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Chapter 1

Introduction

The development of mathematics in the direction of greater exactness
has - as is well known - led to large tracts of it becoming formalized, so
that proofs can be carried out according to a few mechanical rules.

Kurt Gödel, On formally undecidable propositions of Principia Mathe-
matica and related systems I, 1931.

Making sure that a computer program behaves as expected, especially in
critical applications (health, transport, energy, communications, etc.), is more
and more important, all the more so since computer programs become more
and more ubiquitous and essential to the functioning of modern societies. But
how to check that a program behaves as expected, in particular when the range
of its inputs is very large or potentially infinite? To express with exactness
what is the expected behavior of a program, one first needs to use some formal
logical language. However, as shown by Gödel in [64], in any formal system rich
enough for doing arithmetic, there are valid formulas that cannot be proved.
Therefore, there is no program that can decide whether any property is true or
not. However, we can have a program that decides whether any proof is correct
or not, and the present work will use in an essential way such a program, namely
Coq [34], to formally prove the correctness of some particular program.

An important program property, especially in systems with strong time con-
straints, is termination: will the program always provide an answer? (Un)for-
tunately, as shown by Turing in [133], termination is not decidable: there is no
Turing-machine that, for any pair (p, i) made of a finite program description
p and a finite input i for p, can tell in a finite amount of time whether p ter-
minates on i or not. This led to the development of many different heuristics
and tools (e.g. AProVE [1], TTT2 [132], . . . ) for trying to prove the termina-
tion of programs. In particular, term rewriting theory [50, 125], introduced by
Knuth as a tool for deciding algebraic equational theories [78], provides a gen-
eral framework for studying program termination with applications to concrete
programming languages like Prolog [93, 108], Haskell [58, 57], Java [97], . . . This
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is the framework that we will consider in this work.
But, in turn, how to guarantee that a program implementing such a heuristic

is correct? One way to break this vicious circle relies on the fact that, for a given
problem, checking that a solution is correct is usually easier than finding such
a solution, because the latter involves some back-tracking mechanism while the
former only requires blind computations. Hence, we can imagine the following
scenario: modify the tool so that it does not only answer YES or NO, but also
outputs some data, called certificate, that can be used to verify the correctness
of the answer; and design these certificates in such a way that their verification
is amenable to a complete formalization and correctness proof. Althought it
seems to only move the problem from one program to another, the certificate
verifier, there is in fact a gain in complexity. For instance, finding a boolean
assignment satisfying some boolean formula (SAT problem) is (in the worst case)
exponential in the number of boolean variables, while verifying the correctness
of a given assignment (the certificate) is linear in the size of the formula. This
is the approach that various automated provers for the termination of first-
order term rewrite systems started to adopt in 2007 [126]. A common formal
language, CPF (Certification Problem Format) [43], has then been designed
for representing termination certificates, and certificate verifiers started to be
developed: Rainbow [14], CiME3 [31] and CeTA [123].

In this work, we explain the development of a new, faster and formally
proved version of Rainbow based on the extraction mechanism of Coq [86]. The
previous version of Rainbow verified a CPF file in two steps (see Figure 1.1).
First, it used a non-certified OCaml program to translate a CPF file into a
Coq script, using the Coq libraries on rewriting theory and termination CoLoR
[13, 15, 16] and Coccinelle [32, 30]. Second, it called Coq to check the correctness
of the script. This approach is interesting for it provides a way to reuse in
Coq termination proofs generated by external tools. This is also the approach
followed by CiME3. However, it suffers from a number of deficiencies. First,
because in Coq functions are interpreted, computation is much slower than with
programs written in a standard programming language and compiled into binary
code. Second, because the translation from CPF to Coq is not certified, it may
contain errors and either lead to the rejection of valid certificates, or to the
acceptance of wrong certificates. Moreover, the data type used for representing
certificates internally and the parsing function used to create a value of this data
type from a text file are written by hand. This is a possible source of errors
and is time-consuming. To solve the latter problem, one needs to define and
formally prove the correctness of a function checking whether a certificate is
valid or not. To avoid the problem of parser, one can develop a simple compiler
for generating a Coq data type definition for representing XML Schema data
types [136, 137], and an XML [138] parser for CPF. To solve the former problem,
one needs to compile this function to binary code. The present work shows how
to solve these two problems by using the proof assistant Coq and its extraction
mechanism to the programming language OCaml [84]. Indeed, data structures
and functions defined in Coq can be translated to OCaml and then compiled to
binary code by using the OCaml compiler. A similar approach was first initiated
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in CeTA [122] using the Isabelle proof assistant [73].

Figure 1.1: Work flow for generating the previous version of Rainbow

1.1 Related work
As mentioned earlier, there are two other tools verifying termination certifi-

cates: CeTA and CiME3. Over kinds of certificates have also been considered.
We discuss some of them hereafter.

CeTA uses the same approach as our new version of Rainbow: it is a Haskell
program [103] automatically extracted from a formal development done with
the proof assistant Isabelle [100, 73] using higher-order logic (HOL).

Isabelle/HOL [94] is a polymorphic version of Church’s simple theory of types
[26]. It can be understood as a simply-typed version of classical set theory with
the axiom of choice [102, 101].

On the other hand, Coq is based on Martin-Löf’s intuitionistic type theory
[89] and Girard’ system F [62]. It is however possible to formalize classical argu-
ments by explicitly invoking the axiom of excluded middle forall P:Prop,P\/~P
or other axioms (e.g. axiom of dependent choice, etc.).

CeTA is certified using the Isabelle/HOL library on rewriting theory and ter-
mination IsaFoR [74]. This library contains more theorems on first-order rewrite
systems than CoLoR [117, 118, 119, 120, 128]. On the other hand, CoLoR con-
tains some theorems on λ-calculus and higher-order rewriting [79, 12]. Hence,
CeTA supports more certificates than Rainbow.

CiME3 is a non-certified termination tool. It generates Coq scripts based on
a Coq library called Coccinelle. This approach is similar to the previous version
of Rainbow. CiME3 uses shallow embedding (as native functions in the proof
assistant) for some types of objects and some termination techniques, while
CoLoR and IsaFoR use deep embedding (as datatype). It makes CiME3 cannot
benefit the Coq extraction mechanism to obtain an independent tool.

7



CoLoR and Coccinelle are formalized differently and work with different no-
tions of terms. However, in CoLoR, there is a translation of CoLoR terms into
Coccinelle terms in order to reuse some results/functions available in Coccinelle
(recursive path ordering for the moment). The converse is possible but more
complicated because not every Coccinelle term corresponds to a valid CoLoR
term.

Various SAT and SMT provers can also provides certificates for the (un)satisfi-
ability of a boolean formula modulo some decidable theories like linear arith-
metic, etc. SMTCoq [2] is a certificate verifier written and proved in Coq, that
is used by the SAT solver ZChaff [107] and the SMT solver veriT [112]. This
checker is written in a modular way by combining a checker for each theory.

Several SAT and SMT solvers have been integrated in LCF style interactive
theorem provers including CVC Lite in HOL Light [90], haRVey in Isabelle/HOL
[53], Z3 in HOL and Isabelle/HOL [18].

CompCert [28] is a verified compiler for the C programming language. The
produced assembly code is proved to behave exactly the same as the input C
program, according to a formally defined operational semantics of these lan-
guages. One can use Compcert to verify a source program. For instance, a case
study on instruction scheduling optimizations [131] used Compcert, provided a
translation validation that formally proved to be correct in Coq. While the
transformation can be written in an unverified language (in OCaml).

1.2 Contributions
My contributions can be summarized as follows:

1. The format of termination certificates, CPF, is defined as an XSD docu-
ment. This means that certificates are XML files that must be valid wrt
CPF [111]. In order to reduce the risk of errors in the parsing of CPF files,
and because CPF is extended every year with new kinds of certificates, I
developed two tools xsd2coq and xsd2ml that, given any XSD document
D, generates Coq data structures and OCaml parsing functions for repre-
senting in Coq and OCaml, XML files valid wrt D. In particular, we have a
Coq data structure cpf for representing termination certificates valid wrt
the version 2.1 of CPF.

2. I defined in Coq functions for translating every data structure used in cpf
into a data structure used in CoLoR [16] and Coccinelle [30]. Note however
that since these libraries use functors and modules [25], which are not first-
class objects in Coq, I had to rewrite various files by replacing functors
and modules by functions and records respectively.

3. I defined in Coq a function check:cpf->bool for checking the correct-
ness of a certificate, that is, a boolean function that returns true if the
certificate is correct, and false otherwise. And, in order to give useful
feedbacks to users in case of failure, I use an error monad over bool [139].
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4. Using the theorems available in CoLoR and Coccinelle, I formally proved
in Coq the correctness of the function check, that is, I proved that if c is
a certificate for the (non) termination of some term rewrite system R and
check(c) returns true, then R (does not) terminates (see Figure 6.1 on
page 72 for the formal statement in Coq).

5. Finally, using Coq extraction mechanism to OCaml and the OCaml parsing
functions generated by xsd2ml, I get an OCaml program that I can compile
into a fast certified standalone termination certificate verifier. To which
extent exactly? This is discussed in Section 7.2.

The overall work flow is summarized in Figure 1.2.

Figure 1.2: Work flow for generating Rainbow

1.3 Outline
This document is organized as follows:

Chapter 2. I give some brief introduction to the languages and tools used in my work:
the programming language OCaml, the proof assistant Coq, the XML text
file format, and the XSD text file format.

Chapter 3. I introduce the notion of term rewrite system (TRS), define what it means
for a TRS to terminate, provide examples of heuristics for proving the
termination of a TRS, and introduce the notion of certificates for the
termination of TRSs used in the CPF format.

Chapter 4. The CPF format for termination certificates is defined as an XSD document
describing a set of XML files. In this chapter, I describe a tool that
automatically generates Coq data types and OCaml parsing functions for
representing in Coq and OCaml any XML file valid wrt some given XSD
document.
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Chapter 5. I describe the data structures used in the CPF text file format, the corre-
sponding data structures used in the Coq libraries CoLoR and Coccinelle,
and functions translating the former to the latter.

Chapter 6. I describe the functions that I developed in Coq for verifying the correct-
ness of various termination certificates (rule elimination using reduction
pairs, dependency pair transformation, dependency graph decomposition
and argument filtering), and explain how we proved their correctness using
the CoLoR library.

Chapter 7. I explain how we get a standalone CPF verifier using Coq extraction mech-
anism, and discuss its trusted computing base.

Chapter 8. I compare my work with the CPF verifier CeTA developed in the proof
assistant Isabelle, which is based on a different logical system than the one
of Coq. Then I present the results that I obtained on sets of certificates
generated by the AProVE termination prover on the termination problem
data base (TPDB).

Chapter 9. I conclude and discuss about the future of this work.
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Chapter 2

Languages and tools used in
this work

In this chapter we give a brief overview of the languages and tools used in
this work.

2.1 OCaml: a functional programming language
In this section we briefly introduce the programming language OCaml (Ob-

jective Caml) [84, 21]. It is a polymorphic typed functional programming lan-
guage, that is:

– functions are first-class objects: a function can take as argument a function
and return a function;

– the same function can be applied to different types (polymorphism);
– every program must be well typed at compile time.
The compiler however provides a powerful type inference algorithm so that

users do not generally need to put type annotations (except in module interfaces)
[68, 91]. It also provides a powerful module system.

It is possible to define recursive data types without having to manipulate
pointers: the compiler looks itself after memory usage by using a garbage col-
lector [51].

Finally, functions can be recursively defined by pattern matching a value of
a recursive data type.

For instance, the type of lists and the polymorphic function that applies a
function f on every element of a list are defined in OCaml as follows:

type ’a list = nil | cons of ’a * ’a list;;

let rec map f = function
| nil -> nil
| cons x l -> cons (f x) (map f l);;

11



The type inferred by OCaml for map is: (’a -> ’b) -> ’a list -> ’b list
where ’a and ’b are type variables that can be instantiated by any type (e.g.
int, float, int->int, int list, . . . ).

2.2 Coq: a formal proof assistant
Coq is an interactive formal proof development system based on the Calcu-

lus of Constructions (CC) [36, 37], that is an extension of both Martin-Löf’s
intuitionistic type theory [89] and Girard’s system F [61, 62].

It allows one to define mathematical objects, express theorems about them
and build formal proofs that are then checked by the system.

In Coq, every object t must be defined as belonging to some set, say T,
written t:T, including sets themselves. This is achieved by providing a built-in
infinite hierarchy of sets Typei∈N so that Typei:Typei+1 and, if T:Typei, then
T:Typei+1. However, for the sake of simplicity, the indexes i are not printed
in Coq and Set is used as a synonym for Type0. Moreover, a built-in object
Prop:Type1 so that P:Type1 whenever P:Prop, is used for representing the set
of logical propositions. To know the smallest set to which an object t belongs,
one can write in Coq the command Check t.

The basic syntactic constructions of Coq are then given by:
– (forall x:T, U), the dependent product (set of functions);
– (fun x:T => u), the abstraction (function formation);
– (f t), the function application.
Hence, (fun x:T => u):(forall x:T,U) if u:U whenever x:T.
Moreover, if f:forall x:T,U and t:T, then (f t) belongs to the set U with

x replaced by t.
For instance, if P = forall x:nat,x>7, f:P and 2:nat, then (f 2):2>7.

Said otherwise, if f is a proof of P, then (f 2) is a proof of 2>7.

Types and predicates can be defined inductively [38, 99]. Functions can be
defined by using pattern-matching [35, 39]. Coq also provides various decision
procedures (e.g. for linear arithmetic, propositional tautologies, etc.), a lan-
guage for defining proof tactics [46], a module system [25], type classes [114],
an extraction mechanism [98, 85, 86], etc.

Coq’s logic is modular. The core logic is intuitionistic. Classical logic is based
on the notion of truth whereas intuitionistic (or constructive) logic is based on
the notion of proof. In intuitionistic logic, the classical axiom of Excluded
Middle P ∨ ¬P is not assumed. This axiom is not constructive, i.e. P ∨ ¬P
holds by axiom but we do not know if P holds or ¬P holds. In constructive
logic, when we have a proof of P ∨Q, we know whether P or Q holds.

Coq has been successfully used in the certification of various important ap-
plications, either industrial: a JavaCard platform [8], a C compiler [83], or
academic: the four-color theorem [65], the odd-order theorem [66]. For more
information on Coq, see for example [11, 104, 24].
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2.2.1 Inductive data types
A set can be defined inductively by using the command Inductive and

declaring the possible ways of building a value of that set. For instance, the type
nat for Peano natural numbers is defined in coq/theories/Init/Datatypes.v
as follows:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

This means that nat is the smallest set built from O and S. Then, Coq auto-
matically generates the corresponding induction principle:

nat_rect : forall P : nat -> Type,
P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Types can also be parametrized by other types (polymorphism) or data
(dependent types). For instance, the set of vectors of dimension n of elements of
some set A is defined in coq/theories/Vectors/VectorDef.v as the following
type t:

Inductive t A : nat -> Type :=
| nil : t A 0
| cons : forall (h:A) (n:nat), t A n -> t A (S n).

whose automatically generated induction principle is:

t_rect : forall (A : Type) (P : forall n : nat, t A n -> Type),
P 0 (nil A) ->
(forall (h : A) (n : nat) (t : t A n),

P n t -> P (S n) (cons A h n t)) ->
forall (n : nat) (t : t A n), P n t

Two (or more) types can be mutually defined by using the command
Inductive t1 := ... with t2 := ....

Record types [105] and type classes [114] are nothing but inductive types
with a single constructor. But it is better to use the special commands Record
and Class instead, because they automatically generate the projections (field
access functions). For instance, the following record type is used in Color/
Term/WithArity/ATrs.v to represent rewrite rules:

Record rule : Type := mkRule { lhs : term; rhs : term }.

2.2.2 Functions
Functions on inductive types can be defined by using the induction principles.

For instance, addition on nat can be defined as follows:

13



Definition add x y :=
nat_rect (fun _ => nat) x (fun y’ add_x_y’ => S add_x_y’) y.

But this is not very readable and not always easy (e.g. Ackermann function).
Instead, one uses the following pattern-matching definition:

Fixpoint add x y : nat :=
match y with
| O => x
| S y’ => S (add x y’)
end.

Note that a pattern-matching definition is accepted by Coq if its built-in
termination prover can find an argument that is structurally decreasing [35, 60,
6]. This is a very strong restriction that sometimes enforces the user to give less
direct and more complex definitions (using auxiliary functions and additional
arguments) of his/her functions.

One can use an advanced recursive functions which the keyword Function,
like in Fixpoint, the decreasing argument must be given, but it is not necessary
be structurally decreasing. The annotation {} is to name the decreasing argu-
ment and to describe which kind of decreasing criteria must be used to ensure
termination of recursive calls.

Function add (x y: nat) {struct y} : nat :=
match y with
| O => x
| S y’ => S (add x y’)
end.

2.2.3 Propositions
Propositions are elements of Prop. Universal quantification is given by the

dependent product. The existential quantifier and the other logical connectives
are defined as inductive types. For instance, the disjunction or (notation \/) is
defined in coq/theories/Init/Logic.v as follows:

Inductive or (A B : Prop) : Prop :=
| or_introl : A -> A \/ B
| or_intror : B -> A \/ B.

2.2.4 Proofs
We can start the proof of a proposition by using the command Lemma (or

Theorem, Goal, . . . ):

Lemma example : forall (A : Type) (P Q : A -> Prop),
(forall x, P x) \/ (forall y, Q y) -> forall x, P x \/ Q x.
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Coq then provides a command language for proving propositions. A Coq
proof is a sequence of commands that act upon lists of goals with a distinguished
goal called the current or focused goal. A goal Γ `? P consists of a list of
assumptions Γ = x1 : T1, . . . , xn : Tn and a proposition P to prove. Some
commands implement elementary logical rules (e.g. intros below) or complex
decision procedures (e.g. firstorder below). But Coq also provides a language
LTac for defining its own commands by inspecting the shape of the assumptions
and the proposition to prove [46].

Consider for instance the following proof script for trying to prove example:

intros A P Q H.
elim H.
intros H1; left; apply H1.
intros H2; right; apply H2.

The first command intros A P Q H is equivalent to the sequence of com-
mands:

intro A. intro P. intro Q. intro H.

The command intro y first checks that y does not occur in Γ and that the
focused goal is of the form:

Γ `? forallx : T,U

If so, Coq replaces the focused goal by the following one:

Γ, y : T `? U{x 7→ y}

where U{x 7→ y} is the term obtained by replacing in U every occurrence of x
by y.

Hence, the first command intros A P Q H replaces the initial goal by the
following one:

A : Type
P Q : A -> Prop
H : (forall x, P x) \/ (forall y, Q y)
--------------------------------------
forall x, P x \/ Q x.

Now, the command elim H will perform a case analysis and replace the
current goal by the following two goals:

A : Type
P Q : A -> Prop
H : forall x, P x
---------------------
forall x, P x \/ Q x.

A : Type
P Q : A -> Prop
H : forall x, P x
---------------------
forall x, P x \/ Q x.
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We could go on like this using elementary commands. We can also prove this
lemma by using a single command which implements an heuristic for first-order
logic:

Lemma example : forall (A : Type) (P Q : A -> Prop),
(forall x, P x) \/ (forall y, Q y) -> forall x, P x \/ Q x.

Proof. firstorder. Qed.

2.2.5 Extraction
Because, in Coq, functions are interpreted and not compiled to executable

binary code, computation in Coq is much slower than in compiled programming
languages.

Hopefully, functions defined and proved in Coq can be compiled to more
standard programming languages like OCaml, Haskell or Scheme [86]. In the
case of OCaml, this is almost straightforward since OCaml and Coq have a very
similar syntax for function definitions, as long as the function does not use types
that cannot be directly handled by OCaml. Indeed, OCaml only handles simple
types, that is types of the form T->U, while Coq can also handle dependent
types, etc.

In fact, thanks to the constructive nature of Coq, not only function defini-
tions can be translated to OCaml but also proofs. In fact, by the Curry-Howard
isomorphism [72, 56], a proof is nothing but a function. In this case, Coq tries to
remove as much computationally irrelevant arguments as possible. For instance,
the decidability of equality on Peano numbers eq_nat_dec is saying that for all
n, m, we either have a proof of n = m or a proof of n <> m, is extracted to
OCaml as follows:

Coq < Print sumbool.
Inductive sumbool (A B : Prop) : Set :=

left : A -> {A} + {B} | right : B -> {A} + {B}

Coq < Extraction sumbool.
type sumbool = Left | Right

Coq < Require Import Arith.

Coq < Check eq_nat_dec.
eq_nat_dec : forall n m : nat, {n = m} + {n <> m}

Coq < Extraction eq_nat_dec.
(** val eq_nat_dec : nat -> nat -> sumbool **)

let rec eq_nat_dec n m = ...

But the complexity of the function that we obtain depends on how the proof
is done. If we are not very careful, then we can get functions of high complexity.
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Hence, to better control the complexity of the extracted code, we will rarely use
this feature in Rainbow. Instead, we prefer to directly define the function that
we want and prove that it is correct. For instance, for the equality on Peano
numbers, we have:

Coq < Require Import NatUtil.

Coq < Print beq_nat.
beq_nat = fix beq_nat (x y : nat) struct x : bool :=

match x with
| 0 => match y with

| 0 => true
| S _ => false
end

| S x’ => match y with
| 0 => false
| S y’ => beq_nat x’ y’
end

end : nat -> nat -> bool

Coq < Check beq_nat_ok.
beq_nat_ok : forall x y : nat, beq_nat x y = true <-> x = y

2.3 XML: a language for representing trees
In this section we briefly introduce XML (Extensible Markup Language)

[138]. XML is the W3C (World Wide Web Consortium) text file standard for
describing tree-structured data. This is the format used for representing CPF
termination certificates.

XML is a well parenthesized language (Dyck language) with different kinds
of parentheses. An open parenthesis is written <tag> and the corresponding
closing parenthesis is written </tag>.

An XML file can be represented by a tree whose nodes are labeled by the
parenthesis names, and whose leaves are character strings. See Figure 2.1 for
an example.

Some nodes can also be equipped with pairs attribute×value as follows:

<node attribute1="value1" attribute2="value2" ...> ... </node>

2.4 XSD: a language for describing classes of trees
In this section we give a basic overview of the XML Schema language XSD

(XML Schema Definition) [136, 137, 111], which allows one to describe classes of
XML files/trees. An XSD document is like a grammar for XML files/trees. An
XML file is valid wrt to an XSD document D if it belongs to the type described
by D.
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<funapp>
<name>plus</name>
<arg>

<var>x<var>
</arg>
<arg>

<funapp>
<name>s</name>
<arg>

<var>y</var>
</arg>

</funapp>
</arg>

</funapp>

Figure 2.1: The tree/XML file represents term: plus (x, s(y))

An XSD document is itself an XML document that describes what are the
possible node labels and how nodes can be organized:

– A leaf node label tag is introduced as follows:

<element name="tag" type="type"/>

where type is a built-in type like string, integer, etc.

– A non-leaf node label tag is introduced as follows:

<element name="tag">
<complexType>
type

</complexType>
</element>

where type is an XML expression describing what are the possible children
or element’s of this node.

To this end, XSD provides the following constructions for types:

– <element name="name" minOccurs="a" maxOccurs="b" ...>

with the attributes minOccurs and maxOccurs to indicate the minimum
and maximum number of times this element/child can occur. a must be
a non-negative integer and b must be either a non-negative integer or the
value unbounded. If these attributes are not present, they are assumed to
be set to 1.

– <sequence>type1 . . . typen</sequence>
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to describe an ordered sequence of children, the first one being of type1,
the second one of type2, etc.

– <choice>type1 . . . typen</choice>

to indicate that the child must be of one of the listed types.

Type expressions can also be given a name by using:

<group name="name"> type </group>

which can later be referred to, as well as top-level element’s, as follows:

<group ref="name" minOccurs="a" maxOccurs="b"/>
<element ref="tag" minOccurs="a" maxOccurs="b"/>

Example 1 For instance, here is the type definition for representing symbols
in CPF:

<element name="name" type="string"/>

<group name="symbol">
<choice>

<element ref="name"/>
<element name="sharp">

<complexType>
<sequence>

<group ref="symbol"/>
</sequence>

</complexType>
</element>
<element name="labeledSymbol">

<complexType>
<sequence>

<group ref="symbol"/>
<group ref="label"/>

</sequence>
</complexType>

</element>
</choice>

</group>

<group name="label">
<choice>

<element name="numberLabel">
<complexType>

<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="number"

type="nonNegativeInteger"/>
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</sequence>
</complexType>

</element>
<element name="symbolLabel">

<complexType>
<sequence>

<group maxOccurs="unbounded" minOccurs="0" ref="symbol"/>
</sequence>

</complexType>
</element>

</choice>
</group>

This means that an XML expression is valid wrt to the type symbol if it is
of one of the following shapes:

– <name> string </name>
– <sharp> symbol </sharp>
– <labeledSymbol> symbol label </labeledSymbol>

where string is a character string, symbol (resp. label) is an XML expression
valid wrt the type symbol (resp. label).

Finally, note that, XSD types need not be ordered and can be forward or
backward referenced.
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Chapter 3

Term rewriting and
termination certificates

In this chapter, we introduce the notions of termination, term rewriting and
termination certificate for term rewriting systems.

3.1 Termination of abstract relations
A binary relation on a set A is a subset of A × A. Given a binary relation

R on a set A, we usually write tRu if (t, u) ∈ R, and let R−1 be the inverse of
R, that is, tR−1u if uRt.

Given two binary relations →1 and →2, we denote by →1 · →2 their com-
position, that is, t→1 · →2 v if there is some u such that t→1 u and u→2 v.

Given a binary relation →, we write →∗ for the reflexive and transitive
closure of →.

A binary relation → is a quasi-ordering if it is reflexive and transitive, and
an ordering if it is reflexive, transitive and antisymmetric. For instance, →∗ is
a quasi-ordering.

Definition 1 (Termination) Given a set A, an element a ∈ A is strongly
normalizing wrt a binary relation → on A if there is no infinite chain a = a0 →
a1 → . . . Let SN(→) be the set of elements of A that are strongly normalizing
with respect to →. The relation → terminates (or is well-founded, noetherian,
strongly normalizing) if every element of A is strongly normalizing. A binary
relation→1 terminates relatively to another binary relation→2, written SN(→1

/→2), if →∗2 · →1 terminates.

Conversely, a relation→ is non-terminating, written ¬SN(→), if there exists
an infinite chain.
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Definition 2 (Accessibility) Given a binary relation → on a set A, the set
Acc(→) of the elements of A that are accessible with respect to→ is the smallest
subset of A such that a ∈ Acc(→) if and only if, for all b ∈ A such that a→ b,
b ∈ Acc(→).

We are going to see two different definitions of termination, which are equiv-
alent in classical logic thanks to the Axiom of Choice. In classical logic and
most publications on this subject, termination is usually defined as the absence
of infinite chains (Definition 1), while in intuitionistic logic, termination is usu-
ally defined as a constructive inductive predicate called accessibility (Definition
2).

In the CoLoR library, termination is defined as accessibility and tries to use
intuitionistic logic as much as possible. Note that, if P is a theorem proved using
the axiom of Excluded Middle, then ¬¬P is provable in intuitionistic logic, that
is, without using the axiom of Excluded Middle. But mathematical theorems on
termination obtained using classical logic do not always have an intuitionistic
counterpart with SN replaced by Acc (and not ¬¬SN). In this case, the CoLoR
library uses the axiom of Excluded Middle and the Axiom of Choice.

3.2 Term rewrite relations
In this section we briefly introduce (first-order) term rewriting. For more

details, see for example [96, 125]. Let X be a set of variables.

Definition 3 (Signature) A signature Σ is a pair (F , ar) made of a set F of
function symbols disjoint from X and function ar : F → N indicating the arities
of the function symbols.

By abuse of notation, we often write f ∈ Σ instead of f ∈ F .

Definition 4 (Term) The set of terms T (Σ,X ) over Σ and X is inductively
defined as follows:

– X ⊆ T (Σ,X )
– If f ∈ Σ and t1, . . . , tar(f) ∈ T (Σ, X), then f(t1, . . . , tar(f)) ∈ T (Σ, X)

We often write f instead of f() when ar(f) = 0.
The set of function symbols (resp. variables) occurring in a term t ∈ T (Σ,X )

is denoted by Fun(t) (resp. Var(t)). Terms without variables are called ground
or closed.

A term t is linear if no variable has more than one occurrence in t. For
instance, x ∗ (n + 1) is linear, while x ∗ (x + 1) is not (assuming that x and n
are distinct variables and +, ∗ function symbols).

The root symbol of a term t, written root(t), is defined as follows:
– root(t) = t if t ∈ X
– root(t) = f if t = f(t1, . . . , tar(f))
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Figure 3.1: Tree representation of f(a, g(h(y), x))

Terms can be seen as trees whose leaves are labeled by variable or nullary
function symbols and whose internal nodes are labeled by non-nullary function
symbols.

Definition 5 (Position) The set Pos(t) of the positions in a term t is defined
as follows:

– Pos(t) = {ε} if t ∈ X
– Pos(t) = {ε} ∪ {i · p | i ∈ [1, n], p ∈ Pos(ti)} if t = f(t1, . . . , tn)

Given a term t and a position p ∈ Pos(t), we denote by t |p the subterm of
t at position p, and by t[u]p its replacement by a term u.

Example 2 Assume that {f, g, h, a} ⊆ F , ar(f) = ar(g) = 2, ar(h) = 1 and
ar(a) = 0. Assume moreover that x, y ∈ X . Then, f(a, g(h(y), x)) is an element
of T (Σ,X ). Its tree representation with the positions of all its subterms is given
in Figure 3.1. For instance, its subterm at position 2 · 1 is t |2·1= h(y).

The proper or strict subterm relation C is the smallest transitive relation on
terms such that ti C f(t1, . . . , ti, . . . , tn) for all f ∈ F , t1, . . . , tar(f) ∈ T (Σ,X )
and i ∈ [1, ar(f)]. The subterm relation E is the reflexive closure of C.

Definition 6 (Substitution) A substitution σ is a map from variables to terms,
i.e. σ : X → T (Σ,X ). The application of a substitution σ to a term t, written
tσ, is defined as follows:

– xσ = σ(x)
– f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

Definition 7 (Context) A context is a term C with a unique occurrence of
a distinguished variable [ ] called hole. Its substitution/replacement by u is
written C[u].

Definition 8 (Rewrite relation) A binary relation on terms → is monotone
(resp. stable) if, for all context C (resp. substitution σ) and terms t and u,
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C[t] → C[u] (resp. tσ → uσ) whenever t → u. It is a rewrite relation if it is
both monotone and stable. The rewrite relation generated by a binary relation
on terms R, written →R, is the smallest rewrite relation containing R.

One can easily check that t →R u if there are a position p ∈ Pos(t), a rule
l→ r ∈ R and a substitution σ such that t |p= lσ and u = t[rσ]p.

Example 3 Consider the case of addition on unary natural numbers. Assume
that F contains the symbol z of arity 0 for representing zero, the symbol s of
arity 1 for representing the successor function, and the symbol add of arity 2
for representing the addition of two numbers. Then, add can be defined by the
following set R of rewrite rules:

1. add(z, x)→ x

2. add(s(x), y)→ s(add(x, y))

We show how to compute “2+2”, that is, how to rewrite the term t = add(s(s(z)),
s(s(z))). First, we see that t = add(s(s(z)), s(s(z))) matches the left hand-side
of the rule (2), that is, t = (add(s(x), y))θ where θ = {x 7→ s(z), y 7→ s(s(z))}.
Hence, t →R (s(add(x, y)))θ = s(add(s(z), s(s(z)))). By iterating this process,
we obtain the following rewrite sequence:

add(s(s(z)), s(s(z)))→R s(add(s(z), s(s(z))))→R

s(s(add(z, s(s(z)))))→R s(s(s(s(z))))

The last term cannot be rewritten any more: it is called normal.

Definition 9 (TRS) A term rewrite system (TRS) consists of a signature Σ
and a relation R on T (Σ,X ).

3.3 Termination of term rewrite systems
We say that a TRS (Σ,R) terminates if every element of T (Σ,X ) is strongly

normalizing wrt→R. The termination of a TRS is undecidable in general: there
is no Turning machine taking as input any TRS (Σ,R) and able to always answer
in a finite amount of time whether →R terminates or not, even when R is a
singleton [45].

We are now going to see a few important techniques used in current auto-
mated termination provers for trying to prove the termination of a TRS.

3.3.1 Rule elimination
First note that proving the termination of a TRS R is equivalent to finding

a reduction ordering containing R [88]:

Definition 10 (Reduction ordering) A reduction ordering is a (transitive)
relation ordering on terms that is well-founded, stable and monotone.
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Theorem 11 ([88]) (Σ,R) terminates iff there is a reduction ordering con-
taining R.

More generally, given a reduction ordering S, it is possible to reduce the
termination of (Σ,R) to the termination of (Σ,R − S), where A − B = {a ∈
A | a /∈ B}, if R is included in a quasi-ordering E that is monotone, stable and
compatible with S [69]:

Definition 12 (Reduction pair) A reduction pair is a pair (E,S) of relations
on terms such that:

– E is reflexive, transitive, stable and monotone;
– S is well-founded and stable;
– E · S ⊆ S or S · E ⊆ S.

It is monotone if S is monotone.

Theorem 13 (Σ,R) terminates if there is a monotone reduction pair (E,S)
such that R ⊆ E and (Σ,R− S) terminates.

3.3.2 Interpretation-based reduction pairs
A simple way to build reduction pairs is by interpreting terms in a well-

founded domain, that is, a set equipped with a well-founded relation [88]:

Definition 14 (Σ-algebra) Given a signature Σ, a Σ-algebra consists of a non-
empty set A and an interpretation function If : Aar(f) → A for each f ∈ Σ.
Then, given a valuation ρ : X → A, the elements of T (Σ,X ) are interpreted in
A as follows:

– [[x]]ρ = ρ(x)
– [[f(t1, . . . , tn)]]ρ = If ([[t1]]ρ, . . . , [[tn]]ρ)

Now, given a quasi-ordering ≥ on A whose strict part > = ≥ − ≥−1 is well-
founded, then let >I (resp. ≥I) be the relation on terms such that t >I u (resp.
t ≥I u) if, for all ρ, [[t]]ρ > [[u]]ρ (resp. [[t]]ρ ≥ [[u]]ρ). We say that If is (resp.
weakly) monotone in its i-th argument if, for all x1, . . . , xn, x

′
i ∈ A, if xi > x′i,

then If (x1, . . . , xi, . . . , xn) > If (x1, . . . , x
′
i, . . . , xn) (resp. If (x1, . . . , xi, . . . , xn)

≥ If (x1, . . . , x
′
i, . . . , xn)); and that If is (resp. weakly) monotone if it is (resp.

weakly) monotone in each argument; and finally that the algebra is (resp.
weakly) monotone if, for all f ∈ Σ, If is (resp. weakly) monotone.

Theorem 15 In a monotone algebra (A, (If )f∈Σ,≥), (≥I , >I) is a monotone
reduction pair. In a weakly monotone algebra (A, (If )f∈Σ,≥), (≥I , >I) is a
reduction pair.

For instance, one can obtain a well-founded monotone algebra by using a
polynomial interpretation on the well-founded set N of natural numbers, that
is, for each f ∈ Σ, a polynomial Pf ∈ N[x1, . . . , xar(f)] that is monotone in each
xi. Then, If (a1, . . . , an) is the value of Pf when x1 = a1, . . . , xn = an.

25



Example 4 Consider the TRS of Example 3 and the following polynomial in-
terpretation:

– Pz = 1
– Ps(x) = x+ 1
– Padd(x, y) = 2x+ y

Each polynomial is monotone in every argument. We now check that R ⊆ >I :
1. [[add(z, x)]] = 2(1) + x > [[x]] = x for all x ∈ N;
2. 2(x+ 1) + y > (2x+ y) + 1 for all x, y ∈ N.

3.3.3 Dependency pairs
By analyzing why a TRS (Σ,R) may not terminate, Arts and Giesl showed

that the notion of dependency pair (DP) plays an essential role [3]. It was later
developed into the notion of DP problem and DP framework [59, 127].

Definition 16 (Dependency pairs) Let (Σ,R) be a TRS.
A symbol f is defined if there is a rule whose left hand-side is headed by f .

Let D be the set of all defined symbols: D = {f ∈ Σ | ∃l→ r ∈ R, root(l) = f}.
The dependency pairs of a rule f(t1, . . . , tp)→ r are all the pairs (f(t1, . . . , tp),

g(u1, . . . , uq)) such that g ∈ D and g(u1, . . . , uq) is a subterm of r that is not
a strict subterm of l 1. Let DP(R) be the set of all the dependency pairs of
R: DP(R) = {(f(t1, . . . , tp), g(u1, . . . , uq) | (∃r, u1, . . . , uq)(f(t1, . . . , tp), r) ∈
R ∧ g(u1, . . . , uq) E r ∧ g ∈ D ∧ g(u1, . . . , uq) 6C l}.

Indeed, they proved that→R terminates iff >ε−−→
∗
R

ε−→DP(R) terminates, where
ε−→ (resp. >ε−−→) is the restriction of →R to (resp. non) top positions.
This relation can be simplified by using new symbols for the top-symbols of

dependency pairs:

Definition 17 (Marked symbols) Let Σ] be the signature (F ], ar]) such that
F ] = F]{f ] | f ∈ F} and ar](f) = ar](f ]) = ar(f). Given a set of rules P on Σ,
let P] be the set of rules on Σ] such that P] = {(f](t1, . . . , tm), g](u1, . . . , un)) |
(f(t1, . . . , tm), g(u1, . . . , un) ∈ D}.

Indeed, by using ]-symbols for the top-symbols of dependency pairs, →R
terminates iff →∗R

ε−→DP](R) terminates (→R does not need to be restricted to
non-top positions anymore):

Definition 18 (DP problem) A DP problem is a triple (Σ,R,P) made of a
signature Σ and two relations R and P on T (Σ,X ). It is said finite if the
relation →∗R · →P terminates.

Theorem 19 ([3]) (Σ,R) terminates iff (Σ],R,DP](R)) is finite.

1. Improvement due to Dershowitz [49].
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Example 5 Consider the TRS TRS_Standard/Rubio/division.xml from TPDB
[130] to compute the division of two unary natural numbers:

quot(0, s(Y )) → 0
quot(s(X), s(Y )) → s(quot(minus(X,Y ), s(Y )))

minus(0, Y ) → 0
minus(s(X), Y ) → ifMinus(le(s(X), Y ), s(X), Y )

ifMinus(false, s(X), Y ) → s(minus(X,Y ))
ifMinus(true, s(X), Y ) → 0

le(0, Y ) → true
le(s(X), 0) → false

le(s(X), s(Y )) → le(X,Y )

Its dependency pairs are:

1. quot](s(X), s(Y ))→ quot](minus(X,Y ), s(Y ))

2. quot](s(X), s(Y ))→ minus](X,Y )

3. le](s(X), s(Y ))→ le](X,Y )

4. minus](s(X), Y )→ ifMinus](le(s(X), Y ), s(X), Y )

5. minus](s(X), Y )→ le](s(X), Y )

6. ifMinus](false, s(X), Y )→ minus](X,Y )

Arts and Giesl introduced also methods for proving the finiteness of DP
problems. For instance, one can use a reduction pair that does not need to be
monotone since P-reductions can only occur at the top!

Theorem 20 ([3]) (Σ,R,P) is finite iff there is a reduction pair (E,S) such
that R ⊆ E and P ⊆ S.

More generally, we may remove some of the rules of P:

Theorem 21 ([52]) (Σ,R,P) is finite iff there is a (resp. monotone) reduction
pair (E,S) such that R∪ P ⊆ E and (Σ,R,P −S) (resp. (Σ,R−S,P −S)) is
finite.

Example 6 Consider the TRS of Example 3, there is only one dependency
pair:

add](s(x), y)→ add](x, y).

The corresponding DP problem is then easily proved finite by taking the poly-
nomial interpretation:

– Pz = 0
– Ps(x) = x
– Padd(x, y) = x+ y
– Padd](x, y) = x
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Figure 3.2: The dependency graph of Example 5

Another important technique consists in computing the strongly connected
components of the dependency graph and prove the finiteness of every compo-
nent independently:

Definition 22 (Dependency graph) The dependency graph of a DP problem
(Σ,R,P) is defined as follows:

– its nodes are the elements of P;
– there is an edge between l1 → r1 and l2 → r2 if there are two substitutions
σ1 and σ2 such that r1σ1 →∗R l2σ2.

The path relation is the transitive closure of the edge relation. A strongly
connected component is a maximal subset Q ⊆ P such that, for every pair
(q1, q2) of elements of Q, there is a path from q1 to q2.

Theorem 23 (Σ,R,P) is finite iff, for every strongly connected component Q
of the dependency graph, (Σ,R,Q) is finite.

Example 7 The dependency graph of Example 5 is given in Figure 3.2.
It has 3 components:

A. QA = {3}. The corresponding DP problem can be proved finite by using
the following polynomial interpretation:

Ple](x, y) = x+ 3y

P0 = 0
Ps(x) = x+ 5
Ptrue = 0
Pfalse = 1

Ple(x, y) = 1
Pminus(x, y) = x+ 3
PifMinus(x, y, z) = 3x+ y
Pquot(x, y) = 2 + 3x+ 2y

B. QB = {4, 6}. The corresponding DP problem can be proved finite by
using the following polynomial interpretation:

Pminus](x, y) = 4x+ 3
PifMinus](x, y, z) = x+ y

P0 = 0
Ps(x) = 5x+ 4
Ptrue = 0
Pfalse = 0

Ple(x, y) = x+ 4
Pminus(x, y) = x
PifMinus(x, y, z) = y
Pquot(x, y) = 5x

C. QC = {1}. The corresponding DP problem can be proved finite by using
the following polynomial interpretation:
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Pquot](x, y) = 5x

P0 = 2
Ps(x) = 3x+ 3
Ptrue = 0
Pfalse = 0

Ple(x, y) = 3x+ y
Pminus(x, y) = x
PifMinus(x, y, z) = y
Pquot(x, y) = 3x

3.4 Termination certificates
We have seen in the previous section that a termination proof can be ob-

tained by composing different theorems or different instances of the same the-
orem. Such a proof can be represented by a (deduction) tree whose nodes are
labeled by termination problems (TRSs or DP problems), and whose edges are
labeled by theorem names. For Example 7, we have:

(Σ],R, ∅) is finite

(Σ],R,QA) is finite
(Th. 21)

(Σ],R, ∅) is finite

(Σ],R,QB) is finite
(Th. 21)

(Σ],R, ∅) is finite

(Σ],R,QC ) is finite
(Th. 21)

(Σ],R, DP](R)) is finite
(Th. 23)

(Σ,R) terminates
(Th. 19)

In recent years, a formal language, CPF [43], has been developed for repre-
senting such termination proofs. The goal of this work is to develop a formally
proved verifier for CPF. This means that, when one has an edge as follows:

P1 . . . Pn

P0
(Theorem T)

where each Pi is a termination problem, then one has to check that the ter-
mination or finiteness of P0 indeed follows from the termination or finiteness
of P1, . . . ,Pn by using Theorem T. This may require non-trivial verifications.
Consider for instance the following deduction step:

(Σ1,R1,P1) is finite
(Σ0,R0,P0) is finite

(Theorem 21 with reduction pair (E,S))

It is valid if all the following conditions are satisfied:
– Σ1 = Σ0

– R1 = R0

– R0 ∪ P0 ⊆ E
– P1 ⊆ P0

– P0 − P1 ⊆ S
– E is monotone, . . .
First, the equality of TRSs is already non trivial for the names of variables

used in rewrite rules or the order of rewrite rules is not relevant. Second, S
must be decidable and not of too high complexity. Finally, E needs to satisfy a
number of conditions like monotonicity, etc.

For instance, in the case of a polynomial interpretation on N, this would re-
quire to check the positiviteness of polynomials on N, which is of high complexity
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[70]. Therefore, unless the user provides also some certificate for the monotonic-
ity of E, we will simply implement sufficient conditions like the positiviteness of
coefficients, which is usually the heuristic used by automated theorem provers
when trying to find polynomial interpretations [23, 33, 55], except in [92].
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Chapter 4

Automated generation of Coq
and OCaml data structures
for representing XML files
valid wrt an XSD document

The formal language CPF [43] used by automated theorem provers for repre-
senting termination certificates is defined by an XSD document [136, 137]. This
means that a termination certificate is an XML file [138] that must be valid wrt
this XSD document.

Hence, the verification of termination certificates requires the use of some
XML parser, data structures for representing XML documents valid wrt CPF,
and functions for translating XML into these data structures. Moreover, CPF
is extended every year by new kinds of certificates. To fasten the development
of these data structures and parsing functions, and reduce the risk of errors,
I developed tools for generating them automatically from the XSD document
defining CPF.

These tools, xsd2coq and xsd2ml, are independent of CPF and could be
used with other XSD documents.

In this chapter, we describe how these tools are implemented in OCaml.
First, we describe the OCaml data type xsd used to represent XSD types. An
XSD document is then just a list of values of type xsd. Second, we describe the
operation of flattening to give a name to every complex data type occurring in
an XSD document (the XSD format allows anonymous type declarations). Then,
we explain how an XSD type x is translated into a Coq type Tx (the translation
in OCaml is obtained by extraction). Finally, we explain how to parse an XML
file into such a data structure. For parsing and representing XML files, we use
the Xml-Light library [19] and its data type xml. Then, for each XSD type x,
we generate an OCaml function ϕx:xml->Tx for translating a value of type xml
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into a value of type Tx.

4.1 OCaml representation of an XSD file
The OCaml type used to represent XSD elements is defined in xsd.ml as

follows:

type bound = Bound of int | Unbounded;;
type xsd =

| Elt of string * xsd option * int * bound
| Group of string * xsd option * int * bound
| GroupRef of string * int * bound
| Choice of xsd list
| Sequence of xsd list
| SimpleType of string;;

The type bound is used to represent the values of the attribute maxOccurs:
either a non-negative integer or the string "unbounded".

An XSD element x is translated into a value ψ(x) of type xsd as follows (see
file xsd_of_xml.ml):

– ψ(<element name=n minOccurs=a maxOccurs=b/>)
=Elt(n,None,a,b).

– ψ(<element name=n type=s minOccurs=a maxOccurs=b/>)
=Elt(n,Some(SimpleType s),a,b).

– ψ(<element name=n minOccurs=a maxOccurs=b><complexType>t
</complexType></element>)
=Elt(n,Someψ(t),a,b).

– ψ(<element ref=n minOccurs=a maxOccurs=b>)
=Elt(n,Some(SimpleTypen),a,b).

– ψ(<group name=n minOccurs=a maxOccurs=b><complexType>t
</complexType></group>)
=Group(n,Someψ(t),a,b).

– ψ(<group ref=n minOccurs=a maxOccurs=b>)
=GroupRef(n,a,b).

– ψ(<choice>t1 . . . tn</choice>)
=Choice[ψ(t1);. . .;ψ(tn)].

– ψ(<sequence>t1 . . . tn</sequence>)
=Sequence[ψ(t1);. . .;ψ(tn)].

Note that, for simplicity, we use the constructor SimpleType not only for
denoting a built-in type but also for denoting a reference to a complex type
definition (Name would perhaps be a better choice).

Example 8 The following XSD element:

<xs:element name="trs">
<xs:complexType>

<xs:sequence>
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<xs:element ref="rules"/>
</xs:sequence>

</xs:complexType>
</xs:element>

is translated as follows:

Elt(trs,Some(Sequence(Elt(rules,Some(SimpleType(rules)),1,1))),1,1)

Now, an XSD document consists of a sequence of type definitions, that is,
an <element> or <group> declaration, each one with either a (simple) type
attribute or a complexType definition. It is represented as an OCaml list of
xsd values of the form Elt(n,Some( t),a,b) or Group(n,Some( t),a,b), which
associates the type expression t to the name n. Note that, by definition of XSD,
t contains no constructor Group.

4.2 Flattening
As we will see it soon, we will translate a Choice type into an inductive

type definition with a constructor for each possible case. In Coq or OCaml, it
is however not possible to have a type definition inside another type definition.
We therefore need to introduce a new Group for each Choice occurring inside a
type definition, and replace this type definition by a GroupRef. This flattening
operation provides a new XSD document that defines the same language.

Example 9 Consider the following type from CPF:

<element name="pathOrder">
<complexType>

<sequence>
...
<choice>

<element name="lex"/>
<element name="mul"/>

</choice>
...

</sequence>
</complexType>

</element>

It defines a type named pathOrder whose definition is a sequence including
an inner anonymous choice type. In order to define such a type in Coq or
OCaml, we first introduce a new type named t1 and replace the choice element
by a reference to t1. This is equivalent to having the following XSD file instead:

<group name = "t1">
<choice>

<element name="lex"/>
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<element name="mul"/>
</choice>

</group>

<element name="pathOrder">
<complexType>

<sequence>
...
<group ref="t1"/>
...

</sequence>
</complexType>

</element>

Let a Sequence type expression be an xsd value built from the constructors
Sequence, Elt and GroupRef only, and a Choice type expression be an xsd value
of the form Choice[ t1;. . . ; tn] such that every ti is a Sequence type expression.
Hence, flattening transforms a list of arbitrary xsd values not containing any
inner Choice into a list of Sequence or Choice type expressions.

4.3 Representation of XSD types in Coq
In this section, we explain how XSD type definitions are represented in Coq.

This is the tool xsd2coq.
First note that XSD provides a number of built-in types that we translate

into types of the Coq standard library as summarized in Figure 4.1.

XSD Coq OCaml
integer Z coq_Z

nonNegativeInteger N coq_N
positiveInteger positive positive

boolean bool bool
string string string

Figure 4.1: Translation of XSD built-in types into Coq and OCaml

where coq_Z, coq_N, and positive we used the Coq datatypes, because it
would not be safe to use the machine integers while the correctness proof is done
with unbounded integers (N, Z, etc).

Then, we define a function θ translating a Sequence type expression t into
a Coq type θ(t) as summarized in Figure 4.2. Other solutions could be chosen.
With our solution, not every Coq value corresponds to a valid XML file. To do so,
we could for instance use generalized algebraic data types (GADTs) [4, 142, 22],
dependent data types [5, 24], or type systems specially developed for dealing
with XML documents like XDuce [141, 71] or CDuce [20, 10].

Now, each XSD type definition, that is, each top-level element or group
with name attribute n and type attribute or complexType definition t gives
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XSD Coq
Sequence[ t1;. . . ; tn] θ(t1)*. . . *θ(tn)

GroupRef(n,1,Bound 1) n
GroupRef(n,0,Bound 1) optionn
GroupRef(n,_,Bound k) n*. . . *n
GroupRef(n,_,Unbounded) listn

Elt(n,Some( t),1,Bound 1) θ(t)
Elt(n,Some( t),0,Bound 1) option θ(t)
Elt(n,Some( t),_,Bound k) θ(t)*. . . *θ(t)
Elt(n,Some( t),_,Unbounded) list θ(t)

Figure 4.2: Rules for translating a Sequence type into a Coq type

raise in Coq to the definition of a type named n. After flattening, t is either a
Choice type expression or a Sequence type expression. If it is a Sequence type
expression, then n is defined in Coq as follows:

Definition n := θ(t).

Otherwise, n is defined as an Inductive. For instance,

<group name="n">
<complexType>

<choice>
<element name="tag1">T1</element>
...
<element name="tagk">Tk</element>

</choice>
</complexType>

</group>

is translated as the following inductive type definition:

Inductive n :=
| n_tag1 : θ(T1)
...
| n_tagk : θ(Tk)

Example 10 The Coq data type generated for the type symbol of Example 1
is as follows:

Inductive symbol :=
| Symbol_name : name -> symbol
| Symbol_sharp : symbol -> symbol
| Symbol_labeledSymbol : symbol -> label -> symbol

with label :=
| Label_numberLabel : list nonNegativeInteger -> label
| Label_symbolLabel : list symbol -> label.
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Remark: for each inductively defined type t, Coq automatically generates
an induction principle t_ind. Unfortunately, in case of type definitions using
the type constructor list, like symbol in Example 10, Coq does not recognize
the list arguments as recursive. Hopefully, we can define a correct induction
principle by using a Fixpoint definition. This is currently done manually in
the file rainbow/coq/cpf_ind.v.

4.3.1 Ordering of XSD type definitions in Coq
In XSD, type definitions are unordered and a type definition can refer to

types defined later in the file. This is not a problem in OCaml or Coq since
these languages support mutually defined types. However, we preferred to have
as many minimal sets of mutually defined types as possible. And because in Coq
and OCaml the type names used in a type definition can only refer to type names
of the same set of mutually defined types or to previously defined types, it is
necessary to order the XSD type definitions with respect to their dependencies.

Definition 24 For our purpose, we can consider that a type T is defined by a
finite set of constructors c1, . . . , cn, each constructor ci being equipped with a
list of types Ti,1, . . . ,Ti,ni

for the types of its arguments. Then, we say that a
type T depends on a type U, written UET, if there is a constructor of T having
an argument of type U.

A type U must be defined before a type T if U � T, where � is the re-
flexive and transitive closure of E. Let ' be the symmetric closure of �, and
≺ = �−�−1 be its strict part. The minimal sets of mutually dependent types
correspond then to the equivalence classes of the ' equivalence relation, and
these classes can be topologically ordered by using ≺. In scc.ml, we imple-
mented Warshall’s algorithm [140] for computing �, ' and ≺ from the (boolean)
adjacency matrix of E.

4.4 Automated generation of parsing functions
In this section, we describe the tool xsd2ml that generates OCaml functions

for parsing an XML file wrt some XSD document. To this end, we use the
Xml-Light library [19] which provides a data type xml and parsing functions for
representing XML files. We then introduce some general functions on xml and
explain how, for each XSD type definition x, we generate an OCaml function
ϕx:xml->Tx for translating a value of type xml into a value of type Tx, where
Tx is the OCaml type automatically generated by xsd2coq for x.

4.4.1 Representation of an XML file
The Xml-Light library is a small OCaml library providing basic functions to

parse an XML document into the following OCaml data structure:
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type xml =
| Element of (string * pos * (string * string) list * xml list)
| PCData of string * pos

In the original Xml-Light library, there is no pos argument. These arguments
have been added to provide more precise error messages to the user.

The first argument of Element is the tag of the XML element. The third
argument is the list of attributes with their values. And the last argument
contains the children.

4.4.2 Auxiliary functions on the xml data type
We now introduce a number of auxiliary functions that we will use to gen-

erate our parsing functions:

• get_pc : xml -> string

let get_pc x =
match x with
| PCData (s, _) -> s
| _ -> error_xml x "not a PCData";;

get_pc x simply checks that x is a PCData. If x is a PCData, then it
returns its string argument. Otherwise, it raises an error.
Based on get_pc, we provide a translation function for each XSD built-in
data type as in Figure 4.1 on page 34:
– integer : xml -> coq_Z
– nonNegativeInteger : xml -> coq_N
– positiveInteger : xml -> positive
– string : xml -> string
– boolean : xml -> bool

• get_sons : string -> (xml list -> ’a) -> xml -> ’a

let get_sons tag f x =
match x with
| Element (n, _, _, xs) when n = tag -> f xs
| _ -> error_xml x ("not a " ^ tag);;

get_sons tag f x simply checks that x is an XML element whose name
is tag, that is, is of the form <tag ...> ... </tag>, and apply f to its
children.

• get_first_son : string -> (xml -> ’a) -> xml -> ’a

let get_first_son tag f x =
match x with
| Element (n, _, _, x’ :: _) when n = tag -> f x’
| _ -> error_xml x ("not a " ^ tag);;

get_first_son tag f x is similar to get_sons tag f x but applies f to
the first child of x only.
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• check_emptyness : xml list -> unit
let check_emptyness xs =

match xs with
| [] -> ()
| x :: _ -> error_xml x "non-empty sequence of elements";;

check_emptyness xs simply checks that xs is the empty list. If xs is
empty, then it does nothing. Otherwise, it raises an error.

• parse_first_elt : (’a -> ’b) -> ’a list -> ’b * ’a list
let parse_first_elt f xs =

match xs with
| x :: xs’ -> f x, xs’
| [] -> error_fmt "empty sequence of elements";;

parse_first_elt f xs applies f to the first element of xs and returns
the result together with the remaining elements. It raises an error if xs is
empty.

• try_parse : (’a -> ’b) -> ’a -> ’b option
let try_parse f x = try Some (f x) with Error _ -> None;;

If the computation of (f x) raises no error and returns y, then try_parse f
x returns Some y. Otherwise, it returns None.

• parse_list : (’a -> ’b) -> ’a list -> ’b list * ’a list
let parse_list f =

let rec parse_list_aux acc xs =
match xs with
| [] -> List.rev acc, []
| x :: xs’ ->

match try_parse f x with
| Some y -> parse_list_aux (y :: acc) xs’
| None -> List.rev acc, xs

in parse_list_aux [];;

parse_list f xs computes the biggest prefix xs’ of xs such that f re-
turns some result on every element of xs’, and returns the list of those
results and the remaining elements of xs.

• parse_option : (’a -> ’b) -> ’a list -> ’b option * ’a list
let parse_option f xs =

match xs with
| [] -> None, []
| x :: xs’ as xs ->

match try_parse f x with
| None -> None, xs
| some_val -> some_val, xs’;;

parse_option f xs returns the result of f on the first element of xs
together with the remaining elements if there is no error. Otherwise, it is
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(more/less) the identity.

4.4.3 Translating XML to the type generated from XSD
Using the previous auxiliary functions, we now describe, for each XSD data

type x, how we generate an OCaml function ϕx:xml->Tx, where Tx is the data
type described in the previous section:

• <element>
Assume that x is:
<element name="tag"> type </element>

If type is <choice>, then we let:
tag x = get_first_son "tag" tag_val x

Otherwise, we let:
tag x = get_sons "tag" tag_val x

• <choice>
If x is:
<choice>

<element name="tag1"> type1 </element>
...
<element name="tagn"> typen </element>

</choice>

then we let:
tag_val = function

| Element ("tag1", _, _, xs) -> Tag1 (tag1_val xs)
...
| Element ("tagn", _, _, xs) -> Tagn (tagn_val xs)
| x -> error_xml x "not a tag"

• <sequence>
If x is:
<sequence>

<element name="tag1"> type1 </element>
...
<element name="tagn"> typen </element>

</sequence>

then we let:
tag_val xs =

let item_tag1, xs = parse_first_elt tag1_val xs in
...
let item_tagn, xs = parse_first_elt tagn_val xs in
check_emptyness xs;
item_tag1, ..., item_tagn
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Example 11 With the type symbol of Example 10, we get:

symbol x = get_first_son "symbol" symbol_val x

symbol_val x = match x with
| Element ("name", _, _, xs) -> Symbol_name (name_val xs)
| Element ("sharp", _, _, xs) ->

let item_symbol, xs = parse_first_elt symbol_val xs in
check_emptyness xs;
Symbol_sharp (item_symbol)

| Element ("labeledSymbol", _, _, xs) ->
let item_symbol, xs = parse_first_elt symbol_val xs in
let item_label, xs = parse_first_elt label_val xs in
check_emptyness xs;
Symbol_labeledSymbol (item_symbol,item_label)

| x -> error_xml x "not a symbol"

label x = get_first_son "label" label_val x

label_val x = match x with
| Element ("numberLabel", _, _, xs) ->

let item_number, xs = parse_list
(get_first_son "number" nonNegativeInteger) xs in
check_emptyness xs;
Label_numberLabel (item_number)

| Element ("symbolLabel", _, _, xs) ->
let item_symbol, xs = parse_list symbol_val xs in
check_emptyness xs;
Label_symbolLabel (item_symbol)

| x -> error_xml x "not a label"

where the constructor name for Tx such as Symbol_sharp, Symbol_labeled
Symbol, . . . are taken from the constructor function constructor_name defined
in xsd.ml.
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Chapter 5

Translation of CPF data
structures into CoLoR data
structures

In this chapter, we explain how the data structures generated from cpf.xsd
are translated into the data structures used in the theorems of the Coq libraries
CoLoR [15, 16] and Coccinelle [32, 30]. We first explain the modifications that
we had to bring to these libraries. Then, we introduce an error monad [139]
for dealing with translation failures (and later with errors in certificates and
failures in certificate verification). Finally, we describe how we translated the
main CPF (Certification Problem Format) data structures into CoLoR.

5.1 Modifications of the CoLoR library
CoLoR uses a lot of modules and functors [25]. However, modules and func-

tors are not first-class objects in Coq. For instance, one can have sections inside
a module or module type, but one cannot have a module or module type inside
a section. While this was not a problem in the previous version of Rainbow
that was generating Coq code and thus modules on-the-fly, it is not possible in
the new static approach for we would need to inductively define modules from
certificates. Hopefully, this problem can be solved by simply replacing modules
by records [105], module types by type classes [114] and functors by functions
because records, type classes and functions are first-class citizens. We then lose
the subtyping mechanism associated to modules but this mechanism can be sim-
ulated by using implicit coercions instead [106]. Another consequence is that
functions and lemmas take more arguments but many of them can be automat-
ically guessed by the system and do not need to be printed. It is therefore not
too difficult to translate a module-based file into a record-based one. Hence, we
developed new record-based versions for 20 CoLoR files. These files are avail-
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able in the coq sub-directory of Rainbow. They end with the suffix 2. The file
Polynom2.v contains also a generalization of CoLoR polynomials on integers to
any semi-ring structure.

Example 12 The module type specifying monotone algebras and the func-
tor providing the theory of monotone algebras are formalized in CoLoR/Term/
WithArity/AMonAlg.v as follows:

Module Type MonotoneAlgebraType.
Parameter Sig : Signature.
Parameter I : interpretation Sig.
Parameter succ : relation (domain I).
Parameter succeq : relation (domain I).
Parameter refl_succeq : reflexive succeq.
Parameter trans_succ : transitive succ.
...

End MonotoneAlgebraType.

Module MonotoneAlgebraResults (Export MA : MonotoneAlgebraType).

Lemma absorb_succ_succeq : absorbs_left (IR I succ) (IR I succeq).
...

End MonotoneAlgebraResults.

Now, the new record-based version given in the file rainbow/coq/AMonAlg2.
v is as follows:

Section S.
Variable Sig : Signature.
Class MonotoneAlgebraType := {

ma_int : interpretation Sig;
ma_succ : relation (domain ma_int);
ma_succeq : relation (domain ma_int);
ma_refl_succeq : reflexive ma_succeq;
ma_trans_succ : transitive ma_succ;
... }.

End S.

Section MonotoneAlgebraResults.
Variable Sig : Signature.
Context { MA : MonotoneAlgebraType Sig }.

Lemma absorb_succ_succeq : absorbs_left (IR I succ) (IR I succeq).
...

End MonotoneAlgebraResults.
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5.2 Error monad
In order to return useful information to the user in case of error or failure,

we use the following polymorphic error monad [139] (file rainbow/coq/error_
monad.v):

Inductive result (A : Type) : Type :=
| Ok : A -> result A
| Ko : message -> result A.

This means that a translation function f from some CPF type T to some
CoLoR type A will have type T -> result A. The result of f t will be either:

– Ok a: the translation succeeded and returned a:A;
– Ko m: the translation failed for some reason given by m.
We distinguish 3 kinds of messages as follows:

Inductive todo : Type :=
| Todo_DpProof_redPairUrProc
| ... .

Inductive error : Type :=
| Error_NegativeCoefficient
| ... .

Inductive failure : Type :=
| Fail_DpProof_zerobound
| ... .

Inductive message : Type :=
| Todo : todo -> message
| Error : error -> message
| Fail : failure -> message.

– todo messages prefixed by Todo are used when the verification encounters
data structures or certificates that are not fully supported yet. The output
of the tool is then UNSUPPORTED.

– error messages prefixed by Error are used when an error is encountered
in the certificate. The output of the tool is then REJECTED (the certificate
is wrong).

– failure messages prefixed by Fail are used when the certificate verifier
could not check whether the certificate is correct or not. The output of
the tool is then UNSUPPORTED. For instance, for checking the monotonic-
ity of a polynomial interpretation, we simply check that coefficients are
positive. But there are monotone polynomial with negative coefficients
[92]. Without further information, we cannot tell whether the certificate
is correct or not.

We plan to improve the error monad further in a near future by providing
more information on the location of the error. This requires to propagate the
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location information available in the xml data type to the data types automat-
ically generated from cpf.xsd.

When composing two translation functions, f : A -> result B, and then
g : B -> result C, one first needs to check the result of f. In case of success,
one needs to call g on the result of f. And in case of failure, one needs to
propagate the error. This last case being always the same, it is convenient to
introduce the following Coq notation for this bind operation:

Notation "’Match’ e1 ’With’ x ===> e2" :=
(match e1 with
| Ok x => e2
| Ko e => Ko _ e
end).

With this notation, we get more compact definitions as shown by the follow-
ing example:

Example 13 Using the Match ... With ... ===> ... notation, one can lift
the well-known map operation on lists to the error monad as follows:

Variables (A B : Type) (f : A -> result B).
Fixpoint map (l: list A) : result (list B) :=
match l with
| nil => Ok nil
| h :: t => Match f h With y ===> Match map t With t’ ===> Ok (y :: t’)

end.

Without the Match ... With ... ===> ... notation, we would have to
write instead:

Variables (A B : Type) (f : A -> result B).
Fixpoint map (l: list A) : result (list B) :=
match l with
| nil => Ok nil
| h :: t =>

match f h with
| Ok y => match map t with

| Ok t’ => Ok (y :: t’)
| Ko e => Ko _ e
end

| Ko e => Ko _ e
end

end.

5.3 Translation of CPF data structures
In the following sections, we describe how we translated CPF data structures

into CoLoR data structures. For each CPF data structure, we provide:
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– its definition in cpf.xsd,
– its representation in rainbow/coq/cpf.v automatically generated by xsd2coq,
– the corresponding data structure in CoLoR,
– the description of the translation, parametrized by an arity function, of

the former to the latter given in rainbow/coq/cpf2color.v.

5.4 var

CPF Variables are simply defined as strings as follows:

<element name="var" type="string"/>

Rainbow Its generated representation in Coq is:

Definition var := string.

CoLoR Variables are represented by Peano natural numbers in CoLoR/Term/
WithArity/ASignature.v.

Translation We do not consider a particular function nat_of_string to con-
vert a string into a Peano natural number, but instead assume that one is given
(all the development is parameterized by this function):

Variable nat_of_string : string -> nat.

Note that, to be correct, such a function should be injective, so that two
different strings are translated to two different numbers. This will be enforced
at the end by using the function Util.int_of_string based on the OCaml
library Scanf.

5.5 symbol

CPF We have already seen the type for symbols in Example 1.
On the other hand, there is no type for signatures although, in symbol

interpretations, a symbol is referred not only by its name but also by its arity
(see type interpret in Section 5.14). This means that, in fact, the set of
symbols used in CPF terms is symbol×N.

Rainbow Its generated representation in Coq is given in Example 10.
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CoLoR All definitions and theorems are parametrized by an element of the
following type of CoLoR/Term/WithArity/ASignature.v:

Record Signature : Type := mkSignature {
symbol :> Type;
arity : symbol -> nat;
beq_symb : symbol -> symbol -> bool;
beq_symb_ok : forall x y, beq_symb x y = true <-> x = y }.

Translation In general, and in particular in the XTC format for termination
problems [143] used in the termination database [130] as input for provers in
the termination competition [126], one considers a finite set of symbols F with
some arity function ar : F → N and the termination of some rewrite relation on
the set T (Σ,X ) of terms over Σ = (F , ar).

However, various termination methods introduce new symbols (e.g. ]-symbols
in the dependency pair transformation in Section 3.3.3): the termination of some
relation R on T (Σ,X ) may follow from the termination of some relation R′ on
T (Σ′,X ), where Σ′ may contain some symbols of Σ but also some new symbols.

The CPF type symbol allows one to represent all possible new symbols that
can be introduced by the considered set of termination techniques. Thus, it al-
lows one to keep track of them and distinguish them from the symbols occurring
in the initial termination problem, which are implicitly assumed to be only of
the form Symbol_name or Symbol_sharp in case of a DP problem.

From the point of view of termination, this is not a problem since, given a
set of rules R on T (Σ,X ), the termination of →R on T (Σ,X ) trivially follows
from the termination of →R on T (Σ′,X ) if Σ ⊆ Σ′, since T (Σ,X ) is a subset
of T (Σ′,X ).

On the other hand, this is not trivial from the point of view of non-termination.
Indeed, given a set of rulesR on T (Σ,X ), if→R does not terminate on T (Σ′,X )
with Σ ⊆ Σ′, can we conclude that →R does not terminate on T (Σ,X )? This
however follows from non-trivial modularity results on termination [95], and has
been recently formally verified in Isabelle [116] (this formal verification allowed
to find mistakes in related results).

In this new version of Rainbow, we decided to take as set of symbols the
type symbol of all the possible CPF symbols itself. This means that the data
types used in CoLoR to introduce new symbols will have to be translated back
to symbol. However, we can define and prove once and for all the function
beq_symb and lemma beq_symb_ok required for defining a signature in CoLoR.

Now, some termination techniques can change the arity of some symbols
(e.g. arguments filtering [3]): the termination of some relation R on T (Σ,X )
may follow from the termination of some relation R′ on T (Σ′,X ), where Σ and
Σ′ have the same symbols but with different arities.

This means that, the arity function will evolve along the verification of the
certificate, and may have different values in different sub-certificates. In our
development, we will therefore take it as a parameter a. The associated signature
is defined as follows:
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Definition Sig a := mkSignature a beq_symbol_ok.

We however need to compute the arity function to use initially. Since it is
not provided in CPF (in contrast with XTC), one needs to infer it from the set
of rules (see the function arity_in_pb in cpf2color.v). And since functions
defined in Coq must be total, we also need to give some value to the arity of
symbols not occurring in the set of rules. Currently, we assigned to all of them
the value 0.

5.6 term

CPF Terms are defined as follows:

<group name="term">
<choice>

<element ref="var"/>
<element name="funapp">

<complexType>
<sequence>

<group ref="symbol"/>
<element name="arg" maxOccurs="unbounded" minOccurs="0">

<complexType>
<group ref="term"/>

<complexType>
<element>

<sequence>
<complexType>

<element>
<choice>

<group>

Rainbow Its generated representation in Coq is:

Inductive term :=
| Term_var : var -> term
| Term_funapp : symbol -> list term -> term.

CoLoR provides definitions and results for two kinds of first-order term algebra
(and higher-order term algebra too):

– CoLoR/Term/Varyadic/VTerm.v for terms where function symbols may
be applied to an arbitrary number of arguments like in CPF,

– CoLoR/Term/WithArity/ATerm.v for terms where function symbols are
always applied to the same fixed number of arguments like in the standard
definition of first-order terms we have seen in Section 3.2.

We will use the second definition since more termination results are available
for these terms. Given a signature Sig, terms are inductively defined as follows:
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Inductive term : Type :=
| Var : variable -> term
| Fun : forall f : Sig, vector term (arity f) -> term.

where vector A n is an alias defined in CoLoR/Util/Vector/VecUtil.v to the
type of vectors defined in the Coq standard library (see Section 2.2.1). Hence,
CoLoR terms are well-formed by construction: a symbol f comes always applied
to exactly arity f sub-terms.

Translation The translation is straightforward. It fails if a function symbol
is not applied to the right number of arguments given by the arity function used
as parameter.

5.7 rule

CPF Rules and (finite) sets of rules are defined as follows:

<element name="rule">
<complexType>

<sequence>
<element name="lhs">

<complexType>
<group ref="term"/>

</complexType>
</element>
<element name="rhs">

<complexType>
<group ref="term"/>

</complexType>
</element>

</sequence>
</complexType>

</element>

<element name="rules">
<complexType>

<sequence>
<element maxOccurs="unbounded" minOccurs="0" ref="rule"/>

</sequence>
</complexType>

</element>

Rainbow Its generated representation in Coq is:

Definition rule := term * term.
Definition rules := list rule.
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CoLoR Rules are defined in CoLoR/Term/WithArity/ATrs.v as follows:

Record rule : Type := mkRule { lhs : term; rhs : term }.
Definition rules := list rule.

Translation Straightforward.

5.8 input

CPF The type used for describing a termination problem is (we only detail
the cases supported by Rainbow):

<element name="input">
<complexType>

<choice>
<element ref="trsInput"/>
<element ref="dpInput"/>
...

</choice>
</complexType>

</element>

<element name="trsInput">
<complexType>

<sequence>
<element ref="trs"/>
<element minOccurs="0" ref="strategy"/>
<element minOccurs="0" ref="equations"/>
<element name="relativeRules" minOccurs="0">

<complexType>
<sequence>

<element ref="rules"/>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>

<element name="dpInput">
<complexType>

<sequence>
<element ref="trs"/>
<element ref="dps"/>
<element ref="strategy" minOccurs="0"/>
<element name="minimal" type="boolean"/>

</sequence>
</complexType>

</element>
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Rainbow Its generated representation in Coq is:

Definition trs := rules.
Definition trsInput := trs * option strategy * option equations * option rules.
Definition dps := rules.
Definition dpInput := trs * dps * option strategy * boolean.
Inductive input :=
| Input_trsInput : trsInput -> input
| Input_dpInput : dpInput -> input
| ... .

CoLoR provides no data structure for representing termination problems. They
are directly represented by the propositions WF R or EIS R meaning that R is
well-founded or has an infinite rewrite sequence (see Section 3.1).

Relations are defined in coq/theories/Relations/Relation_Definitions.
v as follows:

Definition relation (A : Type) := A -> A -> Prop.

Termination and non-termination is defined in CoLoR/Util/Relation/SN.v
as follows:

Inductive SN A (R : relation A) x : Prop :=
SN_intro : (forall y, R x y -> SN R y) -> SN R x.

Definition WF A (R : relation A) := forall x, SN R x.

The predicate WF is similar to the notion of accessibility (Definition 2) except
that the relation is oriented the other way around.

Non-termination is defined in CoLoR/Util/Relation/RelUtil.v as follows:

Definition IS A (R : relation A) (f : nat -> A) :=
forall i, R (f i) (f (S i)).

Definition EIS A (R : relation A) := exists f, IS R f.

where EIS means that there exists an infinite rewrite sequence.
Note that WF implies ~EIS intuitionistically (see CoLoR/Util/Relation/SN.

v). However, for proving that ~EIS implies WF, one needs the axioms of excluded
middle and dependent choice (see CoLoR/Util/Relation/NotSN_IS.v).

Now, rewrite relations are defined in CoLoR/Term/WithArity/ATrs.v as fol-
lows:

Definition red R u v := exists l r c s,
In (mkRule l r) R /\ u = fill c (sub s l) /\ v = fill c (sub s r).

Definition hd_red R u v := exists l r s,
In (mkRule l r) R /\ u = sub s l /\ v = sub s r.

Definition red_mod E R := red E # @ red R.

Definition hd_red_mod E R := red E # @ hd_red R.
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where sub s l is the application of the substitution s to the term l, fill c t is the
replacement in the context c of the hole by the term t. Hence, red R is the closure
by context and substitution of R, hd_red R the closure by substitution of R. red_mod,
hd_red_mod are rewriting modulo and top rewriting modulo some other relation, where
@ is the composition of relations and # is the reflexive and transitive closure.

Translation The current version of Rainbow only supports as input TRSs and DP
problems without strategy, equation or relative rule.

We translate an input into a relation in two steps. First, we introduce the following
type for representing termination problems in CoLoR:

Inductive system : Type :=
| Red : rules (Sig a) -> system
| Hd_red_mod : rules (Sig a) -> rules (Sig a) -> system
| ... .

Second, we translate system into relation as follows:

Definition rel_of_sys (s : system) :=
match s with
| Red R => red R
| Hd_red_mod E R => hd_red_mod E R
...

end.

5.9 number
CPF The type for representing numbers is defined as follows:

<group name="number">
<choice>

<element name="integer" type="integer"/>
<element name="rational">

<complexType>
<sequence>

<element name="numerator" type="integer"/>
<element name="denominator" type="positiveInteger"/>

</sequence>
</complexType>

</element>
</choice>

</group>

Rainbow Its generated representation in Coq is:

Definition integer := Z.
Definition positiveInteger := positive.
Inductive number :=
| Number_integer : integer -> number
| Number_rational : integer -> positiveInteger -> number.

where Z and positive are taken from the Coq standard library file coq/theories/
Numbers/BinNums.v.
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CoLoR There is no data structure corresponding to number.

5.10 domain
CPF The type for representing (ordered) interpretation domains is defined as follows:

<element name="dimension" type="positiveInteger"/>
<element name="strictDimension" type="positiveInteger"/>

<element name="domain">
<complexType>

<choice>
<element name="naturals"/>
<element name="integers"/>
<element name="rationals">

<complexType>
<sequence>

<element name="delta">
<complexType>

<sequence>
<group ref="number"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>
<element name="arctic">

<complexType>
<sequence>

<element ref="domain"/>
</sequence>

</complexType>
</element>
<element name="tropical">

<complexType>
<sequence>

<element ref="domain"/>
</sequence>

</complexType>
</element>
<element name="matrices">

<complexType>
<sequence>

<element ref="dimension"/>
<element ref="strictDimension"/>
<element ref="domain"/>

</sequence>
</complexType>

</element>
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</choice>
</complexType>

</element>

– naturals: denotes the set N ordered by the usual well-founded ordering ≤N on
N.

– integers: denotes the set Z ordered by the standard ordering ≤Z on Z. Note
that ≤Z is not well-founded and thus cannot be used as an interpretation domain
itself, but it can be used in combination with arctic numbers (see below).

– rationals with delta δ ∈ Q: denotes the set Q of rationals ordered by the
well-founded relation <δ such x <δ y if | x− y |≤Q δ0≤x, where ≤Q is the usual
(non-well-founded) ordering on Q [87].

– arctic over domain (D,≤): denotes the extension of (D,≤) (D ∈ {N,Z}) with
−∞ [81].

– tropical over domain (D,≤): denotes the extension of (D,≤) (D = N) with
+∞.

– matrices over domain (D,≤) with dimension d ∈ N and strictDimension
s ∈ [1, d]: represents the domain Dd×d of square matrices of dimension d ordered
by the relation ≤ds such that M <ds N if M ≤ N (pointwise) and there are i ≤ s
and j ≤ s such that Mij < Nij [42].

Rainbow Its generated representation in Coq is:

Definition strictDimension := positiveInteger.
Definition dimension := positiveInteger.
Inductive domain :=
| Domain_naturals
| Domain_integers
| Domain_rationals : number -> domain
| Domain_arctic : domain -> domain
| Domain_tropical : domain -> domain
| Domain_matrices : dimension -> strictDimension -> domain -> domain.

CoLoR There is no data structure corresponding to domain. The type for represent-
ing an ordered semi-ring (OSR) is defined in rainbow/coq/OrdSemiRing2.v (record-
based version of CoLoR/Util/Algebra/OrdSemiRing.v) as follows: an ordered semi-
ring is a semi-ring equipped with two relations osr_gt and osr_ge satisfying a num-
ber of conditions (decidability, compatibility, etc.); a semi-ring is a decidable setoid
equipped with an addition (with neutral element sr_0) and a multiplication (with
neutral element sr_1); and a setoid is a type equipped with an equivalence relation:

Class Setoid := {
s_typ :> Type;
s_eq : relation s_typ;
s_eq_Equiv : Equivalence s_eq }.

Class DecidableSetoid := {
ds_setoid :> Setoid;
ds_eq_dec : forall x y, s_eq x y + ~s_eq x y }.

Class SemiRing := {
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sr_ds :> DecidableSetoid;
sr_0 : s_typ;
sr_1 : s_typ;
sr_add : s_typ -> s_typ -> s_typ;
sr_add_eq : Proper (s_eq ==> s_eq ==> s_eq) sr_add;
sr_mul : s_typ -> s_typ -> s_typ;
sr_mul_eq : Proper (s_eq ==> s_eq ==> s_eq) sr_mul;
sr_th : semi_ring_theory sr_0 sr_1 sr_add sr_mul s_eq }.

Class OrderedSemiRing := {
osr_sr :> SemiRing;
osr_gt : relation s_typ;
osr_ge : relation s_typ;
osr_eq_incl_ge : forall x y, s_eq x y -> osr_ge x y;
osr_ge_refl : Reflexive osr_ge;
osr_ge_trans : Transitive osr_ge;
osr_gt_trans : Transitive osr_gt;
osr_ge_dec : forall x y, osr_ge x y + ~osr_ge x y;
osr_gt_dec : forall x y, osr_gt x y + ~osr_gt x y;
osr_ge_gt : forall x y z, osr_ge x y -> osr_gt y z -> osr_gt x z;
osr_gt_ge : forall x y z, osr_gt x y -> osr_ge y z -> osr_gt x z;
osr_add_gt : Proper (osr_gt ==> osr_gt ==> osr_gt) sr_add;
osr_add_ge : Proper (osr_ge ==> osr_ge ==> osr_ge) sr_add;
osr_mul_ge : Proper (osr_ge ==> osr_ge ==> osr_ge) sr_mul }.

where Proper (R ==> S ==> T) f means that f is monotone in its first argument wrt
the relation R, and monotone in its 2nd argument wrt the relation S. These information
are used by Coq in the rewrite tactic [113].

We now give the data structures available in Coq and CoLoR for representing these
ordered domains:
• naturals: Several representations are available:

– coq/theories/Init/datatypes.v provides the type nat for natural numbers
in base 1 (Peano numbers),

– coq/theories/Numbers/BinNums.v provides the type N for natural numbers
in base 2,

– coq/theories/Numbers/Natural/BigN/BigN.v provides the type BigN.t for
natural numbers in base 231.

The file rainbow/coq/Nat_as_OSR.v provides the OSR structure of nat (we
could improve this by using N or BigN.t instead).

• integers: Several representations are available:
– coq/theories/Numbers/BinNums.v provides the type Z for integers in base 2,
– coq/theories/Numbers/Integer/BigZ/BigZ.v provides the type BigZ.t for

integers in base 231.
The file rainbow/coq/Z_as_OSR.v provides the OSR structure of Z (we could
improve this by using BigZ.t instead).

• rationals: Several representations are available:
– coq/theories/QArith/QArith_base.v provides the type Q of rationals made

of integers in base 2,
– coq/theories/Numbers/Rational/BigQ/BigQ.v provides the type BigQ.t of

rationals made of integers in base 231.
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The file rainbow/coq/Q_as_R.v provides the ordered ring structure of Q (we
could improve this by using BigQ.t instead).

• arctic: There is no general construction for arctic domains. The domain of
arctic natural numbers and arctic integers are defined in CoLoR/Util/Algebra/
SemiRing.v as follows:

Inductive ArcticDom : Type :=
| Pos (n : nat)
| MinusInf.
Inductive ArcticBZDom : Type :=
| Fin (z : Z)
| MinusInfBZ.

The files rainbow/coq/Arctic_as_OSR.v and rainbow/coq/Arctic_as_OSR.v
provide the corresponding OSR structures.

• tropical: There is no general construction for tropical domains. The domain
of tropical natural numbers is defined in CoLoR/Util/Algebra/SemiRing.v as
follows:

Inductive TropicalDom : Type :=
| TPos (n : nat)
| PlusInf.

The file rainbow/coq/Tropical_as_OSR.v provides its corresponding OSR struc-
ture.

• matrix: Although matrices over an OSR are defined in rainbow/coq/Matrix2.v
(record-based version of CoLoR/Util/Matrix/Matrix.v), there is currently no
OSR structure for matrices (however, this should not be too difficult to write
one). Hence, currently, Rainbow cannot handle polynomial interpretations over
matrices [42] (note that the theory of non-linear polynomials over matrices has
not been explored yet). It can however handle matrix interpretations 1 with
strict dimension equal to 1 (extending CoLoR to bigger strict dimensions should
not be too difficult either). Indeed, matrix interpretations are affine functions
on vectors, that is, functions of the form f(v1, . . . , vn) = M1v1 + . . .+Mnvn+v0
where vi ∈ Nd,Mi ∈ Nd×d and Nd is ordered by the relation ≤d1 such that x <d1 y
if x ≤ y (pointwise) and x1 < y1.

5.11 coefficient, vector, matrix
CPF The data structure for representing elements of a domain is defined as follows:

<element name="coefficient">
<complexType>

<choice>
<group ref="number"/>
<element name="minusInfinity"/>
<element name="plusInfinity"/>
<element ref="vector"/>

1. The term “matrix interpretation” is perhaps not so well chosen because, in “matrix
interpretations”, terms are not interpreted by matrices but by vectors (while in “polynomial
interpretations”, terms are interpreted by polynomials). It would perhaps be better to speak
about (affine) vectorial interpretation.
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<element ref="matrix"/>
</choice>

</complexType>
</element>

<element name="vector">
<complexType>

<sequence>
<element maxOccurs="unbounded" ref="coefficient"/>

</sequence>
</complexType>

</element>

<element name="matrix">
<complexType>

<sequence>
<element maxOccurs="unbounded" ref="vector"/>

</x:sequence>
</complexType>

</element>

Rainbow Its generated representation in Coq is:

Inductive matrix :=
| Matrix_matrix : list (list coefficient) -> matrix
with vector :=
| Vector_vector : list coefficient -> vector
with coefficient :=
| Coefficient_number : number -> coefficient
| Coefficient_minusInfinity
| Coefficient_plusInfinity
| Coefficient_vector : vector -> coefficient
| Coefficient_matrix : matrix -> coefficient.

CoLoR The ordered semi-rings of arctic natural numbers, arctic integers and tropical
natural numbers are defined in CoLoR/Util/Algebra/SemiRing.v.

Vectors are defined in coq/theories/Vectors/VectorDef.v. An extensive library
on vectors is provided in CoLoR/Util/VecUtil.v. Vector arithmetic over an ordered
semi-ring is developed in rainbow/coq/VecArith2.v.

Matrices over an ordered semi-ring are defined as vectors of vectors in CoLoR/Util/
Matrix/Matrix.v:

Definition matrix A m n := vector (vector A n) m.

Translation The translation of a coefficient (and thus a number, vector or
matrix) depends on the domain it is taken from: for each supported domain D, we
provide a function ρD:coefficient->D. For instance:

color_coef_N (Coefficient_minusInfinity) fails

while:

56



color_coef_Arcnat (Coefficient_minusInfinity) = MinusInf

5.12 polynomial, function, type
CPF The data type for defining (interpretation) functions is as follows:

<group name="function">
<choice>

<element ref="polynomial">
</element>

</choice>
</group>

<element name="polynomial">
<complexType>

<choice>
<element ref="coefficient"/>
<element name="variable" type="positiveInteger"/>
<element name="sum">

<complexType>
<sequence>

<element maxOccurs="unbounded" ref="polynomial"/>
</sequence>

</complexType>
</element>
<element name="product">

<complexType>
<sequence>

<element maxOccurs="unbounded" ref="polynomial"/>
</sequence>

</complexType>
</element>
<element name="max">

<complexType>
<sequence>

<element maxOccurs="unbounded" ref="polynomial"/>
</sequence>

</complexType>
</element>
<element name="min">

<complexType>
<sequence>

<element maxOccurs="unbounded" ref="polynomial"/>
</sequence>

</complexType>
</element>

</choice>
</complexType>

</element>
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The types polynom is used in CPF in two different ways:
1. to represent the polynomial functions on some ring used in polynomial interpre-

tations,
2. to represent the affine functions on some vector space or module used in matrix

interpretations, that is, functions of the form f(v1, . . . , vn) = M1v1 + . . . +
Mnvn + v0 where vi ∈ Nd and Mi ∈ Nd×d, therefore mixing matrix and vector
coefficients.

This is expressed in CPF by the following type:

<element name="type">
<complexType>

<choice>
<element name="polynomial">

<complexType>
<sequence>

<element ref="domain"/>
<element ref="degree">
</element>

</sequence>
</complexType>

</element>
<element name="matrixInterpretation">

<complexType>
<sequence>

<element ref="domain"/>
<element ref="dimension"/>
<element ref="strictDimension">
</element>

</sequence>
</complexType>

</element>
</choice>

</complexType>
</element>

Rainbow Its generated representation in Coq is:

Inductive polynomial :=
| Polynomial_coefficient : coefficient -> polynomial
| Polynomial_variable : positiveInteger -> polynomial
| Polynomial_sum : list polynomial -> polynomial
| Polynomial_product : list polynomial -> polynomial
| Polynomial_max : list polynomial -> polynomial
| Polynomial_min : list polynomial -> polynomial.

Definition function := polynomial.

Inductive type_t9 :=
| Type_t9_polynomial : domain -> degree -> type_t9
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| Type_t9_matrixInterpretation :
domain -> dimension -> strictDimension -> type_t9.

CoLoR Polynomials with multiple variables and coefficients in Z are formalized in
CoLoR/Util/Polynom/Polynom.v. In rainbow/coq/Polynom2.v, we provide a record-
based polymorphic version of it taking as argument any ring structure for coefficients.
The type of polynomials depends on the maximum number n of variables x1, . . . , xn.
A monomial xk1

1 . . . xknn is represented by the vector (k1, . . . , kn). Then, a polynomial
is represented as a list/sum of pairs (c,m) where c is an element of the ring and m is
a monomial. Hence, a polynomial can be represented in multiple ways. For instance,
0 can be represented by the empty list or the list [(1,m), (−1,m)] where m is any
monomial. Note also that this excludes min and max.

Notation monom := (vector nat).
Definition poly n := list (s_typ * monom n).

Translation Polynomials are translated in two different ways depending on whether
it is for a polynomial or matrix interpretation. Both functions are parametrized by an
ordered ring structure and a function for translating coefficient into this structure:

Class CPFRing := {
or :> OrderedRing;
cpf_coef : coefficient -> result s_typ }.

Rainbow fails if there is a max or min expression.

5.13 orderingConstraintProof, redPair
CPF The type for describing (weak) reduction pairs is:

<element name="orderingConstraintProof">
<complexType>

<choice>
<element ref="redPair"/>
...

</choice>
</complexType>

</element>

<element name="redPair">
<complexType>

<choice>
<element name="interpretation">...</element>
<element name="pathOrder">...</element>
<element name="knuthBendixOrder">...</element>
<element name="scnp">...</element>

</choice>
</complexType>

</element>

There are currently four methods in CPF to construct reduction pairs:
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– interpretation: in some well-founded algebra (e.g. polynomial or matrix in-
terpretation),

– pathOrder: the recursive path ordering (RPO) [47, 48],
– knuthBendixOder: the ordering (KBO) introduced in [78] for trying to complete

a rewrite system so that it becomes confluent,
– scnp: the ordering based on the size-change principle [9, 27].
We handle the first two only.

Rainbow Its generated representation in Coq is:

Inductive orderingConstraintProof :=
| OrderingConstraintProof_redPair : redPair -> orderingConstraintProof
| ... .

Inductive redPair :=
| RedPair_interpretation : ... -> redPair
| RedPair_pathOrder : ... -> redPair
| ... .

CoLoR Decidable weak reduction pairs are defined abstractly in rainbow/coq/ARedPair2.
v (record-based version of CoLoR/MannaNess/ARedPair.v) as follows:

Class DS_WeakRedPair := mkDS_WeakRedPair {
ds_weak_rp :> Weak_reduction_pair Sig;
ds_wr_bsucc : term -> term -> bool;
ds_wr_bsucc_sub : rel_of_bool ds_wr_bsucc << (wp_succ ds_weak_rp);
ds_wr_refl_succeq : reflexive (wp_succ_eq ds_weak_rp);
ds_wr_bsucceq : term -> term -> bool;
ds_wr_bsucceq_sub : rel_of_bool ds_wr_bsucceq << (wp_succ_eq ds_weak_rp);
ds_wr_trans_succ : transitive (wp_succ ds_weak_rp);
ds_wr_trans_succeq : transitive (wp_succ_eq ds_weak_rp) }.

where ds_wr_bsucc and ds_wr_bsucceq are boolean functions sub-approximating the
generally undecidable relations wp_succ and wp_succ_eq respectively (CoLoR/Term/
WithArith/ARelation.v).

Several functions are then provided for building reduction pairs that we detail in
the next sections.

5.14 interpretation
CPF An interpretation is defined as follows:

<element name="interpretation">
<complexType>

<sequence>
<element ref="type"/>
<element maxOccurs="unbounded" minOccurs="0" name="interpret">

<sequence>
<group ref="symbol"/>
<element ref="arity"/>
<group ref="function"/>
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</sequence>
</element>

</sequence>
</complexType>

</element>

– type: describes which kind of interpretation it is (polynomial or matrix inter-
pretation) as seen in Section 5.12;

– interpret: gives a list of triples (f, k, If) where f is a function symbol, k its
arity, and If its interpretation function.

Rainbow Its generated representation in Coq is:

Inductive redPair :=
| RedPair_interpretation : type_t9 -> list (symbol * arity * function) -> redPair
| ... .

CoLoR The interpretation of a signature Sig is defined as follows in CoLoR/Term/
WithArity/AInterpretation.v:

Record interpretation : Type := mkInterpretation {
domain :> Type;
some_elt : domain;
fint : forall f : Sig, naryFunction1 domain (arity f) }.

As we have seen in Section 3.3.2, given an interpretation I on some well-founded
domain (D,≤), one can define a pair of relations (≥I , >I). The function mapping >
to >I is defined in CoLoR/Term/WithArity/AWFMInterpretation.v as follows:

Definition IR : relation term :=
fun t u => forall xint, R (term_int xint t) (term_int xint u).

where term_int is the function interpreting terms in domain using I for function
symbols and xint for variables.

Now, all the properties required for I, ≥ and >, for (≥I , >I) to be a reduction
pair (Theorem 15) are bundled together into the following data structure defined in
rainbow/coq/AMonAlg2.v:

Class MonotoneAlgebraType := {
ma_int : interpretation Sig;
ma_succ : relation (domain ma_int);
ma_succeq : relation (domain ma_int);
ma_refl_succeq : reflexive ma_succeq;
ma_trans_succ : transitive ma_succ;
ma_trans_succeq : transitive ma_succeq;
ma_monotone_succeq : monotone ma_int ma_succeq;
ma_succ_wf : WF ma_succ;
ma_succ_succeq_compat : absorbs_left ma_succ ma_succeq;
ma_succ’ : relation (term Sig);
ma_succeq’ : relation (term Sig);
ma_succ’_sub : ma_succ’ << IR ma_int ma_succ;
ma_succeq’_sub : ma_succeq’ << IR ma_int ma_succeq;
ma_succ’_dec : rel_dec ma_succ’;
ma_succeq’_dec : rel_dec ma_succeq’ }.
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where ma_succ’ and ma_succeq’ are decidable sub-relations of
(IR ma_int ma_succ) and (IR ma_int ma_succeq) respectively. These decidable sub-
relations are introduced because, in general, >I and ≥I may be undecidable or of high
complexity. But for verifying if Theorem 13 is applied correctly, one needs to be able
to check whether some rule l→ r is in >I or not. We therefore need to have an efficient
boolean function for checking whether l >I r holds or does not hold. Moreover, one
needs to check that every interpretation function is monotone. And this, again, can
be undecidable or of high complexity.

Take for instance the case of a polynomial interpretation on N. Terms are inter-
preted by polynomial functions on N. More precisely, a term t with n variables is
interpreted by a polynomial function [[t]] of n variables x1, . . . , xn with coefficients in
N (this is formalized in rainbow/coq/APolyInt2.v). Checking that a polynomial func-
tion P (x1, . . . , xn) is (strictly) greater than another polynomial functionQ(x1, . . . , xn),
whatever the values of x1, . . . , xn are in R, is of high complexity [124]. Checking that
some polynomial function P (x1, . . . , xn) is monotone in its i-th argument is easily
reduced in N to checking that

P (x1, . . . , xi + 1, . . . , xn)− P (x1, . . . , xn) ≥ 0.

Hence, these two conditions can be reduced to testing positiveness [70]. A simple
condition, used in many theorem provers, is to check that coefficients are positive.
This however excludes positive polynomials with negative coefficients [92]. This is
also the test currently used in Rainbow in CoLoR/Util/Monotone/MonotonePolynom.v.
For monotony, we also check that the coefficient of xi is strictly greater than 0.

Using these boolean test functions, we can build an instance of MonotoneAlge-
braType for polynomial interpretations (rainbow/coq/APolyInt_MA2.v) and matrix
interpretations (rainbow/coq/AMatrixInt2.v).

5.15 pathOrder
A path order extends a well-founded relation on function symbols into a reduction

pair by comparing the root symbols and the subterms recursively. The subterms can be
seen as an unordered multiset, which yields the multiset path order (MPO) [47], as an
ordered tuples, which yields the lexicographic path order (LPO) [76], or a combination
thereof, which yields the recursive path order with status (RPO).

Definition 25 (Lexicographic ordering) The lexicographic extension of a relation
> on A is the relation >lex on sequences of elements of A such that (x1, . . . , xm) >lex

(y1, . . . , yn) if there is i such that xi > yi and, for all j < i, xj = yj .

Definition 26 (Multiset ordering) A (finite) multisetM over a set A is a function
M : A→ N whose domain {x ∈ A |M(x) > 0} is finite.

The multiset extension of a relation > on A is the relation >mul on the set Mul(A)
of multisets on A such that M >mul N if there exist X,Y ∈ Mul(A) such that:

– X 6= ∅ ⊆M ,
– N = (M \X) ∪ Y ,
– ∀y ∈ Y, ∃x ∈ X such that x > y.

A finite multiset (or bag)M is like a finite set but in which an element x can occur
M(x) times. The multiset ordering consists then at repeatedly replacing an element
x by any number of elements y as long as x > y.

62



Definition 27 (RPO) Let � be a well-founded partial order on Σ, called a prece-
dence. Let τ be a status function on Σ, i.e. τ : Σ → {lex,mul}. The recursive path
order on terms, �rpo is defined as follows:

s = f(s1, . . . , sm) �rpo t if either:

– si �rpo t for some i;
– t = g(t1, . . . , tn), s �rpo ti for all i and either:

– f � g or,
– f = g and (s1, . . . , sm) �rpo

τ(f) (t1, . . . , tn)

The relation >rpo
τ(f) depends on the status of f. If τ(f) = lex then it is the lexico-

graphic extension of �rpo (Definition 25). If τ(f) = mul then it is its multiset extension
(Definition 26).

Theorem 28 ([48]) (�rpo,�rpo) is a monotone reduction pair.

CPF The type for describing a path ordering is as follows:

<element name="pathOrder">
<complexType>

<sequence>
<element name="statusPrecedence">

<complexType>
<sequence>

<element name="statusPrecedenceEntry"
maxOccurs="unbounded" minOccurs="0">

<complexType>
<sequence>

<group ref="symbol"/>
<element ref="arity"/>
<element name="precedence"
type="xs:nonNegativeInteger"</element>
<choice>

<element name="lex"/>
<element name="mul"/>

</choice>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>
<element minOccurs="0" ref="argumentFilter"/>

</sequence>
</complexType>

</element>

The relation � on function symbols is given by assigning a non-negative number
p(f) to each function symbol f: f � g if p(f) > p(g).
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Rainbow Its generated representation in Coq is:

Inductive t10 :=
| T10_lex
| T10_mul.

Inductive redPair :=
| RedPair_pathOrder : (list (symbol * arity * nonNegativeInteger * t10)) ->

option argumentFilter -> redPair
| ... .

CoLoR contains a formalization of MPO and RPO on varyadic terms [41, 40] (and
a formalization of HORPO on de Bruijn terms [79]) but no proof of decidability or
boolean function for testing them. On the other hand, the Coccinelle library developed
by Contejean contains such a function for varyadic terms [29, 30]. In particular,
term_orderings/rpo.v provides the following type for statuses:

Inductive status_type : Type :=
| Lex : status_type
| Mul : status_type.

Since 2009, a slightly modified version of the version 8.2 of Coccinelle is dis-
tributed with CoLoR, in the sub-directory CoLoR/Coccinelle/, including Sorin Strat-
ulat’s patch extending the precedence from an ordering to a quasi-ordering (file CoLoR/
Coccinelle/term_orderings/rpo.v). Moreover, the file CoLoR/Conversion/Coccinelle.
v provides an interface for translating CoLoR algebraic terms into Coccinelle varyadic
terms and reusing in CoLoR theorems proved in Coccinelle. In particular, the new
record-based version (rainbow/coq/Coccinelle2.v) provides the following data struc-
ture for representing RPO ingredients:

Class Pre := mkPrecedence {
Pre_status : Sig -> status_type;
Pre_prec_nat : Sig -> nat;
Pre_bb : nat;
Pre_prec_eq_status : forall f g, prec_eq Pre_prec_nat f g ->

Pre_status f = Pre_status g }.

where the first field is a function providing a status (multiset or lexicographic) for each
function symbol; the second field a function providing the precedence of each function
symbol; the third field the maximum number of arguments compared lexicographically
in RPO; the last field a proof that the status assignment function is compatible with the
precedence (for instance, the precedence of symbol prec(-) = 0 and its status is lex;
the precedence of symbol prec(O) = 0, and its status is mul, this is an incompatible
status).

Translation Straightforward.

5.16 argumentFilter
Argument filtering is a transformation on terms and rules used to replace func-

tion symbols by one of their arguments or to eliminate certain arguments of function
symbols [3].
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Definition 29 An argument filtering is a function π mapping every n-ary function
symbol f ∈ Σ = (F , ar) to either a position i ∈ {1, . . . , n} or a (possibly empty) list
of pairwise distinct positions i1, . . . , ik ∈ [1, n]. Let Fπ be the set of symbols f ∈ Σ
such that π(f) = {i1, . . . , ik}, and let arπ(f) = k in this case. An argument filtering π
induces a map from T (Σ,X ) to T (Σπ,X ), where Σπ = (Fπ, arπ), as follows:

– π(t) = t if t is a variable;
– π(t) = π(ti) if t = f(t1, . . . , tn) and π(f) = i;
– π(t) = f(π(ti1), . . . , π(tik )) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ik].

Given a relation R on T (Σ,X ), let Rπ be the relation on T (Σπ,X ) such that tRπu if
π(t)Rπ(u).

For instance, let t = f(x, y, z). If π(f) = 2, then π(t) = y. And if π(f) = [3, 1], then
π(t) = f(z, x).

Theorem 30 ([3]) If > is a reduction order, then (≥π, >π) is a weak reduction pair.

CPF The type argument filtering is defined as follows:

<element name="argumentFilter">
<complexType>

<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="argumentFilterEntry">

<complexType>
<sequence>

<group ref="symbol"/>
<element ref="arity"/>
<choice>

<element name="collapsing" type="xs:positiveInteger"/>
<element name="nonCollapsing">

<complexType>
<sequence>

<element maxOccurs="unbounded" minOccurs="0"
ref="position"/>

</sequence>
</complexType>

</element>
</choice>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

Rainbow Its generated representation in Coq is:

Definition position := positiveInteger.

Inductive t11 :=
| T11_collapsing : positiveInteger -> t11
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| T11_nonCollapsing : list position -> t11.

Definition argumentFilter := list (symbol * arity * t11).

CoLoR CoLoR provides no general definition of argument filtering like t11. Instead,
it provides two restricted forms of argument filtering that, composed, can describe any
argument filtering.

An argument filtering π is non-collapsing if, for every symbol f of arity n, π(f) is a
list of positions. It is collapsing if, for every symbol f of arity n, either π(f) = [1, . . . , n]
or π(f) ∈ [1, n].

Collapsing argument filterings are defined in CoLoR/Filter/AProj.v. Non-collapsing
argument filterings are defined in CoLoR/Filter/AFilterPerm.v.

The corresponding operations on weak reduction pairs are defined in rainbow/
coq/ARedPair2.v. For non-collapsing argument filterings, it uses the following data
structure:

Class Perm := { perm_pi : forall f: Sig, nat_lts (arity f) }.

where nat_lts (arity f) is a list of natural numbers strictly smaller than (arity f).
For collapsing argument filterings, it uses the following data structure:

Class Proj := { pr_pi : forall f: Sig, option {k | k < arity f} }.

Translation From an argumentFilter, we build both a Perm for its non-collapsing
part, and a Proj for its collapsing part. Each one gives raise to distinct filter-
ing operations on both terms and relations, that can be composed to handle any
argumentFilter.

5.17 loop
The main method to show non-termination is to find a loop, that is, a reduction

sequence t1 → t2 . . . → tn so that tn contains an instance of t1, i.e. tn = C[t1σ] for
some context C and substitution σ.

CPF Loop certificates are defined as follows:

<element name="loop">
<complexType>

<sequence>
<element ref="rewriteSequence"/>
<element ref="substitution"/>
<group ref="context"/>

</sequence>
</complexType>

</element>

<element name="rewriteSequence">
<complexType>

<sequence>
<element name="startTerm">

<complexType>
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<sequence>
<group ref="term"/>

</sequence>
</complexType>

</element>
<element maxOccurs="unbounded" minOccurs="0" ref="rewriteStep"/>

</sequence>
</complexType>

</xs:element>

<element name="rewriteStep">
<complexType>

<sequence>
<element ref="positionInTerm"/>
<element ref="rule"/>
<element minOccurs="0" name="relative"/>
<group ref="term"/>

</sequence>
</complexType>

</element>

<element name="positionInTerm">
<complexType>

<sequence>
<element ref="position" maxOccurs="unbounded" minOccurs="0"/>

<sequence>
<complexType>

<element>

<element name="substitution">
<complexType>

<sequence>
<element name="substEntry" maxOccurs="unbounded" minOccurs="0">

<complexType>
<sequence>

<element ref="var"/>
<group ref="term"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

<group name="context">
<choice>

<element name="box"/>
<element name="funContext">

<complexType>
<sequence>
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<group ref="symbol"/>
<element name="before">

<complexType>
<group maxOccurs="unbounded" minOccurs="0" ref="term"/>

</complexType>
</element>
<group ref="context"/>
<element name="after">

<complexType>
<group maxOccurs="unbounded" minOccurs="0" ref="term"/>

</complexType>
</element>

</sequence>
</complexType>

</element>
</choice>

</group>

Rainbow Its generated representation in Coq is:

Inductive context :=
| Context_box
| Context_funContext : symbol -> list term -> context -> list term ->

context.

Definition substitution := list (var * term).
Definition positionInTerm := list Cpf.position.
Definition rewriteStep := positionInTerm * rule * option boolean * term.
Definition rewriteSequence := term * list rewriteStep.
Definition loop := rewriteSequence * substitution * context.

CoLoR Substitutions, contexts, positions and rewriting are defined in CoLoR/Term/
WithArity/ in the files ASubstitution.v, AContext.v, APosition.v and ATrs.v re-
spectively.

Moreover, CoLoR provides a certified boolean function is_loop for checking that
some rewrite sequence is a loop in CoLoR/NonTermin/ALoop.v (in CoLoR/NonTermin/
AModLoop.v for relative rewrite sequences), where a rewrite sequence is described by
giving a starting term t1, a list of data’s, and a position p such that tn |p is an instance
of t1, as follows:

Definition position := list nat.
Definition data := APosition.position * rule.
...
Definition is_loop : term -> list data -> APosition.position -> bool.
...
Lemma is_loop_correct : forall t ds p, is_loop t ds p = true -> EIS (red R).
...

Translation It therefore suffices to translate a loop into a triple:

term * list data * APosition.position.
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and thus a context into a APosition.position, which is not very difficult.
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Chapter 6

Formalization and proof of a
certificate verifier

This chapter explains the definition and proof of a CPF certificate verifier in Coq
using the CoLoR [15, 16] and Coccinelle [32, 30] libraries.

CPF The data structure for certificates is defined as follows (we only indicate the
proof types currently supported):

<element name="certificationProblem">
<complexType>

<sequence>
<element name="input">...</element>
<element name="cpfVersion" type="string"/>
<element ref="proof"/>
<element name="origin">...</sequence>

</complexType>
</element>

<element name="proof">
<complexType>

<choice>
<element ref="trsTerminationProof"/>
<element ref="dpProof"/>
<element ref="trsNonterminationProof"/>
...

</choice>
<complexType>

<element>

<element name="trsTerminationProof">
<complexType>

<choice>
<element name="rIsEmpty"/>
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<element name="ruleRemoval">...</element>
<element name="dpTrans">...</element>

</choice>
<complexType>

<element>

<element name="dpProof">
<complexType>

<choice>
<element name="pIsEmpty"/>
<element name="depGraphProc">...</element>
<element name="redPairProc">...</element>
<element name="monoRedPairProc">...</element>
<element name="argumentFilterProc">...</element>
...

</choice>
</complexType>

</element>

<element name="trsNonterminationProof">
<complexType>

<choice>
<element name="variableConditionViolated"/>
<element ref="loop"/>
...

</choice>
</complexType>

</element>

Rainbow Its generated representation in Coq is:

Inductive dpProof :=
| DpProof_pIsEmpty
| DpProof_depGraphProc : ...
| DpProof_redPairProc : ...
| DpProof_monoRedPairProc : ...
| DpProof_argumentFilterProc : ...
| ... .

Inductive trsTerminationProof :=
| TrsTerminationProof_rIsEmpty
| TrsTerminationProof_ruleRemoval : ...
| TrsTerminationProof_dpTrans : ...
| ... .

Inductive trsNonterminationProof :=
| TrsNonterminationProof_variableConditionViolated
| TrsNonterminationProof_loop : loop -> trsNonterminationProof
| ... .
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Definition check (a : symbol -> nat) (c : certificationProblem)
: result unit := ...

Definition not_if (b : bool) P := if b then ~P else P.

Definition is_termin_proof p :=
match p with
| Proof_trsTerminationProof _ => true
| Proof_trsNonterminationProof _ => false
| Proof_dpProof _ => true
| ...
end.

Definition is_termin_cert (c : certificationProblem) :=
match c with (_, _, p, _) => is_termin_proof p end.

Lemma check_ok : forall c, let a := arity_in_pb c in
forall s, sys_of_pb a nat_of_string c = Ok s ->
check a c = OK ->
not_if (is_termin_cert c) (EIS (rel_of_sys s)).

Figure 6.1: Coq formal statement for the correctness of Rainbow

Inductive proof :=
| Proof_trsTerminationProof : trsTerminationProof -> proof
| Proof_trsNonterminationProof : trsNonterminationProof -> proof
| Proof_dpProof : dpProof -> proof
| ... .

Definition certificationProblem := input * string * proof * ... .

Our goal is then to define and prove correct a function check with the following
type:

check : (symbol -> nat) -> certificationProblem -> result unit.

the first argument of which is the arity of symbols, that is initially computed from the
input but may change in the course of the verification, as explained in Section 5.5.

We have seen in Section 5.8 that a CPF input is translated into a CoLoR system
that, in turn, is interpreted as a relation with the function rel_of_sys. The function
check has then to verify that the proof is correct wrt the input, which is expressed
in rainbow/coq/rainbow_main.v and summarized in Figure 6.1.

In other words, given a certificate c in which symbols have arity a, if c can be
translated into a system s and check succeeds, then there exists an (resp. no) infinite
rewrite sequence for the relation associated to s if the certificate is a non-termination
(resp. termination) certificate.
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To define and prove check, for each proof type, we use an auxiliary function taking
as argument an arity function a, a list of rules R (where the arity of symbols is a),
another list of rules P in case of a DP problem, and a proof p to be checked. For
instance, the definition of check starts as follows:

Definition proof (a : symbol->nat) (s : system a) (p : proof) :=
match s, p with
| Red R, Proof_trsTerminationProof p => trsTerminationProof R p
| Hd_red_mod P R, Proof_dpProof p => dpProof P R p
| Red R, Proof_trsNonterminationProof p => trsNonTerminationProof R p
| ...
end.

Coq accepts a function definition only if it passes its own internal termination
checker. Unfortunately, although the verification of p proceeds by induction on the
structure of p, it is not always direct (because of the use of generic type constructors
like list and option) and Coq termination checker fails to recognize that check ter-
minates. To get around this problem, we added to check and every auxiliary function
an argument n of type nat structurally decreasing in each recursive call. Then, at the
beginning, it suffices to call check with n big enough, that is, greater than the tree
height of the certificate, a value that can easily be computed.

In the following sections, for each supported CPF (non) termination technique, we
describe:

– the theoretical theorem on which it is based;
– the definition of the corresponding certificate in CPF;
– how it is formalized in CoLoR (or Coccinelle for RPO);
– how we check the correctness of the certificate;
– how we prove the correctness of the verifier.
All this can be found in the file rainbow/coq/rainbow_full_termin.v.

6.1 rIsEmpty, pIsEmpty
This is the simplest technique.

Theorem 31 SN(→R) if R = ∅.

Similarly for DP problems, SN(
ε−→P /→R) if P = ∅.

CPF
<element name="rIsEmpty"/>

The certificate rIsEmpty is correct for a rewrite system R if R is empty.

CoLoR This theorem is formalized in CoLoR/Term/WithArity/ATrs.v.

Verifier Straightforward.

Correctness Straightforward.
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6.2 ruleRemoval, redPairProc
Theorem The theorems about rule elimination in TRSs and DP problems have
been introduced in the sections 3.3.1 and 3.3.3. In the following, we only describe the
case of rule elimination in TRSs. The case of DP problems is very similar.

CPF The certificate for rule removal in TRSs is defined as follows:

<element name="ruleRemoval">
<complexType>

<sequence>
<element minOccurs="0" ref="orderingConstraints"/>
<element ref="orderingConstraintProof"/>
<element ref="trs"/>
<element ref="trsTerminationProof"/>

</sequence>
<complexType>

</element>

where:
– orderingConstraints describes constraints that must be satisfied by the order-

ing (not supported);
– orderingConstraintProof describes a reduction pair (>,≥) (see Section 5.13);
– trs is a list S of rules;
– trsTerminationProof is a termination certificate p for S.

Such a certificate is correct wrt a set R of rules if:
– R ⊆ ≥,
– S = R\ >,
– p is correct for S.

CoLoR The formalization of rule elimination is given in ARedPair2.v.

Verifier More or less straightforward.
For testing R ⊆ ≥, we use the boolean functions generated for each reduction pair

as described in Section 5.13.
For checking the equivalence of two lists of rules l1 and l2, we simply check that

every element of l1 occurs in l2 and every element of l2 occurs in l1. We therefore
do not consider as equivalent a rule that is a renaming of another rule. Checking the
equivalence of rules modulo renaming would be much more expensive, all the more
so since this test is done very often. However, this is not a limitation currently since
termination provers do not rename variables generally. In case that it would be needed,
we could use the renaming functions developed in CoLoR/Term/WithArity/ATrsNorm.
v. Since in CoLoR, variables are represented by natural numbers, it is easy to rename
every variable in such a way that equivalence boils down to syntactic equality (e.g.
rename every variable x by its position in the list of variables occurring in the rule).

Correctness Not difficult.
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6.3 dpTrans
Theorem The theorem on the dependency pair transformation is given in Section
3.3.3.

CPF The certificate for the DP transformation is defined as follows:

<element name="dpTrans">
<complexType>

<sequence>
<element ref="dps"/>
<element name="markedSymbols" type="boolean"/>
<element ref="dpProof"/>

</sequence>
<complexType>

</element>

where:
– dps is the list D of dependency pairs;
– markedSymbols is a boolean saying whether the transformation uses ]-symbols

or not;
– dpProof is a termination certificate c for the resulting DP problem.

Such a certificate is correct wrt a list R of rules if:
– D = DP(R) or D = DP](R) if one uses ]-symbols,
– c is correct wrt the DP problem (R,D).

CoLoR The notion of dependency pairs and dependency pair transformation without
marked symbols is formalized in CoLoR/DP/ADP.v as follows:

Definition chain R := int_red R # @ hd_red (dp R).

Lemma WF_chain : forall Sig (R : list rule),
forallb is_notvar_lhs R = true -> rules_preserve_vars R ->
WF (chain R) -> WF (red R).

where hd_red R (resp. int_red R) is the restriction of red R to (resp. non) top
positions, # is the notation for the reflexive and transitive closure, @ is the notation
for relation composition, is_notvar_lhs is a boolean function checking that the left
hand-side of a rule is not a variable, and rules_preserve_vars R is a predicate saying
that, for every rule l→ r of R, every variable occurring in r occurs in l too.

The notion of marked symbol and marked symbol transformation is formalized in
CoLoR/Term/WithArity/ADuplicateSymb.v as follows:

Inductive dup_symb : Type :=
| hd_symb : Sig -> dup_symb
| int_symb : Sig -> dup_symb.

Definition dup_ar s :=
match s with

| hd_symb f => arity f
| int_symb f => arity f
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end.

Definition dup_sig := mkSignature dup_ar beq_dup_symb_ok.

Fixpoint dup_int_term t :=
match t with

| Var x => Var x
| Fun f v => Fun (int_symb f) (Vmap dup_int_term v)

end.

Definition dup_hd_term t :=
match t with

| Var x => Var x
| Fun f v => Fun (hd_symb f) (Vmap dup_int_term v)

end.

Lemma WF_duplicate_hd_int_red :
WF (hd_red_mod (dup_int_rules E) (dup_hd_rules R))
-> WF (hd_red_Mod (int_red E #) R).

saying that a relation >ε−−→
∗
E
ε−→R on a signature Sig terminates if the relation →∗E

ε−→R]

on dup_Sig terminates where, in E and R, f is replaced by int_symb f everywhere
but on top positions of R where f is replaced by hd_symb f instead.

Verifier Not difficult. Note however that the arity function is updated for dealing
with ]-symbols as follows (see rainbow/coq/cpf2color.v):

Definition dp_arity (f : symbol) : nat :=
match f with
| Symbol_sharp g => arity g
| f => arity f
end.

Correctness We have to prove that, if (D, b, c) is a correct certificate for (Σ,R),
then (Σ,R) terminates. We consider the case of ]-symbols only, i.e. b =true, as all ter-
mination provers do. To apply the CoLoR theorems WF_chain and WF_duplicate_hd_int
_red, we have to prove that (Σ′,R′,D′) is finite, where Σ′ is dup_sig Σ, R′ is R
with f replaced by int_symb f, and D′ is D with f replaced by hd_symb f (resp.
int_symb f) on (resp. non) top positions. However, by induction hypothesis, we have
that (Σ],R,D) is finite, where Σ] is Σ with arity replaced by dp_arity. We therefore
need to prove that (Σ′,R′,D′) is finite whenever (Σ],R,D) is finite. To this end, we
use the following theorem formalized in CoLoR/Term/WithArity/AMorphism.v:

Theorem 32 Let Σ1 = (F1, ar1) and Σ2 = (F2, ar2) be two signatures, and ϕ : F1 →
F2 be a map preserving arities: for all f ∈ F1, ar2(ϕ(f)) = ar1(f). The map ϕ naturally
extends to terms and rules as follows:

– ϕ(x) = x,
– ϕ(f(t1, . . . , tn)) = ϕ(f)(ϕ(t1), . . . , ϕ(tn)),
– ϕ(l→ r) = ϕ(l)→ ϕ(r).

For all set of rules R on Σ1, (Σ1,R) terminates if (Σ2, ϕ(R)) terminates.
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Note that no property is required for ϕ other than to respect arities. In particular,
it does not need to be injective.

In our case, we take Σ1 = Σ′, Σ2 = Σ] and, for ϕ, the function FSig_of_dup_ Sig
converting dup_symb back to symbol defined in rainbow/coq/cpf2color.v as follows:

Definition FSig_of_dup_Sig (f : dup_symb) : symbol :=
match f with
| hd_symb s => Symbol_sharp s
| int_symb (Symbol_sharp _ as s) => Symbol_sharp s
| int_symb s => s
end.

so that it preserves arities. Note in particular that the second case is necessary. Other-
wise, with f = Symbol_sharp g, we would have ar2(ϕ(int_symb f)) = dp_arity f =
arity g and ar1(int_symb f) = dup_ar(int_symb f) = arity f .

6.4 depGraphProc
This is one of the most important technique used for studying the termination of

DP problems, presented in Section 3.3.3. It consists in splitting a DP problem into
as many sub-problems as there are strongly connected components in the dependency
graph, the termination of which can be studied independently (and thus in parallel).

However, the dependency graph is generally not computable: there is an edge from
(l1, r1) to (l2, r2) if, assuming without any loss of generality that r1 and l2 have no
variable in common, there is a substitution σ such that r1σ →∗R l2σ. It is however
possible to define decidable over-approximations of it. For instance, Arts and Giesl
introduced the following unification-based approximation EDG:

Definition 33 ([3]) In EDG(R,P), there is an edge from (l1, r1) to (l2, r2) if REN(CAP
(r1)) and l2 are unifiable, that is, there is a substitution σ such that REN(CAP(r1))σ =
l2σ, where CAP(t) replaces by a variable every subterm of t headed by a defined sym-
bol, and REN(t) renames the variables of t so that REN(t) is linear (no variable occurs
twice).

CPF The certificate for the dependency graph decomposition is defined as follows:

<element name="depGraphProc">
<complexType>

<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="component">

<complexType>
<sequence>

<element ref="dps"/>
<element name="realScc" type="boolean">
</element>
<element minOccurs="0" name="arcs">

<complexType>
<sequence>

<element maxOccurs="unbounded" minOccurs="0"
name="forwardArc" type="positiveInteger">
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</element>
</sequence>

</complexType>
</element>
<element minOccurs="0" ref="dpProof"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

where component’s are given in topological order and each component describes a
(union of) strongly connected components as follows:

– dps is the list of nodes of the component;
– realScc is a boolean saying whether it is a true strongly connected component

or just a set of isolated nodes;
– arcs optionally describes what are the edges from a component to the next

components in the list (for instance, if the i-th component has {1, 3} as set of
arcs, then there is an edge from the i-th component to i+ 1-th component, and
from the i-th component to the i+ 3-th component);

– dpProof is a termination certificate for the component if it is declared a realScc.

Example 14 For instance, the decomposition of the graph of Figure 3.2 on page 28
can be described as the following list of component’s (C1, C2, C3, C4, C5) where:

– C1 = ({1}, true, {1}, p1)
– C2 = ({2}, false, {1, 2}, p2)
– C3 = ({4, 6}, true, {1}, p3)
– C4 = ({5}, false, {1}, p4)
– C5 = ({3}, true, ∅, p5)

CoLoR The notion of dependency graph, dependency graph decomposition, the
functions REN and CAP, a unification algorithm, and EDG are formalized in the
files CoLoR/DP/AGraph.v, CoLoR/DP/ADecomp.v, CoLoR/Term/WithArity/ARenCap.v,
CoLoR/Term/WithArity/AUnif.v and CoLoR/DP/ADPUnif.v respectively. In particu-
lar, it is proved:

Theorem 34 ([15]) SN(
ε−→P /→R) if:

– for every i ∈ [1, n], SN(
ε−→Ci /→R);

– (C1, . . . , Cn) is a valid decomposition of (R,P), that is:
–

⋃n
i=1 Ci = P;

– ∀i < j, b ∈ Ci and c ∈ Cj , there is no edge from b to c.

The formalization of a valid decomposition graph of Theorem 34 is defined as
follows:

Fixpoint valid_decomp (cs : decomp) : bool :=
match cs with
| nil => true
| ci :: cs’ => valid_decomp cs’ &&

forallb (fun b =>
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forallb (fun cj =>
forallb (fun c => negb (approx b c)) cj) cs’) ci

end.

where decomp is a decomposition of a list of rules, and approx : rule -> rule -> bool
is a decidable graph on rules. This graph is computed in CoLoR by using a finite num-
ber N of unification steps as follows:

Variable N : nat.

Definition unifiable_N r1 r2 :=
AUnif.iter_step N (mk_problem (ren_cap r1 r2) (lhs r2)).

Definition connectable_N r1 r2 :=
match unifiable_N r1 r2 with
| None => false
| Some (_, nil) => true
| _ => hd_eq (rhs r1) (lhs r2)
end.

Definition dpg_unif_N r1 r2 := mem r1 D && mem r2 D && connectable_N r1 r2.

The CoLoR unification algorithm uses some parameter N for the same reason that
we use a parameter n in the verification of termination certificates: to make Coq
recognize the function as terminating. However, in both cases, an upper bound can
easily be computed (and proved). For correctness, in case N is not big enough, hq_eq
tests the equality of top symbols.

Then, the previous theorem is proved by induction on the number of components
under the following assumptions:

Definition co_scc ci :=
forallb (fun r => forallb (fun s => negb (approx r s)) ci) ci.

Lemma WF_decomp_co_scc :
forall (hypD : rules_preserve_vars D)
(cs : decomp)
(hyp4 : incl D (flat cs))
(hyp1 : incl (flat cs) D)
(hyp2 : valid_decomp cs = true)
(hyp3 : lforall (fun ci => co_scc ci = true WF (hd_red_Mod S ci)) cs),
WF (hd_red_Mod S D).

where incl is list inclusion, flat is the union, and co_scc checks whether a component
is a set of isolated points.

Verifier More or less straightforward. We do not take into account forward arcs.

Correctness More or less straightforward.
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6.5 argumentFilterProc
One can use the argument filtering method described in Section 5.16) directly on

a DP problem in order to simplify it before calling other methods [3].

Theorem 35 Let π be an arguments filtering on Σ. A DP problem (R,P) on Σ is
finite if the DP problem (Rπ,Pπ) on Σπ is finite.

CPF The certificate for the arguments filtering processor is as follows:

<element name="argumentFilterProc">
<complexType>

<sequence>
<element ref="argumentFilter">
<element ref="dps"/>
<element ref="trs"/>
<element ref="dpProof"/>

</sequence>
</complexType>

</element>

where:
– argumentFilter is an argument filter as described in Section 5.16;
– dps is the list of filtered pairs;
– trs is the list of filtered rules;
– dpProof is a termination certificate for the resulting filtered DP problem.

Verifier Straightforward.

Correctness The main difficulty is that CoLoR provides two restricted forms of
arguments filtering, collapsing and non-collapsing, that needs to be composed to get
a general argument filtering.
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Chapter 7

Extraction

In this chapter, we explain how our CPF verifier written and proved in Coq is
compiled into an OCaml program, and discuss the trusted computing base on which
this program is based.

7.1 Extraction
Since Coq includes a typed λ-calculus with inductive data types and pattern

matching, the extraction of ML-like function definitions from Coq to OCaml is almost
straightforward and looks about the same since Coq syntax is very close to OCaml
syntax, except when deep and underscore patterns are used. Indeed, in Coq, pattern-
matching definitions are compiled into simple pattern-matching definitions of depth
one with a branch for each possible constructor. This can however lead to important
(exponential) code duplications.

Below is the Coq code for extracting Rainbow (file extraction.v):

Set Extraction KeepSingleton.
Extraction Blacklist cpf list string.
Require Import ExtrOcamlBasic rainbow_full_termin cpf2color.
Extract Constant Pos.succ => "Pervasives.succ".
Cd "tmp".
Separate Extraction check arity_in_pb.

Separate Extraction check arity_in_pb tells Coq to extract the functions check
and arity_in_pb and all the type definitions and functions they rely on, with one
OCaml file f.ml for each Coq file f.v.

Cd "tmp" tells Coq to generated all OCaml files in the sub-directory tmp.
Extraction Blacklist cpf list string forces Coq extraction to suffix the files

cpf, list and string by 0 to avoid name clashes with existing files. Hence, cpf.v
is extracted into cpf0.ml for cpf.ml is the file containing the hand-written definition
of CPF used in the previous version of Rainbow; and List.v (resp. String.ml) is
extracted into List0.ml (resp. String0.ml) to distinguish it from the OCaml standard
library file List.ml (resp. String.ml).

Set Extraction KeepSingleton disables a default optimization of Coq extraction.
Indeed, normally, when the extraction of an inductive type produces a singleton type
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Coq OCaml
bool, sumbool bool
option, sumor option

unit unit
list list
prod *
nat nat
Z coq_Z
N coq_N

positive positive

Figure 7.1: Translation rules of Coq types into OCaml types

(i.e. a type with only one constructor, and only one argument to this constructor),
the inductive structure is removed and this type is seen as an alias to the inner type.
We disable this optimization for we want the extracted types to be the same as those
used in the OCaml code generated by xsd2ml.

However, there is a problem with these plugins: they use unqualified names. And
an unqualified name may refer to anything depending on the modules open or the
definitions occurring before. Hence, we use:

Extract Constant Pos.succ => "Pervasives.succ"
to ask Coq to extract Pos.succ to Pervasives.succ instead (this has been fixed in
the last version of Coq).

Finally, note that in Coq, string refers to the Coq type string defined in coq/
theories/Strings/String.v as sequences of ASCII characters as follows:

Inductive string : Set :=
| EmptyString : string
| String : ascii -> string -> string.

while, in Rainbow, string refers to the OCaml builtin type Pervasives.string. Be-
cause strings are only compared and no string is built in Coq, in order to have a
well-typed program, and for efficiency reasons, we can safely replace the following
OCaml code extracted from String.v:

open Ascii
type string = EmptyString | String of ascii * string
let rec string_dec s s0 = ...

by the hand-written file rainbow/String0.ml whose contents is simply:

let string_dec s s0 = s = s0

7.2 Trusted computing base
In the introduction, we asserted that the new version of Rainbow based on Coq

extraction mechanism was safer than the previous one based on the uncertified gener-
ation of a Coq script. However, it is still based on many different tools and libraries,
none of which being completely certified yet. So, one may wonder to which extent we
can trust the new version of Rainbow.
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First, one has to convince the potential users that the correctness statement that
is formally proved is the right one. This requires to read and understand the syntax
and semantics of Coq which, for some features, is not trivial. And there is currently
no formal model of all the features of Coq ([7] provides a formal model of Coq logical
framework). Hopefully, the basic features of Coq are not too difficult to understand,
well documented and based on well established works on logic and proof theory. But,
even without using complex features of Coq, a formalization may be difficult to check
when considering huge or complex definitions like the semantics of processor instruc-
tions sets [54, 109] or of programming languages [17]. In the case of Rainbow, the
correctness statement (see Figure 6.1 on page 72) involves only a few simple defini-
tions, except the definition of the data structure for representing CPF files (415 lines
of Coq). That is why we developed a tool xsd2coq to generate it automatically from
cpf.xsd (2800 lines of XML, 120 Ko, for the version 2.1).

Second, the correctness statement says that, if the verifier succeeds, then some
rewrite system terminates or does not terminate. This does not guarantee that the
verifier fails for good reasons only, and does not indicate how powerful or fast is the
verifier either.

These problems, checking that the formalization is the right one and measuring
its performance, can only be answered by doing a large number of tests. Hence, in
Chapter 8, we present the results of hundreds of tests done on certificates generated
by the AProVE termination prover [1] (best prover in the termination competition
[126]) on the termination problem data base [130], and compare them with the CeTA
certificate verifier [122].

Now, the compilation of Rainbow is based on a number of tools:
– Coq [34],
– Coq extraction mechanism to OCaml [86],
– the OCaml library Xml-Light for parsing XML files [19],
– our OCaml programs xsd2coq and xsd2ml for generating the files cpf.v and

newcpf.ml from cpf.xsd,
– the OCaml compiler [84].
Coq extraction mechanism is a crucial element in the production chain of Rainbow.

It is currently not certified although some work has been done in this direction [63].
The OCaml compiler is also a very important element, all the more so since Coq

itself is an OCaml program. Current efforts on the development of certified compilers
are therefore very useful for increasing our trust in the generated executable binary
files, e.g. [82, 44].

The XML parsing function provided by the Xml-Light library and the program
xsd2ml can probably be formalized in Coq too, or instead use a certified parser, e.g.
[80, 75].

On the other hand, the formalization of xsd2coq into Coq is more problematic
for, in Coq, inductive types are not first-class objects. But, instead of generating
an Inductive for each XSD document, we could try to define a generic function
type_of:xsd->Type associating a type to every possible XSD document.

Finally, note that, even though all the above tools were certified, their behavior
would still depend on the good behavior of the hardware and of the operating system
on which they are compiled and executed. But there are works in this direction too,
e.g. [77, 54].
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Chapter 8

Experiments and comparison
with CeTA

In this chapter, we present the results that we obtained by running Rainbow on
certificates generated by the termination prover AProVE [1] (best prover since 2004)
on the termination problem data base [130], with different strategies. We also compare
our results with those obtained by CeTA [129, 115, 122].

8.1 CeTA
As we have seen in the introduction, CeTA supports more certificates than Rain-

bow. In addition, for dependency graph decomposition, it uses a slightly more general
approximation than the one based on unification only.

Finally, IsaFoR is extracted to Haskell. It could as well be extracted to OCaml,
Scala or SML [67]. Similarly, CoLoR could as well be extracted to Haskell or Scheme.
It would be interesting to study whether the choice of the target language makes a
difference but, in the case of Rainbow, this requires to have XML parsing functions in
the target languages. This is however not the case for CeTA because it includes both an
XML parser and a CPF parser directly hand-written, but not proved, in Isabelle. Note
that the XML and CPF parsers of Rainbow are not proved either but are generated
automatically from the file cpf.xsd (see Section 4).

8.2 Results
For generating certificates, we used a patched version of AProVE 2014 [1] provided

to us by René Thiemann, available on http://cl-informatik.uibk.ac.at/users/
thiemann/aprove.jar, that generates certificates in the version 2.1 of CPF and fixes
several bugs found by us in the generation of certificates.

We run AProVE on the 1463 termination problems of the sub-directory TRS_Standard
of the termination problem data base [130], with the following strategy files, provided
to us by AProVE developers (the strategy language of AProVE is not documented),
available in the sub-directory rainbow/scripts/strategies/:

– poly: dependency pairs transformation; linear polynomial interpretations on N.
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– poly_mat: dependency pairs transformation; linear polynomial interpretations
on N; matrix interpretations of dimension ≤ 2 on N.

– poly_mat_arc: dependency pairs transformation; linear polynomial interpreta-
tions on N; matrix interpretations of dimension ≤ 3 on N or arctic integers.

– color: dependency pairs transformation; polynomial interpretations on N; ma-
trix interpretations on N, arctic integers or Q; RPO; loops; string reversal; . . .

– full: default AProVE strategy.
The output of AProVE is either:
– YES: the rewrite system terminates
– NO: the rewrite system does not terminate
– MAYBE: otherwise
First, we compare new Rainbow (in the following, we use a term Rainbow to mention

about new Rainbow, i.e the extracted program) with old Rainbow (the Coq generation
as explained at the second paragraph on page 6). Then, we compare Rainbow with
CeTA. All of them are run on all the certificates generated by AProVE (when the output
is YES or NO). The output of Rainbow or CeTA is either:

– CERTIFIED: the certificate is correct
– REJECTED: the certificate is not correct
– UNSUPPORTED: otherwise
The results of AProVE, old Rainbow, new Rainbow and CeTA are summarized in

Figure 8.1, 8.2, 8.3 and 8.4 respectively.

Strategy YES+NO MAYBE
poly 350 (24%) 1113 (76%)
poly_mat 468 (32%) 995 (68%)
poly_mat_arc 519 (35%) 944 (65%)
color 626 (43%) 837 (57%)
full 869 (59%) 594 (41%)

Figure 8.1: Results of AProVE on the 1463 TRS_Standard files of TPDB [130]

Strategy Files Old Rainbow Time (s)
CERTIFIED REJECTED UNSUPPORTED

poly 350 342 (98%) 8 (2%) 0 5820
poly_mat 468 458 (98%) 10 (2%) 0 8280
poly_mat_arc 519 448 (86%) 16 (3%) 55 (11%) 9600
color 626 469 (74.9%) 1 (0.2%) 156 (24.9%) 6720
full 869 411 (47.3%) 4 (0.5%) 454 (52.2%) 5400

Figure 8.2: Results of old Rainbow on the certificates generated by AProVE

The results show the new version handles well the dependency pair transformation
and polynomial and matrix interpretations, except in some cases using arctic integers
(strategy poly_mat_arc). This is due to the fact that AProVE uses a recent improved
version of matrix interpretations that is not formalized in CoLoR yet [121].

When taking into account more termination techniques (e.g. loop, RPO), Rainbow
can verify up to 71% of the generated certificates. This score can certainly be improved
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Strategy Files New Rainbow Time (s)
CERTIFIED REJECTED UNSUPPORTED

poly 350 350 (100%) 0 0 27
poly_mat 468 468 (100%) 0 0 28
poly_mat_arc 519 464 (89%) 0 55 (11%) 25
color 626 442 (71%) 0 184 (29%) 15
full 869 407 (47%) 0 462 (53%) 16

Figure 8.3: Results of Rainbow on the certificates generated by AProVE

Strategy Files CeTA 2.16 Time (s)
CERTIFIED REJECTED UNSUPPORTED

poly 350 350 (100%) 0 0 13
poly_mat 468 468 (100%) 0 0 16
poly_mat_arc 519 519 (100%) 0 0 19
color 626 626 (100%) 0 0 21
full 869 847 (97%) 22 (3%) 0 24

Figure 8.4: Results of CeTA on the certificates generated by AProVE

by better adapting the strategy of the prover to the techniques actually supported by
Rainbow. Unfortunately, the strategy language of AProVE is not documented. We
could also try with the prover TTT2 [132] which has a better documented strategy
language.

However, without any specific strategy, the score falls down to only 47%. This is
because CoLoR and Coccinelle and, therefore Rainbow, handle much less termination
techniques than those currently used in termination provers.

As for the efficiency, as expected by using extraction, one can see that the new
version of Rainbow is 200 times faster than the old version. However, it is 2 times
slower than CeTA. We guess that this is due to the use of less efficient data structures
(e.g. some maps are represented by functions instead of a first-order data structure).
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Chapter 9

Conclusion

We presented a tool, Rainbow, for verifying the correctness of termination cer-
tificates for term rewrite systems in the CPF format [43], and formally proved its
correctness in the proof assistant Coq [34] using the CoLoR [16] and Coccinelle [30]
libraries.

To validate our formalization, we did some experiments using the termination
prover AProVE and compared the obtained results with those of a similar tool, CeTA
[122], developed in the proof assistant Isabelle/HOL [73]. The results show that Rain-
bow handles well the dependency pair transformation and polynomial and matrix
interpretations. It can handle 47% of the certificates generated by the default strat-
egy of AProVE. This scores increases to 71% when using a strategy more adapted to
Rainbow. Increasing the latter score is a matter of strategy definition. On the other
hand, increasing the former score requires extending the CoLoR library itself.

Yet, there are room for short-term improvements because CoLoR and Coccinelle
contain theorems not used by Rainbow yet (e.g. string reversal, semantic labeling, flat
context closure, root labeling), or Rainbow could be easily extended to deal with other
interpretation domains (e.g. linear polynomials on matrices) or other kinds of rewrite
relations (e.g. relative rules and equations).

To go further, we need to formalize new theorems or improved versions of theorems
already formalized. For instance, those based on usable rules (the development version
of CoLoR already contains some important developments in this direction done by Sidi
Ould Biha in 2012). But such a task is much more involved.

Another way to improve proof checking efficiency, and handle partial certificates,
is to prove the correctness of each node of the certificate tree as a separate lemma, so
that the verification of each lemma can be done in parallel.

Currently, CoLoR can handle standard rewrite systems only. Another direction
would be to extend CoLoR to rewriting under strategy like innermost, outermost, and
context sensitive. This can also be useful for handling standard systems because an
orthogonal (i.e. left-linear and with no critical pair) system terminates iff it innermost
terminates (a result already available in Coccinelle).

AProVE can handle Prolog [93, 108], Haskell [58, 57] and Java programs [97], by
adapting the technique of dependency pairs. We could define and prove in Coq a
notion of termination certificate for such programs as well.

As discussed in Section 7.2, we could also improve the safety of Rainbow by formal-
izing and proving in Coq the XML and XSD data structures and parsing functions.
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Chapter 10

Appendices

10.1 Installation of Rainbow
The most important part of my work is in fact available as OCaml and Coq files

(programs and formal proofs). The present document only gives an overview of these
files which are freely available for download on:

https://gforge.inria.fr/projects/rainbow/ .

The requirements and compilation procedure for Rainbow is described in the file
INSTALL. It requires a Linux-like operating system, the programs OCaml [84] and Coq
[34], and the SVN version of the Coq library CoLoR [16]. Then, it suffices to type:

1. ./configure $color_dir
where $color_dir is the directory where the sources of CoLoR are located.

2. make new

This will generate the program new_convert that has to be called as follows for
verifying the correctness of a CPF file:

new_convert -icpf certificate.xml -obool

The possible answers are:
– CERTIFIED: the certificate is correct
– REJECTED: the certificate is not correct
– UNSUPPORTED: otherwise
In the last two cases follows some message explaining the answer.

10.2 Overview of the main files
In addition to the code of CoLoR, Xml-Light and the old code of Rainbow, the new

version of Rainbow is made of about:
– 8500 lines of Coq code (including comments and blank lines)
– 1500 lines of OCaml code (including comments and blank lines)
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We now give an overview of the files contained in the Rainbow directory:

• Sub-directory grammar:
– cpf.xsd: XSD document describing the CPF format [43]

• Sub-directory xml-light: It contains a slight modification of the source files of
the OCaml library Xml-Light [19] that Rainbow uses for parsing XML files.
– xml.ml: data type xml for representing XML files and parsing functions

• Sub-directory tmp: sub-directory containing the OCaml files generated from the
Coq files by Coq extraction mechanism.

• Main directory:
– INSTALL: text file describing Rainbow requirements and compilation procedure
– xsd2coq.ml: generates a Coq data type to represent an XML file valid wrt

some XSD document
– coq_of_xsd.ml: main file
– xsd.ml: data type for representing XSD documents
– xsd_of_xml: parsing of XSD documents (XSD file are particular XML files)
– scc.ml: computation and topological ordering of the strongly connected

components of a finite graph represented by a boolean matrix (for comput-
ing the order of CPF data type definitions in Coq)

– xsd2ml.ml: generates an OCaml data type and OCaml parsing functions to
represent an XML file valid wrt some XSD document
– ml_of_xsd.ml: main file

– extraction.v: file containing Coq commands to extract to OCaml, in the sub-
directory tmp, the CPF verifier defined and proved correct in coq/rainbow_full
_termin.v

– extract: shell script generated by ./configure from extract.in to extract
and patch the extracted file tmp/String0.ml (to use the OCaml built-in type
for strings instead of the one extracted from Coq)

– order_deps.ml: independent tool developed by Blanqui in 2003 for automat-
ically ordering compiled files wrt their dependencies in order to link them
together; it is used for compiling the extracted files

– new_convert.ml: CPF file verifier
– new_main.ml: interpret command line options and print error messages;

with the option -obool, it uses tmp/rainbow_main.ml that is generated
from coq/rainbow_full_termin.v by Coq extraction mechanism

– newcpf.ml: file generated from cpf.xsd by xsd2ml and providing functions
converting an xml value into the data type generated by xsd2coq

– error.ml: functions for raising and printing error messages
– util.ml: useful basic functions
– String0.ml: module on character strings replacing the one generated by

Coq extraction mechanism

• Sub-directory coq: formalization and proof of a CPF verifier in Coq
– cpf.v: file generated from cpf.xsd by xsd2coq and providing a data structure

for representing termination certificates
– cpf_ind.v: induction principles for the data structures of cpf.v (the princi-

ples automatically generated by Coq are not useful)
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– error_monad.v: error monad and other useful functions
– cpf2color.v: functions translating the data structures of cpf.v into CoLoR

data structures
– rainbow_full_termin.v: definition and correctness proof of the function ver-

ifying the correctness of a terminate certificate
– rainbow_main.v: contains the check function
– Nat_as_OSR.v, Arctic_as_OSR.v, ArcticBZ_as_OSR.v, Tropical_as_OSR.v:

data structures representing the ordered semi-rings of natural numbers, arctic
natural numbers, arctic integers and tropical natural numbers respectively

– Z_as_SR.v: data structure representing the semi-ring of integers
– Q_as_R.v: data structure representing the ring of rational numbers
– Polynom2.v: record-based and polymorphic version of CoLoR/Util/Polynom/

Polynom.v, which was restricted to integer coefficients
– The other files are variants suffixed by 2 (except for Polynom2.v) of the corre-

sponding CoLoR files replacing modules and functors by records and functions
respectively
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Résumé

S’assurer qu’un programme informatique se comporte bien, surtout dans des appli-
cations critiques (santé, transport, énergie, communications, etc.) est de plus en plus
important car les ordinateurs et programmes informatiques sont de plus en plus om-
niprésents, voire essentiel au bon fonctionnement de la société. Mais comment vérifier
qu’un programme se comporte comme prévu, quand les informations qu’il prend en
entrée sont de très grande taille, voire de taille non bornée a priori ? Pour exprimer
avec exactitude ce qu’est le comportement d’un programme, il est d’abord nécessaire
d’utiliser un langage logique formel. Cependant, comme l’a montré Gödel dans [64],
dans tout système formel suffisamment riche pour faire de l’arithmétique, il y a des
formules valides qui ne peuvent pas être prouvées. Donc il n’y a pas de programme qui
puisse décider si toute propriété est vrai ou fausse. Cependant, il est possible d’écrire
un programme qui peut vérifier la correction d’une preuve. Ce travail utilisera juste-
ment un tel programme, Coq [34], pour formellement vérifier la correction d’un certain
programme.

Une propriété importante, en particulier dans les systèmes informatiques avec des
contraintes temporelles fortes, est la terminaison : le programme va-t-il me fournir
une réponse ? Malheureusement, comme l’a montré Turing [133], la terminaison n’est
pas décidable en général : il n’y a pas de machine de Turing qui, pour toute paire
(p, i) où p est un programme et i une donnée pour p, puisse dire en un temps fini si p
termine sur i ou non. Cela a conduit au développement de nombreuses heuristiques et
d’outils les implémentant (e.g. AProVE [1], TTT2 [132], . . . ) pour essayer de montrer la
terminaison de programmes informatiques. En particulier, la théorie de la réécriture
[50, 125], introduite par Knuth comme un outil pour décider des théories algébriques
[78], fournit un cadre général pour étudier la terminaison des programmes avec des
applications à des langages de programmation concrets tels que Prolog [93, 108], Haskell
[58, 57] ou Java [97]. C’est dans ce cadre théorique que nous avons conduit notre travail.

Nous avons vu qu’il n’est pas possible d’avoir un programme qui puisse nous dire
si tout programme est correct ou non. Alors, comment s’assurer que les outils de ter-
minaison implémentant une certaine heuristique sont corrects ? Une manière de briser
ce cercle vicieux repose sur le fait que, pour un problème donné, il est généralement
plus facile de vérifier qu’une solution est correcte que de trouver une telle solution, car
trouver une solution nécessite souvent d’en essayer plusieurs avant d’en trouver une
qui marche (back-tracking), tandis que vérifier si une solution est correcte ne nécessite
souvent que de faire un calcul. Ainsi, on peut imaginer le scénario suivant. Première-
ment, modifier l’outil de façon à ce qu’il ne réponde pas seulement OUI ou NON, mais
fournisse également un ensemble de données, que nous appellerons certificat, qui peut
être utilisé pour vérifier la correction de la réponse. Deuxièmement, définir ces certifi-
cats de façon à ce que leur vérification peut être complètement formalisée et prouvée.

100



C’est l’approche qu’ont prise plusieurs prouveurs automatiques de terminaison pour
les systèmes de réécriture du premier ordre à partir de 2007 [126]. Un langage pour
les certificats de terminaison, CPF [43], a ainsi été développé et des vérificateurs de
certificats ont commencé à être développés : Rainbow [14], CiME3 [31] et CeTA [123].

Dans cette thèse, nous expliquons le développement d’une nouvelle version de
Rainbow, plus rapide et plus sûre, basée sur le mécanisme d’extraction de Coq [86]. La
version précédente de Rainbow vérifiait un certificat en deux étapes. Premièrement, elle
utilisait un programme OCaml non certifié pour traduire un fichier CPF en un script
Coq, en utilisant les bibliothèques Coq sur la théorie de la réécriture et la terminaison
CoLoR [13, 15] et Coccinelle [32, 30]. Deuxièmement, elle appelait Coq pour vérifier
la correction du script ainsi généré. Cette approche est intéressante car elle fournit
un moyen de réutiliser dans Coq des preuves de terminaison générées par des outils
extérieurs à Coq. C’est également l’approche suivie par CiME3. Mais cette approche
a aussi plusieurs désavantages. Premièrement, comme dans Coq les fonctions sont
interprétées, les calculs sont beaucoup plus lents qu’avec un langage où les programmes
sont compilés vers du code binaire exécutable. Deuxièmement, la traduction de CPF
dans Coq peut être erronée et conduire au rejet de certificats valides ou à l’acceptation
de certificats invalides. Pour résoudre ce deuxième problème, il est nécessaire de définir
et prouver formellement la correction de la fonction vérifiant si un certificat est valide
ou non. Et pour résoudre le premier problème, il est nécessaire de compiler cette
fonction vers du code binaire exécutable.

Cette thèse montre comment résoudre ces deux problèmes en utilisant l’assistant
à la preuve Coq et son mécanisme d’extraction vers le langage de programmation
OCaml [84]. En effet, les structures de données et fonctions définies dans Coq peuvent
être traduites dans OCaml et compilées en code binaire exécutable par le compilateur
OCaml. Une approche similaire est suivie par CeTA [122] en utilisant l’assistant à la
preuve Isabelle [73] et le langage Haskell [103].

Contributions
Mes contributions peuvent être résumées ainsi :

1. Le format des certificats de terminaison, CPF [43], est défini dans un document
XSD [136, 137]. Cela signifie que les certificats sont des fichiers XML [138] qui
doivent être valides par rapport au format CPF [111]. Afin de réduire le risque
d’erreur dans l’analyse (parsing) des fichiers XML, et parce que CPF est étendu
chaque année avec de nouveaux certificats, j’ai développé deux outils xsd2coq
et xsd2ml qui, étant donné un document XSD D, génèrent des structures de
données Coq et des fonctions OCaml d’analyse de XML, pour représenter en Coq
et OCaml des fichiers XML valides par rapport à D. En particulier, nous avons en
Coq une structure de données cpf pour représenter les certificats de terminaison
de la version 2.1 de CPF.

2. J’ai défini en Coq des fonctions pour traduire les structures de données ainsi
générées pour CPF dans les structures de données utilisées dans les bibliothèques
CoLoR [15, 16] et Coccinelle [32, 30]. Pour cela, j’ai dû modifier un certain nombre
de fichiers de ces bibliothèques pour remplacer les modules et foncteurs [25], qui
ne sont pas des objets de première classe dans Coq, par des enregistrements
(records) et des fonctions.

3. J’ai défini dans Coq une fonction check:cpf->bool pour vérifier la correction
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d’un certificat, c’est-à-dire, une fonction booléenne qui retourne vrai si le certi-
ficat est correct, et faux sinon. Afin de fournir des messages utiles à l’utilisateur
en cas d’échec, au de lieu bool, j’utilise en fait une monade [139].

4. En utilisant les théorèmes de CoLoR, j’ai formellement prouvé dans Coq la cor-
rection de la fonction check, c’est-à-dire, si c est un certificat pour la (resp. non)
terminaison d’un certain système de réécriture R, et que check(c) renvoie vrai,
alors R termine (resp. ne termine pas).

5. Finalement, en utilisant le mécanisme d’extraction de Coq vers OCaml, et les
fonctions d’analyse générées par xsd2ml, j’obtiens un programme OCaml que
je peux compiler vers du code binaire exécutable. J’obtiens ainsi un vérifica-
teur de certificats de terminaison, rapide, autonome et sûr. Dans quelle mesure
exactement ? Cela est discutée dans la Section 7.2.
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