
Automated verification of termination certificates

Kim Quyen LY

9 October 2014

Kim Quyen LY Automated verification of termination certificates 9 October 2014 1 / 68



Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 2 / 68



Introduction

Why/how to certify software?

Software have bugs, sometimes difficult to detect.

Bugs are merely annoying and inconvenient,
but some can have extremely serious consequences.

Solutions:

Tests are necessary but cannot cover all cases.

Model checking is powerful but cannot check all properties.

Formal certification maybe very difficult and time-consuming.

Using certificates.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 3 / 68



Introduction

Why/how to certify software?

Software have bugs, sometimes difficult to detect.

Bugs are merely annoying and inconvenient,
but some can have extremely serious consequences.

Solutions:

Tests are necessary but cannot cover all cases.

Model checking is powerful but cannot check all properties.

Formal certification maybe very difficult and time-consuming.

Using certificates.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 3 / 68



Introduction

Using certificates

Instead of proving that a source code is correct for every possible input:

has to be redone each time the source code is changed,
difficult when the tool uses complex heuristics.

Check that its result is correct each time it is run
by providing a certificate and verifying it

does not depend on the source code,
finding a solution to a problem is generally more difficult
than checking that a solution is correct (P6=NP).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 4 / 68



Introduction

How to certify a software?

Proof on paper? long, difficult, error-prone
(e.g. “Proof of a program: Find”, Hoare, 1971)

⇒ Use a proof assistant!

Generally provides:
A language for defining functions and properties.
Libraries of definitions and theorems.
Proof tactics and decision procedures.

Examples of works done in a proof assistant:
4-color theorem (2005); odd-order theorem (Gonthier et al, 2012).
Definition and verification of a realistic C compiler (Leroy 2009) in Coq.
Verification of an OS kernel (Klein et al, 2009) in Isabelle.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 5 / 68



Introduction

Termination certificates: motivation

Termination competition organized since 2003.
Tools become more and more complex.
They unevitably contain bugs.
Every year some tools are disqualified because of mistakes found in their
proofs.
We need more trust in their results.
In 2007 certified category introduced in the competition.
In this category the output of the termination tool must be verified by some
established theorem prover/checker.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 6 / 68



Introduction

CPF: a language for termination certificates

For the certified competition:

CPF: Certification Problem Format was introduced,
with clear syntax and semantics.
Defined as an XSD (XML schema) file (2,800 LOC, 100 types).

Current certificate verifiers:
Rainbow (uncertified Coq script generator).
CiME3 (uncertified Coq script generator).
CeTA (certified standalone tool).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 7 / 68



Introduction

PhD goal

Develop a fast and safe standalone termination certificate verifier.

Our solution:

Write a CPF verifier New-Rainbow in Coq.
Prove its correctness by using the Coq libraries on rewriting theory and
termination: CoLoR and Coccinelle.
Extract it to OCaml.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 8 / 68



Introduction

Old-Rainbow architecture: generate a Coq script

Kim Quyen LY Automated verification of termination certificates 9 October 2014 9 / 68



Introduction

Old-Rainbow architecture: generate a Coq script

Advantages Termination proofs can be re-used in Coq

Disadvantages Coq is too slow
Rainbow is not certified

Kim Quyen LY Automated verification of termination certificates 9 October 2014 10 / 68



Introduction

New-Rainbow architecture: standalone tool

Kim Quyen LY Automated verification of termination certificates 9 October 2014 11 / 68



Introduction

New-Rainbow architecture: formalize Rainbow itself

Kim Quyen LY Automated verification of termination certificates 9 October 2014 12 / 68



Introduction

New-Rainbow architecture: XML-parser generator

Advantages Termination proofs can be re-used in Coq

Disadvantages Coq is too slow
Rainbow is not certified

Kim Quyen LY Automated verification of termination certificates 9 October 2014 13 / 68



Framework Languages and tools

Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 14 / 68



Framework Languages and tools

XML: a language for describing trees

A (non)termination certificate is an XML file.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 15 / 68



Framework Languages and tools

XSD (XML Schema): a language for describing sets of trees

XSD is the format used to define the grammar of (non)termination certificates.

XSD type T corresponding set of trees or sequences of trees
<element name="tag"

minOccurs="i"
maxOccurs="j">

<complextType> T
</complexType>

</element>

(i,j∈ N∪{"unbounded"})

set of sequences of i to j trees whose roots are labeled by "tag"
and whose children belong to the set described by T

<sequence> T1 ... Tn
</sequence>

set of sequences of trees t1, . . . , tn such that ti belongs
to the set described by Ti

<choice> T1 ... Tn
</choice> union of the sets described by T1, . . ., Tn

Kim Quyen LY Automated verification of termination certificates 9 October 2014 16 / 68



Framework Languages and tools

XSD: example from cpf.xsd

XSD valid XML file
<group name= "term">

<choice>
<element ref="var"/>
<element name="funapp">

<complexType>
<sequence>

<group ref="symbol"/>
<element name= "arg"

maxOccurs="unbounded"
minOccurs="0">
<complexType>

<group ref="term"/>
</complexType>

</element>
</sequence>

</complexType>
</element>

</choice>
</group>

<funapp>
<name> add </name>
<arg>

<funapp>
<name> s </name>
<arg>

<var> x </var>
</arg>

</funapp>
</arg>
<arg>

<var> y </var>
</arg>

</funapp>

Kim Quyen LY Automated verification of termination certificates 9 October 2014 17 / 68



Framework Languages and tools

Objective Caml

Functional programming language

Functions are first-class objects:
a function can take as argument a function and return a function.
Polymorphic inductive types.
Automatic garbage collection.
Functions can be defined by pattern matching.
Exceptions.
Programs must be well typed at compile time.
Type inference.
Module system.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 18 / 68



Framework Languages and tools

The Coq proof assistant

Interactive theorem prover
Powerful logical system (calculus of (co)inductive constructions).
Functions and proofs are first-class objects.
Polymorphic and dependent inductive types/predicates.
Functions and predicates can be defined by pattern matching.
Large standard library (150,000 LOC) and numerous contributions.
Powerful tactic language.
Powerful type inference mechanism.
Extraction:
functions and proofs can be compiled to OCaml, Haskell or Scheme.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 19 / 68



Framework Languages and tools

Coq libraries on rewriting theory and termination

CoLoR (83,000 LOC by Blanqui, Koprowski, Strub, Coupet-Grimal, . . . )
Coccinelle (56,000 LOC by Contejean, Courtieu, Pons, . . . )

Mathematical structures: relations/graphs, (ordered) semi-rings.

Data structures: vectors/arrays, matrices, finite multisets, integer polynomials with
multiple variables, finite graphs.

Term structures: strings, varyadic terms, algebraic terms with symbols of fixed
arity, λ-terms with de Bruijn indices, λ-terms with named variables.

Transformation techniques: dependency pairs transformation, dependency graph
decomposition, arguments filtering, semantic labelling, SRS reversal.

(Non-)termination criteria: loops, polynomial/matrix interpretations, RPO,
subterm criterion, HORPO, Tait-Girard computability closure for HOR, . . .

Remark: CoLoR includes a function for translating Coccinelle terms into CoLoR terms
and reuse results from Coccinelle (only RPO for the moment).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 20 / 68



Framework Termination of rewriting and its certification

Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 21 / 68



Framework Termination of rewriting and its certification

Term rewriting

Dershowitz-Jouannaud 1990
“Rewrite systems are directed equations used to compute by repeatedly replacing
subterms of a given formula with equal terms until the simplest form possible is
obtained.”

Particular case: first-order functional programs.
It is Turing-complete (termination is undecidable even with one rule only).
Programming languages based on rewriting: CafeOBJ, ELAN, Maude, . . .

Kim Quyen LY Automated verification of termination certificates 9 October 2014 22 / 68



Framework Termination of rewriting and its certification

First-order terms/trees

Terms: x |f (t1, . . . , tn) ∈ T (Σ,X )

Position: Pos(t)

{ε} if t ∈ X
{ε} ∪ {i · p|i ∈ [1, n], p ∈ Pos(ti )}
if t = f (t1, . . . , tn)

Substitution: σ : X → T (Σ,X )

xσ = σ(x)

f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ)

Example: f (a, g(h(y), x)

Kim Quyen LY Automated verification of termination certificates 9 October 2014 23 / 68



Framework Termination of rewriting and its certification

Rewriting

Rewrite rule: pair of terms l → r

Rewrite relation: →R⊆ T (Σ,X )× T (Σ,X ) is defined as
t →R u iff ∃(l , r) ∈ R, p ∈ Pos(t) and a substitution σ such that
t|p = lσ and u = t[rσ]p

Kim Quyen LY Automated verification of termination certificates 9 October 2014 24 / 68



Framework Termination of rewriting and its certification

Example of rewrite sequence

Kim Quyen LY Automated verification of termination certificates 9 October 2014 25 / 68



Framework Termination of rewriting and its certification

Example of rewrite sequence

Kim Quyen LY Automated verification of termination certificates 9 October 2014 26 / 68



Framework Termination of rewriting and its certification

Example of rewrite sequence

Kim Quyen LY Automated verification of termination certificates 9 October 2014 27 / 68



Framework Termination of rewriting and its certification

CoLoR: Variables, function symbols and term

Notation variable := nat.

Record Signature : Type := mkSignature {
symbol :> Type;
arity : symbol -> nat;
beq_symb : symbol -> symbol -> bool;
beq_symb_ok : forall x y, beq_symb x y = true <-> x = y}.

Inductive term : Type :=
| Var : variable -> term
| Fun : forall f : Sig, vector term (arity f) -> term.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 28 / 68



Framework Termination of rewriting and its certification

CoLoR: Rewriting

Record rule : Type := mkRule { lhs : term; rhs : term }.

Definition red (R: list rule): term -> term -> Prop :=
exists l r c s,
In (mkRule l r) R ∧ u = fill c (sub s l) ∧ v = fill c (sub s r).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 29 / 68



Framework Termination of rewriting and its certification

CoLoR: (Non)-Termination

Termination:
Inductive SN A (R: relation A) x : Prop :=
SN_intro : (forall y, R x y -> SN R y) -> SN R x.

Definition WF A (R: relation A) := forall x, SN R x.

Non-termination:

Definition IS A (R: relation A)(f: nat -> A) :=
forall i, R (f i)(f (S i)).

Definition EIS A (R: relation A) := exists f, IS R f.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 30 / 68



Framework Termination of rewriting and its certification

How to prove termination of TRSs?

A reduction ordering is a well-founded, stable and monotone ordering on terms.

Theorem

(Σ,R) terminates iff there is a reduction ordering > such that R ⊆ >.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 31 / 68



Framework Termination of rewriting and its certification

Reduction pair

Theorem

(Σ,R) terminates if there is a monotone reduction pair (≥, >) such that
R ⊆ ≥ and (Σ,R−>) terminates.

A reduction pair is a pair (≥, >) of relations on terms such that:
≥ is reflexive, transitive, stable and monotone;
> is well-founded and stable;
≥ · >⊆> or > · ≥⊆>.

It is monotone if > is monotone.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 32 / 68



Framework Termination of rewriting and its certification

Special case of reduction pair: interpretations

Let (A, >A) be a well-founded domain and If : An → A an interpretation function
for every f ∈ Σ of arity n.

Definition: t >I u if ∀ρ : X → I , [[t]]I (ρ) >A [[u]]I (ρ)

Theorem
>I is a reduction ordering if, for all f , If is monotone in every variable.

If is monotone in its i-th argument if, for all x1, . . . , xn, x ′i ∈ A,
If (x1, . . . , xi , . . . , xn) > If (x1, . . . , x

′
i , . . . , xn) whenever xi > x ′i .

Theorem

In a monotone algebra (A, (If )f∈Σ,≥), (≥I , >I ) is a monotone reduction pair.
In a weak monotone algebra (A, (If )f∈Σ,≥), (≥I , >I ) is a reduction pair.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 33 / 68



Framework Termination of rewriting and its certification

Special case of reduction pair: interpretations

Let (A, >A) be a well-founded domain and If : An → A an interpretation function
for every f ∈ Σ of arity n.

Definition: t >I u if ∀ρ : X → I , [[t]]I (ρ) >A [[u]]I (ρ)

Theorem
>I is a reduction ordering if, for all f , If is monotone in every variable.

If is monotone in its i-th argument if, for all x1, . . . , xn, x ′i ∈ A,
If (x1, . . . , xi , . . . , xn) > If (x1, . . . , x

′
i , . . . , xn) whenever xi > x ′i .

Theorem

In a monotone algebra (A, (If )f∈Σ,≥), (≥I , >I ) is a monotone reduction pair.
In a weak monotone algebra (A, (If )f∈Σ,≥), (≥I , >I ) is a reduction pair.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 33 / 68



Framework Termination of rewriting and its certification

Special case of interpretation: integer polynomials

A ∈ N and If ∈ A[x1, . . . , xn]

Theorem
A program defined by a set R of rules terminates if:

For all f , If is monotone in every variable.
For all rule l → r , we have [[l ]] >I [[r ]].

Kim Quyen LY Automated verification of termination certificates 9 October 2014 34 / 68



Framework Termination of rewriting and its certification

Example of polynomial interpretation on N

Rewrite system:

add(zero,x) → x
add(succ(x),y) → succ(add(x,y))

Polynomial interpretation:

Iadd(x , y) = 2x + y
Isucc(x) = x + 1

Izero = 1

Termination proof:

[[add(zero, x)]] = 2 + x >N [[x ]] = x
[[add(succ(x), y)]] = 2(x + 1) + y >N [[succ(add(x , y))]] = (2x + y) + 1

whatever are the values of x , y ∈ N

Kim Quyen LY Automated verification of termination certificates 9 October 2014 35 / 68



Framework Termination of rewriting and its certification

Certificate for polynomial interpretation on N?

Certificate: the polynomials If .

How to verify its correctness?
monotony and compatibility are undecidable in general.

Instead one can use simpler sufficient conditions:
If is monotone in its i-th argument
if it has non-negative coefficients only and the coefficient of xi is positive.

[[l ]] > [[r ]]
if [[l ]]− [[r ]]− 1 has non-negative coefficients only.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 36 / 68



Contributions XSD-guided XML-parser generator

Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 37 / 68



Contributions XSD-guided XML-parser generator

CPF: a grammar for (non-)termination certificates

Since the CPF format is regularly modified and extended with new certificates, it
is useful to have a tool that can automatically generate in OCaml and Coq:

data structures,
parsers.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 38 / 68



Contributions XSD-guided XML-parser generator

XSD-guided XML-parser generator

Kim Quyen LY Automated verification of termination certificates 9 October 2014 39 / 68



Contributions XSD-guided XML-parser generator

Example

Kim Quyen LY Automated verification of termination certificates 9 October 2014 40 / 68



Contributions XSD-guided XML-parser generator

Representation of XSD types in Coq

<group name = "n">
<complexType>

<choice>
<element name="tag1"> T1</element>
...
<element name="tagk"> Tk</element>

</choice>
</complexType>

</group>

Inductive n :=
| n_tag1 : θ(T1)
...
| n_tagk : θ(Tk).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 41 / 68



Contributions XSD-guided XML-parser generator

Representation of XSD types in Coq

Definition n := θ(t).

XSD type expression t
Coq type
expression θ(t)

<sequence>u1...un</sequence> θ(u1) ∗ ... ∗ θ(un)

<group ref="m"/> <element
name/ref="m"/> m

<group ref="m" minOccurs = "0"/>
<element name/ref="m" minOccurs = "0"/> option m

<group ref= "m" maxOccurs = "k"/>
<element name/ref= "m" maxOccurs = "k"/>

m ∗ ... ∗m
(k times)

<group ref = "m" maxOccurs = "unbounded"/>
<element name/ref = "m" maxOccurs="unbounded"/>

list m

Kim Quyen LY Automated verification of termination certificates 9 October 2014 42 / 68



Contributions XSD-guided XML-parser generator

Conclusion of the first contribution

Developed tools (xsd2coq, xsd2ml) that are independent of CPF and could
be used with other XSD documents.

Problems:

Not every Coq value corresponds to a valid XML file.
⇒ use dependent data types?
These tools are not certified.

Work on parsing certification:
a TRX parser (Koprowski, and Binsztok, 2010),
an LR(1) parser (Jourdan, Pottier, and Leroy, 2012) in Coq.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 43 / 68



Contributions Definition and proof of a CPF verifier in Coq

Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 44 / 68



Contributions Definition and proof of a CPF verifier in Coq

Goal

Define and prove correct a function:
check : certificateProblem -> bool

Formal correctness statement?

Theorem check_ok: forall c, check c = true ->
not_if (is_termin_cert c) (EIS (rel_of_cert c)).

Definition not_if b P := if b then P else ~P.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 45 / 68



Contributions Definition and proof of a CPF verifier in Coq

Rewrite relation associated to a certificate?

Definition certificationProblem := input * proof * ...

Inductive proof :=
| Proof_trsTerminationProof : trsTerminationProof -> proof
| Proof_trsNonterminationProof : trsNonterminationProof -> proof
| ...

Inductive input :=
| Input_trsInput : trsInput -> input
| ...

Definition trsInput := rules * ...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 46 / 68



Contributions Definition and proof of a CPF verifier in Coq

Rewrite relation associated to a certificate?

Definition rules := list rule.

Definition rule := term * term.

Inductive term :=
| Term_var : var -> term
| Term_funapp : symbol -> list term -> term.

Inductive symbol :=
| Symbol_name : name -> symbol
| Symbol_sharp : symbol -> symbol
| Symbol_labeledSymbol : symbol -> label -> symbol.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 47 / 68



Contributions Definition and proof of a CPF verifier in Coq

Translation of CPF terms to CoLoR terms

Problems:
In CoLoR, terms are defined with respect to some signature defining the set
of symbols and their arity.
CPF does not explicitly give the arity of function symbols.
The arity of a function can change in the course of the verification of a
certificate.

Our solution:
Consider a fixed infinite set of function symbols, namely the type symbol
Take the arity function as parameter ⇒ the translation may fail.
The initial arity function can be computed by inspecting the rules.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 48 / 68



Contributions Definition and proof of a CPF verifier in Coq

Translation of CPF terms to CoLoR terms

Problems:
In CoLoR, terms are defined with respect to some signature defining the set
of symbols and their arity.
CPF does not explicitly give the arity of function symbols.
The arity of a function can change in the course of the verification of a
certificate.

Our solution:
Consider a fixed infinite set of function symbols, namely the type symbol
Take the arity function as parameter ⇒ the translation may fail.
The initial arity function can be computed by inspecting the rules.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 48 / 68



Contributions Definition and proof of a CPF verifier in Coq

Error monad

For returning useful information in case of failure, instead of bool we use:

Inductive result (A: Type): Type :=
| Ok : A -> result A
| Ko : message -> result A.

check: forall a:symbol->nat, color_rules a -> proof -> result unit

Theorem check_ok : forall i p,
let a := arity_in_input i in
forall R, rel_of_input a i = Ok R ->

check a R p = Ok unit ->
not_if (is_termin_proof p) (EIS R).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 49 / 68



Contributions Definition and proof of a CPF verifier in Coq

Example: polynomial interpretation on N

Certificate for a proof by polynomial interpretation:
Inductive trsTerminationProof :=
| TrsTerminationProof_ruleRemoval : ... ->

orderingConstraintProof -> rules -> trsTerminationProof -> ...
| ...

Inductive orderingConstraintProof :=
| OrderingConstraintProof_redPair : redPair -> ...
| ...

Inductive redPair :=
| RedPair_interpretation : type -> list (symbol * arity * function) -> ...
| ...

Inductive type :=
| Type_polynomial : domain -> ...
| ...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 50 / 68



Contributions Definition and proof of a CPF verifier in Coq

Fixpoint trsTerminationProof n a R p :=
match n with
| 0 => Ko ...
| S m =>

...
match p with
| TrsTerminationProof_rIsEmpty => rIsEmpty R
| TrsTerminationProof_ruleRemoval None ocp rs p =>
(* We check the correctness of the rule removal.

In case of success, we get the remaining rules. *)
Match ruleRemoval R ocp With R’ ===>
(* We translate the list of rules given by the user. *)
Match color_rules a nat_of_string rs With rs’ ===>

(* We check that the two lists of rules are equivalent. *)
if equiv_rules R’ rs’ then trsTerminationProof m R’ p
else Ko ...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 51 / 68



Contributions Definition and proof of a CPF verifier in Coq

Definition ruleRemoval a R ocp :=
match ocp with
| OrderingConstraintProof_redPair rp => redPair a R rp
...

Definition redPair a R rp :=
match rp with
| RedPair_interpretation t is => redPair_interpretation a R t is
...

Definition redPair_interpretation a R t :=
match t with
| Type_polynomial dom _ =>

polynomial_interpretation a R is dom
...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 52 / 68



Contributions Definition and proof of a CPF verifier in Coq

Definition polynomial_interpretation a R is dom :=
(* We check the correctness of the polynomial interpretation.

In case of success, we get functions for deciding (>=_I,>_I). *)
Match type_polynomial a is dom With (bge, bgt) ===>
(* We check that every rule is in >=_I. *)
if forallb (brule bge) R then

(* We return the rules not included in >_I. *)
Ok (filter (brule (neg bgt)) R)

else Ko ...

Definition type_polynomial a is dom :=
match dom with

| Domain_naturals => poly_nat a is
...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 53 / 68



Contributions Definition and proof of a CPF verifier in Coq

Definition poly_nat a is :=
(* We first check that interpretation functions can be translated
into polynomials with a number of variables less than the arity
of the function symbols. *)
Match map_rev (color_interpret a) is With l ===>
(* We then check that polynomials are monotone. *)
if conditions_poly_nat l then

(* We return the boolean functions for checking (>=_I,>_I). *)
let pi := fun f : Sig => fun_of_pairs_list a f l in
Ok (fun t u => redpair_poly_nat_bge t u pi,

fun t u => redpair_poly_nat_bgt t u pi)
else Ko ...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 54 / 68



Contributions Definition and proof of a CPF verifier in Coq

Correctness proof

Lemma poly_nat_ok : forall a is bge bgt R,
poly_nat a is = Ok (bge, bgt) -> forallb (brule bge) R = true ->
WF (red (filter (brule (neg bgt)) R)) -> WF (red R).

...

Lemma redPair_interpretation_ok : forall a R t is R’,
redPair_interpretation a R t is = Ok R’->WF(red R’)-> WF (red R).

...

Lemma trsTerminationProof_ok : forall n a R t,
trsTerminationProof n a R t = Ok _ -> WF (red R).

...

Kim Quyen LY Automated verification of termination certificates 9 October 2014 55 / 68



Contributions Definition and proof of a CPF verifier in Coq

Extraction to OCaml

Function definitions only (we do not need proof extraction).
Time to extract: 240s, and compile: 15s.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 56 / 68



Contributions Results

Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 57 / 68



Contributions Results

CeTA

Developed since 2009 by Sternagel, Thiemann, Zankl, . . .
Extracted verifier from the IsaFoR library (128,000 LOC).
Developed in the Isabelle/HOL proof assistant.
Supports many more (non-)termination techniques.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 58 / 68



Contributions Results

AProVE

Kim Quyen LY Automated verification of termination certificates 9 October 2014 59 / 68



Contributions Results

Old Rainbow vs. New Rainbow vs. CeTA (Cont.)

Kim Quyen LY Automated verification of termination certificates 9 October 2014 60 / 68



Contributions Results

Old Rainbow vs. New Rainbow vs. CeTA

Kim Quyen LY Automated verification of termination certificates 9 October 2014 61 / 68



Conclusion

Outline

1 Introduction

2 Framework
Languages and tools
Termination of rewriting and its certification

3 Contributions
XSD-guided XML-parser generator
Definition and proof of a CPF verifier in Coq
Results

4 Conclusion

Kim Quyen LY Automated verification of termination certificates 9 October 2014 62 / 68



Conclusion

Conclusion

xsd2coq: 400 LOC OCaml.
xsd2ml: 600 LOC OCaml.
CPF verifier: 6800 LOC Coq.

Techniques currently supported in New Rainbow:

Polynomial interpretations over N or Q.
Matrix interpretations over N, N ∪ {+∞}, N ∪ {−∞} or Z ∪ {−∞}.
Recursive path ordering (RPO).
Dependency pairs transformation.
Dependency graph decomposition.
Argument filtering.
Loops.

Kim Quyen LY Automated verification of termination certificates 9 October 2014 63 / 68



Conclusion

Trusted computing base

Kim Quyen LY Automated verification of termination certificates 9 October 2014 64 / 68



Conclusion

Trusted computing base

Kim Quyen LY Automated verification of termination certificates 9 October 2014 65 / 68



Conclusion

Future work

Improve error handling.
Improve efficiency (e.g. using first-order data structures for maps).
Handle techniques already proved in CoLoR or Coccinelle (linear polynomial
interpretations over matrices, subterm criterion, SRS reversal, semantic
labeling, . . . ).
Extend CoLoR and Coccinelle with more termination techniques (usable
rules, innermost termination, . . . ).
Handle other classes of termination problems (e.g. logic programs, Haskell
programs, . . . ).

Kim Quyen LY Automated verification of termination certificates 9 October 2014 66 / 68



Conclusion

https://gforge.inria.fr/projects/rainbow

Kim Quyen LY Automated verification of termination certificates 9 October 2014 67 / 68



Conclusion

Thank you for your attention!!!

Kim Quyen LY Automated verification of termination certificates 9 October 2014 68 / 68


	Introduction
	Framework
	Languages and tools
	Termination of rewriting and its certification

	Contributions
	XSD-guided XML-parser generator
	Definition and proof of a CPF verifier in Coq
	Results

	Conclusion

