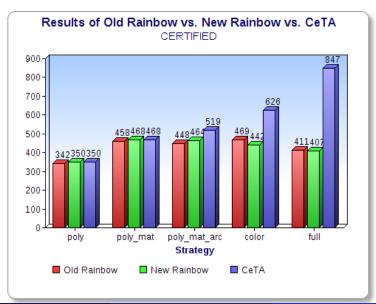
Results

# Old Rainbow vs. New Rainbow vs. CeTA (Cont.)



Results

### Old Rainbow vs. New Rainbow vs. CeTA



### Outline

### Introduction

#### 2) Framework

- Languages and tools
- Termination of rewriting and its certification

#### 3 Contributions

- XSD-guided XML-parser generator
- Definition and proof of a CPF verifier in Coq
- Results

#### 4 Conclusion

< 🗇 🕨 <

### Conclusion

xsd2coq: 400 LOC OCaml. xsd2ml: 600 LOC OCaml. CPF verifier: 6800 LOC Coq.

#### Techniques currently supported in New Rainbow:

- Polynomial interpretations over  $\mathbb{N}$  or  $\mathbb{Q}$ .
- Matrix interpretations over  $\mathbb{N}$ ,  $\mathbb{N} \cup \{+\infty\}$ ,  $\mathbb{N} \cup \{-\infty\}$  or  $\mathbb{Z} \cup \{-\infty\}$ .
- Recursive path ordering (RPO).
- Dependency pairs transformation.
- Dependency graph decomposition.
- Argument filtering.
- Loops.

▲ 同 ▶ ▲ 目

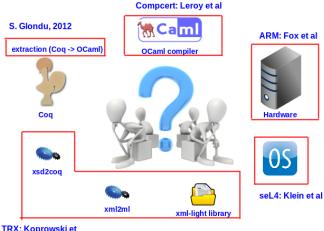
Conclusion

# Trusted computing base



Automated verification of termination certificate

# Trusted computing base



### TRX: Koprowski et al, LR1: Jourdan et al

. . . . . . . . . . .

### Future work

- Improve error handling.
- Improve efficiency (e.g. using first-order data structures for maps).
- Handle techniques already proved in CoLoR or Coccinelle (linear polynomial interpretations over matrices, subterm criterion, SRS reversal, semantic labeling, ...).
- Extend CoLoR and Coccinelle with more termination techniques (usable rules, innermost termination, ...).
- Handle other classes of termination problems (e.g. logic programs, Haskell programs, ...).

#### https://gforge.inria.fr/projects/rainbow

・ロト ・ 日 ・ ・ 日 ・ ・

#### Thank you for your attention!!!

< □ > < □ > < □ > < □ > < □ > < □ >