
Formalization in Coq of polynomial

interpretations on rationals

Kim Quyen LY

Supervisor: Frédéric BLANQUI

October 2, 2015

Contents

1 Introduction 2

2 Term rewriting systems 3

3 Termination using polynomial interpretations 4
3.1 Reduction orderings . 4
3.2 Interpretations . 4
3.3 Polynomial interpretations on Z 6

4 Presentation of Coq 7
4.1 A brief overview . 7
4.2 Inductive types . 8
4.3 Proofs . 9
4.4 Numbers . 12
4.5 Data structures . 12

5 Current formalization in CoLoR 12
5.1 Terms and rewriting . 13
5.2 Interpretations . 14
5.3 Polynomials . 14

6 My contributions 16
6.1 A generic interface for rings . 16
6.2 A generic interface for ordered rings 20
6.3 Well-foundedness proof of the δ-ordering on Q+ 22
6.4 Improved monotony criterion . 24
6.5 Polynomials of degree 2 with negative coefficients 25

7 Conclusion 28

1

1 Introduction

This is the report of my internship in the project FORMES1. This internship
took place at TsingHua University2(Beijing, China) within the INRIA project-
team FORMES which is part of the LIAMA3 Consortium, the Sino-French
Laboratory for Computer Science, Automation and Applied Mathematics. This
internship took 5 month (May - Oct, 2010). In this report, I will talk about
polynomial interpretations, termination, Coq and how to formalize in Coq poly-
nomial interpretations on rational numbers.

Termination is an important property required for total correctness of pro-
grams and algorithms. We want to evaluation of a given program definitely
terminate or not or simply find the answer “program does terminate or not”
whenever this is possible. The answer is “may be” or continue working infinitely
long. Because of that many criteria and tools have been developed over the
last years. Their is also an annual international termination competition4. For
these tools to be used in critical systems and proof assistants, their results must
be certified. These are the reason the project CoLoR was born, this project
aims at certifiying the termination proofs found by these tools. I will talk more
about it in section 5. CoLoR is a Coq library on rewriting and termination.
Coq5, developed at INRIA (France), is an interactive theorem prover. It allows
the expression of mathematical assertions, mechanically checks proofs of these
assertions, helps to find formal proofs, and extracts a certified program from the
constructive proof of its formal specification. You will find more information
about Coq in section 4.

My main subject was working on polynomials in CoLoR. For instance, a
termination tool could say that a rewrite system is terminating by providing a
polynomial interpretation. Then, we would try to automatically generate in Coq

a proof that this interpretation statisfies the conditions required by the theo-
rem on polynomial interpretations. Currently, the CoLoR library only provides
polynomials on the set Z of integers.

My work was to generalize the current development of CoLoR to any (or-
dered) ring structure on a setoid, that is, a set equipped with an arbitrary
decidable equivalence relation; prove the wellfoundedness of the δ-ordering on
the set Q+ of non-negative rationals; and improve the criterion to check the
monotony of polynomials. My work is detailed in section 6.

Finally, I would like to give my special thanks to my supervisor Prof. Frédéric
BLANQUI, Sidi Ould Biha and all members in FORMES project.

1http://formes.asia
2http://www.thss.tsinghua.edu.cn/index en.asp
3http://liama.ia.ac.cn
4http://www.termination-portal.org
5http://coq.inria.fr

2

2 Term rewriting systems

In this section, we introduce the notions of term rewriting. For more details we
refer to for instance [1,9]. Here we restrict to first-order rewriting only. A term
rewriting system (TRS) consists of rewrite rules formed with terms. For that we
need to define terms, which correspond to terms of first-order predicate logic.
They are defined over a first-order signature.

A relation > is a strict partial order if it is irreflexive and transitive. We say
that the relation > is a quasi-order if it is reflexive and transitive.

A signature F is a non-empty set of function symbols, equipped with an arity
function6, arity : F → N, indicating how many arguments each function symbol
expects.

The set of terms over a signature F and over an infinitive set of variables V ,
disjoint from F , is denoted by T (F, V) and defined inductively as:

• x ∈ T (F, V), for x ∈ V

• f(t1, ..., tn) ∈ T (F, V), for f ∈ F , arity (f) = n and t1, ...tn ∈ T (F, V).

A rewrite rule is a pair of terms (l, r) with l, r ∈ T (F, V). A rewrite rule
(l, r) is usually written as l→ r.

The left-hand side is not a variable and every variable occurring in the right-
hand side must also occur in the left-hand side of a rule. Term rewriting system
is simply a set of rules.

A term rewriting system is a pair (F,R) of a signature F and a set of rewrite
rules R. The signature is usually left implicit and a term rewriting system is
identified with its set of rewrite rules.

A substitution is a mapping from variables to terms σ: V → T (F, V). An
application of a substitution σ to a term t is written as tσ and defined as follows:

xσ = σ(x)

f(t1, ..., tn)σ = f(t1σ, ..., tnσ)

A relation → is closed by substitution if, for all terms t, u and substitution
σ, tσ → uσ whenever t→ u.

A context is a term with a unique occurrence of a distinguished variable []. A
relation → is closed by context if, for all terms t, u and context C, C[t]→ C[u]
whenever t→ u, C[t] being C with [] replaced by t.

The rewrite relation →R is the smallest relation closed by substitution and
context containing R. If t →R u then there is a rule l → r ∈ R, a substitution
σ and a context C such that t = C[lσ] and u = C[rσ]. We then say that there
is a rewrite step from t to u or, simply, that t rewrites to u.

Note that we will often write → instead of →R if the TRS R is clear from
the context.

6An arity function (or operation) is the number of arguments or operands that the function
takes.

3

3 Termination using polynomial interpretations

Termination is an important concept in term rewriting.
A TRS R is terminating if the relation →R is terminating, and a binary

relation → is terminating or strongly normalizing, SN(→), if it is well-founded,
i.e., if there exists no infinite sequence t0, t1, ... such that ti → ti+1 for all i ∈ N.

Definition 1 A TRS R is called terminating if there is no infinite reduction
t1 →R t2 →R ..., i.e., SN (→R).

3.1 Reduction orderings

We introduce the notion of reduction orderings and a theorem employing them
for proving termination.

Proving termination of a TRS is equivalent to finding a well-founded relation
> on terms that is stable by substitution and context (i.e., a reduction ordering)
and compatible with the rules of the TRS, i.e., such that l > r for all rules l→ r
of the TRS.

Definition 2 A reduction ordering is well-founded relation closed by substitu-
tion and context.

Theorem 3 A TRS R is terminating, SN(R), iff there exists a reduction or-
dering > such that R ⊆>.

Proof.
First we prove: SN(R),∃ >⇒ R ⊆>.

A TRS R is terminating if the relations →R is terminating, i.e. SN(R) if
SN(→R), i.e. there is no infinite sequence (tn) such that: tn →R tn+1,∀n ∈ N.
So that, R ⊆→R. We assume that >=→R, so we have R ⊆>.

Second we prove: ∃ >,R ⊆>⇒ SN(R).
LetD be an arbitrary non-empty domain. Equivalently, We can prove ¬SN(R)⇒
∀ >,R *>. Let (tn) be an infinite sequence of →R steps, such that: tn →R

tn+1,∀n ∈ N. Since, R ⊆> and > is close by substitution and context. Then
we have →R⊆>, so (tn) is an infinite sequence of > steps, too.

�

3.2 Interpretations

We now come to the interpretation of terms into some non-empty domain D
given an interpretation function: If : Dn → D for each function symbol f of
arity n. This gives D a structure of a F -algebra where F is the signature.

Given a valuation ρ: χ → D for the variables of t, the interpretation of a
term t written [[t]]ρ, is the recursive application of the interpretation functions
If :

4

• [[x]]ρ = ρ(x)

• [[f(t1, . . . , tn)]]ρ = If ([[t1]]ρ, . . . , [[tn]]ρ)

Definition 4 Given an interpretation I and a relation >D on the domain D of
I, the relation on terms associated to I is t >I u if [[t]]ρ >D [[u]]ρ for all valuation
ρ : χ→ D.

Note that >I is well-founded when >D is well-founded, it is always stable
by substitution and it is stable by context if the functions If are monotone wrt
>D in every argument.

Lemma 5 ∀t, σ, µ, [[tσ]]µ = [[t]]σµ.

Proof.
We proof by structural induction on t (or well-founded induction on the size

of t).

• t = x
[[xσ]]µ = [[x]]σµ (by definition 4)

• t = f(t1, . . . , tn). [[tσ]]µ = If ([[t1σ]]µ, . . . , [[tnσ]]µ).
By induction hypothesis, for all i, [[tiσ]]µ = [[ti]]σµ.

�

Theorem 6 The relation >I is a reduction ordering if D 6= ∅, >D is well-
founded and every If : Dn → D is monotonic in each variable.

Proof.
First we prove: >I is closed by substitution.
>I is closed by substitution if, for all t, u, σ, t >I u⇒ tσ >I uσ (by definition

4).
Let t, u, σ such that t >I u.
We have tσ >I uσ if for all valuation µ, [[tσ]]µ >D [[uσ]]µ (by definition 4).
From the lemma 5, we have:
[[tσ]]µ = If ([[t1]]σµ, . . . , [[tn]]σµ) = [[t]]σµ.

Second we prove: >I is closed by context if every If : Dn → D is monotonic
in each variable.

Let f, t1, . . . , tn, t
′
k such that tk >I t

′
k.

We have to prove that ft1 . . . tk−1tktk+1 . . . tn >I ft1 . . . tk−1t
′
ktk+1 · · · tn.

Let µ be a valuation. We have:

[[ft1 . . . tk−1tktk+1 . . . tn]]µ
= If ([[t1]]µ, . . . , [[tk−1]]µ, [[tk]]µ, [[tk+1]]µ, . . . , [[tn]]µ)
>D If ([[t1]]µ, . . . , [[tk−1]]µ, [[t′k]]µ, [[tk+1]]µ, . . . , [[tn]]µ)

5

= [[ft1 . . . tk−1t
′
ktk+1 . . . tn]]µ

Because If is monotonic in its k-th argument and [[tk]]µ >D [[t′k]]µ by as-
sumption.

Third we prove: >I is well-founded if >D is well-founded, i.e. SN(>D) ⇒
SN(>I), and D 6= ∅.

Equivalently, we can prove ¬SN(>I) ⇒ ¬SN(>D). So, let (tn) be an
infinite sequence of >I steps, i.e. for all n and valuation ρ, [[tn]]ρ >D [[tn+1]]ρ.
Since D 6= ∅, there is d ∈ D. Then, let ρ(x) = d the constant valuation equal to
d. For all n, [[tn]]ρ >D [[tn+1]]ρ and ([[tn]]ρ) is an infinite sequence of >D steps.

�

3.3 Polynomial interpretations on Z
Polynomial interpretations, i.e when the functions If are polynomials, are a use-
ful technique for proving termination of term rewrite systems. In an automated
setting, termination tools are concerned with polynominals whose coefficients
are initially unknown and have to be instantiated suitably such that the result-
ing concrete polynominals statisfy certain conditions.

Theorem 7 >I is a reduction ordering if I is a polynomial interpretation on
Z such that:

• for all f , all the coefficients of If are non-negative

• for all f of arity n and variable xi (i ≤ n), the coefficient of xi is positive

• >D is well-founded on non-negative elements

Proof.
First note that I is well-defined since If = eval(Pf) : Dn → D becaues, for

all f , all the coefficients are non-negative.
After previous theorem, we have to check:

• D 6= ∅. Because D = Z+ = N.

• >D is well-founded by assumption.

• If are monotonic in every argument.

Let x1, . . . , xn, x
′
k such that xk >D x′k.

We have to prove that If (x1, . . . , xn) >D If (x1, . . . , x
′
k, . . . , xn), i.e. δ =

If (x1, . . . , xn)− If (x1, . . . , x
′
k, . . . , xn) >D 0.

Since xk >D x′k, there is δ > 0 such that xk = x′k + δ. In addition,
there are two polynomials R and S such that If = xkR + S and xk
does not occur in S (Euclidian division on R[X]). So, If (. . . , xk, . . .) =

6

If (. . . , x′k + δ, . . .) = (x′k + δ)R(. . . , x′k + δ, . . .) +S and δ = x′k(R(. . . , x′k +
δ, . . .)−R(. . . , x′k, . . .)) + δR(. . . , x′k + δ, . . .).

All the coefficients of R(. . . , x′k + δ, . . .)−R(. . . , x′k, . . .) are non-negative
since all the coefficients of R are non-negative (proof not given). So, δ ≥ 0.
Moreover, δ = 0 only if R = 0 which is not possible by assumption.

�

In addition, l >I r if all the coefficients of Pl − Pr − 1 are non-negative.

4 Presentation of Coq

In this section, we briefly present Coq. The Coq system is a computer tool for
verifying theorem proofs.

Coq is not an automated theorem prover but includes automatic theorem
proving tactics and various decision procedures. Coq implements a functional
programming language.

Coq is also used to develop libraries of advanced mathematical theorems in
both constructive and classical form.

Working in Coq you can discovery of a difficult but exciting world when you
can enjoy of the last QED.

To discovery more about Coq you can find in its web-page or read the book
“The Coq’Art” by Yves Bertot and Pierre Castéran [2].

4.1 A brief overview

The Coq system provides a language in which one handles formulas, verify that
they are well-formed, and prove them. The first thing you need to know about
Coq is how you can check whether a formula is well-formed. The command
Check is use for this purpose.

Check True.

True : Prop

Now we give an example to describe how to prove something in Coq. There
are two approachs to construct a proof, first new theorems can be constructed
by combining existing theorems and using the Definition keyword to associate
these expressions to constants. The other approach is known as goal directed
proof: This first approach is seldom used.

1. the user enters a statement that he wants to prove, using the command
Theorem or Lemma,

2. the Coq system displays the formula as a formula to be proved, possibly
giving a context of local facts that can be used for this proof,

3. the user enters a command to decompose the goal into simpler ones,

7

4. the Coq system displays a list of formulas that still need to be proved,

5. back to step 3.

When there are no more goals the proof is complete, it needs to be saved,
this performed when the user sends the command Qed. The commands that
are especially designed to decompose goals into list of simpler goals are called
tactics.

Here is an example:

Theorem example : forall a b : Prop, a /\ b -> b /\ a.

Proof.

intros a b H. tauto.

Qed.

This theorem can be proved in many ways, but a quick one would simply
uses the tauto tactic directly. There is an important collection of tactics in
the Coq system, each of which is adapted to a shape of goal. It is worthwhile
remembering a collection of tactics for the basic logical connectives.

Some automatic tactics are also provided for a variety of purposes, tauto
is often useful to prove facts that are tautogogies in propositional intuitionis-
tic logic (try it whenever the proof only involves manipulations, conjunction,
disjunction, and negation); auto is an extensible tactic that tries to apply a col-
lection of theorems that were provided beforehand by the user, eauto is like auto,
it is more powerful but also more time-consuming, ring and ring nat mostly do
proofs of equality for expressions containing addition and multiplication, omega
proves formulas in Presburger arithmetic.

4.2 Inductive types

Inductive types could also be called algebraic types or initial algebras. They are
defined by providing the type name, its type, and a collection of constructors.
Inductive types can be parameterized and dependent. We will mostly use pa-
rameterization to represent polymorphism and dependence to represent logical
properties.

Defining inductive types

Here is an example of an inductive type definition:

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

The type nat is defined as the least Set containing O and closed by the S
constructor. The Coq system automatically associates an inductive principle to
this inductive type named name ind. For natural number, this is nat ind.

8

Pattern matching

Pattern matching makes it possible to describe functions that perform a case
analysis on the value of an expression whose type is an inductive type.

Definition andb (b1 b2 : bool) : bool :=

match b1 with

| true => b2

| false => false

end.

For this example, we write a function that return the boolean value false
when its argument is false and return b2 when its is true.

Inductive properties

Inductive types can be dependent and when they are, they can be used to express
logical properties. When defining inductive type like nat, Z we declare that this
constant is a type. When defining a dependent type, we actually introduce a
new constant which is declared to be a function from some input type to the
type of types.

Like other inductive types, inductive properties are equipped with an induc-
tive priciple, which we can use to perform proofs. Inductive properties can be
used to express very complex notions.

4.3 Proofs

In this section we will present some approachs use to do proof in Coq.

Proof by simplification

The proofs of these claims: use the function’s definition to simplify the ex-
pressions on both sides of the = and notice that they become identical. The
same sort of “proof by simplification” can be used to prove more interesting
properties.

Here is an example using proof by simplification:

Theorem plus_0_n : forall n : nat, plus 0 n = n.

Proof.

simpl. reflexivity.

Qed.

Proof by rewriting

Here is an example we proof by rewriting.

Theorem plus_example : forall n m : nat,

n = m -> plus n n = plus m m.

Proof.

9

intros n m H.

rewrite H.

reflexivity.

Qed.

The first line of the proof moves variables n,m and the hypothesis n = m
into the context and gives it the name H. The second tells Coq to rewrite the
current goal (plus n n = plus m m) by replacing the left side of the equality
hypothesis H with the right side. There are two ways to rewrite, first we would
like to rewrite from left to right, you can write rewrite H or rewrite → H, and
another is rewrite from right to left, you can use rewrite ← H.

Proof by induction

The most general kind of proof that one can perform on inductive types is proof
by induction.

When we prove a property of the elements of an inductive type using a
proof by induction, we actually consider a case for each constructor. There is
a twist: when we consider a constructor that has arguments of the inductive
type, we can assume that the property we want to establish holds for each of
these arguments.

Theorem plus_assoc: forall x y z : nat,

(x + y) + z = x + (y + z).

Proof.

intros x y z.

elim x. rewrite plus_0_n; trivial.

intros x’ H. rewrite (plus_Sn_m x’ y);

rewrite (plus_Sn_m (x’ + y) z).

rewrite plus_Sn_m; rewrite H; trivial.

Qed.

To understand this proof first of all we need to know what is plus 0 n,
plus Sn m. We can use the command Check.

Check plus_0_n.

plus_0_n : forall n : nat, 0 + n = n

Check plus_Sn_m.

plus_Sn_m : forall n m : nat, S n + m = S (n + m)

We can see that a proof by induction on x should work, when x is zero, two
uses of plus 0 n should help to show that both members of the equality are the
same. When x is ”Sx” and the induction hypothesis holds for x′, three uses of
plus Sn m and the induction hypothesis should make the proof complete.

x : nat

y : nat

10

z : nat

============================

0 + y + z = 0 + (y + z)

The tactic elim is the tactic that is used to indicate that a proof by induction
is being done.

This tactic generates two goals, a first goal we can rewriting with the theorem
plus 0 n, and a second goal

x : nat

y : nat

z : nat

============================

forall n : nat, n + y + z = n + (y + z)

-> S n + y + z = S n + (y + z)

To make it more readable, we introduce the variable x′ and the hypothesis
H.

x : nat

y : nat

z : nat

x’: nat

H : x’ + y + z = x’ + (y + z)

============================

S x’ + y + z = S x’ + (y + z)

We use the theorem plus Sn m twice to make it obvious that the left-hand
side of the equality is S applied to the left-hand side of the induction hypothesis.

x : nat

y : nat

z : nat

x’: nat

H : x’ + y + z = x’ + (y + z)

============================

S (x’ + y + z) = S x’ + (y + z)

It is now obvious that rewriting again with plus Sn m and with the induction
hypothesis makes it possible to colude.

rewrite plus_Sn_m; rewrite H; trivial.

Qed.

11

4.4 Numbers

In the Coq system, most usual datatypes are represented as inductive types and
packages provide a variety of properties, functions, and theorems around these
datatypes. The package named Arith contains a lot of theorems about natural
numbers, the package named ZArith provides represent integers. The package
named QArith provides descriptions of rational numbers. The support for on
real numbers in the Coq system is also quite good, but real numbers are not
(and cannot) be represented using an inductive type. The package to load is
Reals.

4.5 Data structures

The two-element boolean type is an inductive type in the Coq system, true and
false are its constructors. Most ways to structure data together are also provided
using inductive data structures, a commonly used datatype is the type of lists.
This type is polymorphic, in the sense that the same inductive type can be used
for lists of natural numbers, lists of boolean values, or lists of other lists. This
type is not provided by default in the Coq system, it is necessary to load the
package List using the Require command to have access to it. Here is an example
a list of natural number.

Require Import List.

Check (cons 3 (cons 2 (cons 1 nil))).

3 :: 2 :: 1 :: nil : list nat

This example also shows that the notation :: is used to rerpresent the cons
function in an infix fashion. The List package also provides a list concatenation
function named app, with ++ as infix notation, and a few theorems about this
function.

5 Current formalization in CoLoR

In this section we will present the CoLoR project and the formalization of the
polynominal interpretation based termination methods developed within the
CoLoR project.

The goal of the project CoLoR is to verify the results produced by termi-
nation provers with the use of the Coq proof assistant, we have presented in
section 4. This is achieved by means of certificates, that is a transcription of
termination proofs in a dedicated formate.

CoLoR consists of three parts:

1. TCG (Termination Certificate Grammar): a formal grammar for termi-
nation certificates.

2. CoLoR (Coq library on Rewriting and Termination): a library of results
on termination of rewriting, formalized in Coq.

12

3. Rainbow: a tool for transforming termination certificates in the TCG
format into Coq scripts certifying termination by employing results from
CoLoR.

For more information about the project we assume to go its web-page:

http : //color.inria.fr

Rainbow supports various advanced termination criteria used in mordern
automated termination provers. There are two distinct approaches to do in
this: one is using a shallow embedding [3] and another is a deep embedding.
CoLoR uses deep embeddings only.

5.1 Terms and rewriting

The CoLoR library contains many functions and theorems on basic data struc-
ture like lists, vectors, polynomials, matrices and finite multisets.

CoLoR provides various notions of terms: strings, first-order terms with
symbols of fixed arity,... Algebraic terms are inductively defined from a signature
(module ASignature) defining the set of symbols, the arity of each symbol, a
boolean function saying if two symbols are equal or not.

Notation variable := nat (only parsing).

Record Signature : Type := mkSignature {

symbol :> Type;

arity : symbol -> nat;

beq_symb : symbol -> symbol -> bool;

beq_symb_ok : forall x y, beq_symb x y = true <-> x = y}

The type of algebraic terms on a signature (module ATerm) is defined as
follows:

Inductive term : Type :=

| Var : variable -> term

| Fun : forall f : Sig, vector term (arity f) -> term.

The type of vectors (also called arrays or dependent lists) with elements of
type A:

Inductive vector : nat -> Type :=

| Vnil : vector 0

| Vcons : forall (a:A)(n:nat), vector n -> vector (S n).

Rewrite relations are defined from sets of rules, a rule simply being a pair of
terms:

Record rule : Type := mkRule {lhs : term; rhs : term}.

Contexts are defined as terms with a unique hole in a similar way.

13

Notation terms := (vector term).

Inductive context : Type :=

| Hole : context

| Cont : forall (f : Sig)(i j : nat), i + S j = arity f ->

terms i -> context -> terms j -> context.

The standard rewrite relation generated from a list R of rewrite rules is then
defined as follows:

Definition red u v := exists l r c s, In (mkRule l r) R /\

u = fill c (sub s l) /\ v = fill c (sub s r).

We have red : term → term → Prop, so red is a relation on terms. We have
a reduction step red u v, written as u →R v, whenever there exist a term l, a
term r, a context C and a subtitution σ such that l → r ∈ R, u = C[lσ] and
v = C[rσ].

5.2 Interpretations

The interpretation of terms into some non-empty domain D:

Definition naryFunction A B n := vector A n -> B.

Definition naryFunction1 A := @naryFunction A A.

Record interpretation : Type := mkInterpretation {

domain :> Type;

some_elt : domain;

fint : forall f : Sig, naryFunction1 domain (arity f)}.

The substitution is then nothing but an interpretation on the domain of
terms by taking If (t1, ..., tn) = f(t1, ..., tn).

Definition I0 := mkInterpretation (Var O) (@Fun Sig).

Definition substitution : valuation I0.

Definition sub : substitution -> term -> term := @term_int Sig I0.

The formalization used a class of interpretations on well-founded domain
of natural numbers: polynomial interpretations. Currently, formalization of
polynomial in CoLoR is integer polynomials and it is simple.

5.3 Polynomials

Polynomial interpretations were contributed to the CoLoR library by Sébastien
Hinderer [4]. This library on polynomials with multiple indeterminates and
integer coefficients.

Example: [], [0, [1]] and [(1, [1]), (−1, [1])] all represent 0 = 0x = 1x− 1x.
Polynomial represented by using monomial because of the simple structure

of the monomial basic. p =
∑i=0
n aix

i.

14

The type of polynomials depends on the maximum number n of variables. A
polynomial is represented by a list of pairs made of an integer and a monomial.
A monomial begin a vector of size n made of the power of each variable.

Notation monom := (vector nat).

Definition poly n := list (Z * monom n).

Example: 3XY + 2X2 + 1 is represented by [(3, [|1; 1|]); (2, [|2; 0|]); (1, [|0; 0|)]

The coefficient of a monomial:

Fixpoint coef n (m : monom n) (p : poly n) {struct p} : A :=

match p with

| nil => 0

| cons (c,m’) p’ =>

match monom_eq_dec m m’ with

| left _ => c + coef m p’

| right _ => coef m p’

end

end.

The module Polynom provides basic operations on polynomials: addition,
subtraction, multiplication, power, composition, evaluation to an integer (Z)
given values for variables and theorems on monotony.

A polynomial interpretation consits in associating to every function symbol
of arity n, an integer polynomial with n variables (module APolyInt).

Definition PolyIterpretation := forall f : Sig, poly (arity f).

Module PolyInt contains definition and properties about polynomial inter-
pretations for algebraic terms. A polynomial interpretation given by, for each
symbol of arity n, a monotonic polynomial on n indeterminates (the monotonic-
ity of a polynomial P of n indeterminates is ensured by requiring that, for all
i ≤ n, the coefficient of xi in P is positive). A term with n variables is then
interpreted by a polynomial ‖t‖ with n indeterminates. By using the evaluation
function of polynomials in the domain D of non-negative integers, we get an
interpretation in the usual sense, where a symbol of arity n is interpretated by a
function from Dn to D. It is also proven that the ordering on terms obtained by
comparing the interpretations (t > u if ‖t‖ > ‖u‖) is a reduction ordering. By
the Manna-Ness theorem, if R is included in > then red(R) is terminating. And,
for proving that l > r, it suffices to check that the coefficients of ‖l‖ − ‖r‖ − 1
are non-negative.

CoLoR also provides a simple test for (strict) monotonicity, by testing that
each monomial xi is (strictly) positive.

In contrast to matrices or multisets, polynomials are not yet defined as a
functor building a structure for polynomials given a structure for the coeffcients.
And my work is change this in order to be able to certify proofs using polynomial
interpretations with rational or real coeffcients.

15

6 My contributions

6.1 A generic interface for rings

Our first goal is to be able to use polynomials on any ring structure. A ring
consists of a carrier D, two designated elements d0, d1 ∈ D and two binary
operations ⊕, ⊗ on D, such that both (D, d0,⊕) and (D, d1,⊗) are commutative
monoids and multiplication distributed over addition: ∀x, y, z ∈ D : x ⊗ (y⊕ z)
= (x⊗ y) ⊕ (x⊗ z).

Coq has built in notion of ring defined as a structure and a tactic ring for
proving by reflection polynomial equations.

But Coq has aslo a module system, this module system uses structures,
signatures, and parametric modules (also called functors), that is already used
in CoLoR but encloses the semi-ring specification within a module providing
a real encapsulation and modularization. It aslo allows to prove a number of
results following from the specification of a semi-ring that will automatically be
available for any instantiation to an actual semi-ring. So we defined a module
type for rings extending the Coq built in ring structure. An alternative would
be to use type classes.

To start defining a signature, we use the keywords ”Module Type” followed
by the name of the signature. Types and operations are declared with the
Parameter command, propositions are declared with the Axiom command; a
signature description is ended by the keyword End with the signature name, as
for sections.

To define a ring structure on A, we must provide an addition, a multitpli-
cation, an opposite function and two unities 0 and 1. We must then prove all
theorems that make (A0, A1, Aadd, Amul, Aopp, eqA) a ring structure, and pack
them with the ring theory constructor.

To illustrate this, we give the signature for Ring.

• a type A,

• a constants A0, A1 is for 0 and 1,

• a function Aadd : A→ A→ A is for addition,

• a function Amul : A→ A→ A is for multiplication,

• a function Aopp : A→ A is for opposite,

• a function Asub : A → A → A := fun x y ⇒ Aadd x (Aopp y) is a
definition of substration,

• a function Aring : ring theory A0 A1 Aadd Amul Aopp eqA is for the ring
theory, ie. all the properties required by Aadd, Amul, Aopp, Asub for A to
be a ring.

A signature can also contain a reference to another module with another
signature. For instance, we want to consider rings for setoids equality eqA of

16

type A which means that a set equipped with an arbitrary decidable equivalence
(with only equality).

We define a module types for setoids with deciable equality. Setoid Theory
A eqA, for the declaration of setoids where eqA is a congruence relation, A is a
type, such that:

Definition Setoid_Theory := @Equivalence.

Module Type SetA.

Parameter A : Type.

End SetA.

Module Type Eqset.

Parameter A : Type.

Parameter eqA : A -> A -> Prop.

Notation "X =A= Y" := (eqA X Y) (at level 70).

Parameter sid_theoryA : Setoid_Theory A eqA.

...

End Eqset.

Eqset dec is a module type of decidable equality for type A

Module Type Eqset_dec.

Declare Module Export Eq: Eqset.

Parameter eqA_dec : forall x y, {x =A= y} + {~x =A= y}.

End Eqset_dec.

One function can respect several different relations and thus it can be de-
cleared as a morphism having multiple signatures. To declare multiple signa-
tures for a morphism, repeat the Add Morphism command, following signatures:
eqA ==> eqA ==> eqA (eqA being the equality, the special arrow ==> is used
in signatures for morphisms that are both convariant and contravariant).

Module Type RingType.

Declare Module Export ES : Eqset_dec.

Parameter A0 : A.

Parameter A1 : A.

Parameter Aadd : A -> A -> A.

Add Morphism Aadd with signature eqA ==> eqA ==> eqA as Aadd_mor.

Parameter Amul : A -> A -> A.

Add Morphism Amul with signature eqA ==> eqA ==> eqA as Amul_mor.

Parameter Aopp : A -> A.

Add Morphism Aopp with signature eqA ==> eqA as Aopp_mor.

Definition Asub : A -> A -> A := fun x y => Aadd x (Aopp y).

Add Morphism Asub with signature eqA ==> eqA ==> eqA as Asub_mor.

Parameter Aring : ring_theory A0 A1 Aadd Amul Asub Aopp eqA.

End RingType.

17

Next we would like to build a module for ring theory, integer numbers and
rational numbers.

We can use the keywords ”Module RingTheory”, to opens the description of a
module with the name RingTheory without specifying a signature. We give some
notations by using the command Notation which these notations we can easily
write the program, to declare the setoids we use the keywords ”Add Setoid”, after
we adapt all of it to a ring by using a command ”Add Ring”. Due to backward
compatibility reasons, the following syntax for the declaration of setoids and
morphisms is also accepted (Add Setoid A eqA sid thoeryA as A Setoid), where
eqA is a congruence relation without parameters, A is its carrier and sid theoryA
is an object of type.)

Module RingTheory (Export R : RingType).

Notation "0" := A0.

Notation "1" := A1.

Notation "x + y" := (Aadd x y).

Notation "x * y" := (Amul x y).

Notation "- x" := (Aopp x).

Notation "x - y" := (Asub x y).

Add Setoid A eqA sid_theoryA as A_Setoid.

Add Ring Aring : Aring.

We can define some fields are useful by using the regular commands Defi-
nition, Fixpoint, Theorem, Lemma and so on. The process ends with a closing
command ”End RingTheory”.

Fixpoint power x n {struct n} :=

match n with

| 0 => 1

| S n’ => x * power x n’

end.

Lemma power_add : forall x n1 n2, x ^ (n1 + n2) =A= x ^ n1 * x ^ n2.

Lemma Aadd_0_r : forall x, x + 0 =A= x.

Lemma Amul_0_l : forall x, 0 * x =A= 0.

End RingTheory.

Rings over integer numbers Z

We continue define a module for integer numbers by using the keywords ”Module
Int <: SetA”, it means that open the description of a module with the name Int
as a compatible module with the signature SetA. We want to use the library on
Integers, we need to load the package ZArith.

Require Import ZArith.

Module Int <: SetA.

Definition A := Z.

End Int.

18

To obtain an implementation with Eqset def, we can simply apply the functor
Eqset def to the module Int. We now choose to only verify that an implemen-
tation with integers only satifies the specification Eqset dec without masking
definitions. We simply use the operator <:

Module IntEqset := Eqset_def Int.

Module IntEqset_dec <: Eqset_dec.

Module Export Eq := IntEqset.

Definition eqA_dec := dec_beq beq_Z_ok.

End IntEqset_dec.

We now implement with integers only satifies in RingType, and mapping all
the parameters of type A into integers (or type Z).

Module IntRing <: RingType.

Module Export ES := IntEqset_dec.

Add Setoid A eqA sid_theoryA as A_Setoid.

Definition A0 := 0%Z.

Definition A1 := 1%Z.

Definition Aadd := Zplus.

Add Morphism Aadd with signature eqA ==> eqA ==> eqA as Aadd_mor.

Definition Amul := Zmult.

Add Morphism Amul with signature eqA ==> eqA ==> eqA as Amul_mor.

Definition Aopp := Zopp.

Add Morphism Aopp with signature eqA ==> eqA as Aopp_mor.

Definition Asub : Z -> Z -> Z := fun x y => Zplus x (Zopp y).

Add Morphism Asub with signature eqA ==> eqA ==> eqA as Asub_mor.

Lemma Aring : ring_theory A0 A1 Aadd Amul Asub Aopp eqA.

End IntRing.

Module IntRingTheory := RingTheory IntRing.

Rings over rational numbers Q

Require Import QArith.

Module Rat_Eqset <: Eqset.

Definition A := Q.

Definition eqA := Qeq.

Definition sid_theoryA: Setoid_Theory A eqA.

End Rat_Eqset.

Module Rat_Eqset_dec <: Eqset_dec.

Module Export Eq := Rat_Eqset.

Lemma eqA_dec : forall x y, {eqA x y} + {~eqA x y}.

End Rat_Eqset_dec.

Module RatRing <: RingType.

Module Export ES := Rat_Eqset_dec.

Add Setoid A eqA sid_theoryA as A_Setoid.

Definition A0 := 0#1.

19

Definition A1 := 1#1.

Definition Aadd := Qplus.

Add Morphism Aadd with signature eqA ==> eqA ==> eqA as Aadd_mor.

Definition Amul := Qmult.

Add Morphism Amul with signature eqA ==> eqA ==> eqA as Amul_mor.

Definition Aopp := Qopp.

Add Morphism Aopp with signature eqA ==> eqA as Aopp_mor.

Definition Asub: Q -> Q -> Q := fun x y => Qplus x (Qopp y).

Add Morphism Asub with signature eqA ==> eqA ==> eqA as Asub_mor.

Definition Aring := Qsrt.

End RatRing.

Module RatRingTheory := RingTheory RatRing.

6.2 A generic interface for ordered rings

Another goal we build the ring structure is to be able to use the ordered rings,
which means that we can check some conditions for instance 1 > 0 and so on.

We implement with order ring, with this order we able to certify proofs using
polynomial intergretations with rational or real coefficients. We use a signature
OrdRingType for types with a total decidable order. We also give a minimum
axioms in this module, this means that we have a small set of functions and their
specifications and those results are independent of a particular representation
of multisets.

There are some components in this signature:

• a binary relation gtA (>) on A,

• declare a relation for morphism is iff

• a transitive of this relation gtA trans,

• a irreflexive gtA irrefl,

• a boolean function of this relation bgtA,

• a function checking the correctness of this condition bgtA ok,

• a condition 1 > 0, one gtA zero,

• a specification with addition and multiplication
add gtA mono r and mul gtA mono r.

Module Type OrdRingType.

Declare Module Export R : RingType.

Module Export RT := RingTheory R.

Parameter gtA : A -> A -> Prop.

Notation "x >A y" := (gtA x y) (at level 70).

Add Morphism gtA with signature eqA ==> eqA ==> iff as gtA_morph.

Parameter gtA_trans : transitive gtA.

20

Parameter gtA_irrefl : irreflexive gtA.

Parameter bgtA : A -> A -> bool.

Parameter bgtA_ok : forall x y, bgtA x y = true <-> x >A y.

Parameter one_gtA_zero : 1 >A 0.

Parameter add_gtA_mono_r: forall x y z, x >A y -> x + z >A y + z.

Parameter mul_gtA_mono_r:

forall x y z, z >A 0 -> x >A y -> x * z >A y * z.

End OrdRingType.

We implement the theory of order ring and setoid reflexive closure of this
order ring.

Module OrdRingTheory (Export ORT : OrdRingType).

Module Export RT := RingTheory R.

Definition geA x y := x >A y \/ x =A= y.

Lemma geA_refl : reflexive geA.

Lemma geA_trans : transitive geA.

We define the boolean equality and checking its correctness

Definition beqA x y :=

match eqA_dec x y with

| left _ => true

| right _ => false

end.

Lemma beqA_ok : forall x y, beqA x y = true <-> x =A= y.

We define for non negative predicate

Notation not_neg := (fun z => z >=A 0).

Definition bnot_neg z := bgtA z 0 || beqA z 0.

Lemma bnot_neg_ok : forall z, bnot_neg z = true <-> z >=A 0.

After that, we proof some properties of this order ring. For instance:

Lemma geA_gtA_trans : forall x y z, x >=A y -> y >A z -> x >A z.

Lemma mul_gtA_0_compat : forall n m, n >A 0 -> m >A 0 -> n * m >A 0.

Lemma power_geA_0 : forall x n, x >=A 0 -> x ^ n >=A 0.

We use the same technique for integer numbers and rational numbers with
order ring.

Ordered rings over integer numbers Z

Module IntOrdRing <: OrdRingType.

Module Export R := IntRing.

Module Export RT := RingTheory R.

Require Import ZArith.

Definition gtA := Zgt.

21

Add Morphism gtA with signature eqA ==> eqA ==> iff as gtA_morph.

Definition gtA_dec := Z_gt_dec.

Definition bgtA x y :=

match gtA_dec x y with

|left _ => true

|right _ => false

end.

Lemma bgtA_ok : forall x y, bgtA x y = true <-> (x > y)%Z.

Lemma gtA_trans : transitive gtA.

Lemma gtA_irrefl : irreflexive gtA.

Lemma one_gtA_zero : (1 > 0)%Z.

Lemma add_gtA_mono_r : forall x y z,(x > y)%Z -> (x + z > y + z)%Z.

Lemma mul_gtA_mono_r : forall x y z,(z > 0)%Z -> (x > y)%Z

-> (x * z > y * z)%Z.

End IntOrdRing.

Module IntOrdRingTheory := OrdRingTheory IntOrdRing.

Ordered rings over rational numbers Q

Module RatOrdRing <: OrdRingType.

Module Export R := RatRing.

Module Export RT := RingTheory R.

Require Import QArith.

Definition gtA x y := Qlt y x.

Add Morphism gtA with signature eqA ==> eqA ==> iff as gtA_morph.

Definition Q_gt_dec x y : {x > y} + {~ x > y}.

Definition gtA_dec := Q_gt_dec.

Definition bgtA x y :=

match gtA_dec x y with

|left _ => true

|right _ => false

end.

Lemma bgtA_ok : forall x y, bgtA x y = true <-> x > y.

Lemma gtA_trans : transitive gtA.

Lemma gtA_irrefl : irreflexive gtA.

Lemma one_gtA_zero : 1 > 0.

Lemma add_gtA_mono_r : forall x y z, x > y -> x + z > y + z.

Lemma mul_gtA_mono_r : forall x y z, z > 0 -> x > y -> x * z

End RatOrdRing.

Module RatOrdRingTheory := OrdRingTheory RatOrdRing.

6.3 Well-foundedness proof of the δ-ordering on Q+

Polynominals with real coefficients were proposed by Dershowitz [6] as an al-
ternative to polynomials over the naturals in proofs of termination of rewrit-
ing. In fact, rewriting systems that can be proved polynomially terminating

22

by using polynomial interpretations with (algebraic) real coefficients; however,
the proof cannot be achived if polynomials only contain rational coefficients.
Since the set of real numbers R furnished with the usual ordering >R is not
well-founded, a subterm property (i.e., f(x1, ..., xi, ..., xk) >R xi for all k-ary
symbols f, arguments1 ≤ i ≤ k, and x1, ..., xk ∈ R) is explicitly required to
ensure well-foundedness.

A new framework for proving termination of TRSs by using polynomials
over the reals has recently been introduced in [5].

Given a positive real number δ ∈ R>0, a well-founded and stable (strict)
ordering >δ on terms is defined as follows: for all t, s ∈ T (F, V), t >δ s if and
only if [t]− [s] ≥R δ.

We want to prove that ∀x, y ∈ Q+, x >δ y ⇒ f(x) > f(y). Let x, y ∈ Q+

such that x >δ y. By Euclidian division, there is t such that x = f(x)δ + t and
0 ≤ t < δ. Similarly, there is u such that y = f(y)δ + u and 0 ≤ u < δ. So,
x−y = (f(x)−f(y))δ+(t−u) and −delta < t−u < δ. Now, if x >δ y then, by
definition, x−y = (f(x)−f(y))δ+(t−u) ≥ δ. So, (f(x)−f(y))δ ≥ δ−(t−u) > 0
since −δ < t− u < δ. By dividing by δ > 0, we get f(x)− f(y) > 0.

We now formalize it in Coq by giving two variables: delta with type Q of
rational numbers, and delta pos is a proof that δ > 0. We define the rule gtA x
y := x - y >= delta.

We have: f(x) = bxδ c with definition f Z x.
The definition f x is return the function x has type N, f Q x is the function

x with type Q.

Variable delta : Q.

Variable delta_pos : delta > 0.

Definition gtA x y := x - y >= delta.

Notation "x >A y" := (gtA x y).

Definition f (x : Q) : nat := Zabs_nat (f_Z x).

Definition f_Q (x : Q) : Q := inject_Z (f_Z x).

Definition f_Z (x : Q) : Z := Qfloor (Qdiv x delta).

The lemma poly exp is proving: ∀x ∈ Q+, ∃t ∈ Q, x = f(x)δ + t and
0 ≤ t < δ.

Lemma poly_exp: forall x, x >= 0 -> exists t,

x == f_Q x * delta + t /\ 0 <= t /\ t < delta.

Lemma terms_cond : forall t u, 0 <= t /\ t < delta /\

0 <= u /\ u < delta -> - delta < t + - u /\ t + - u < delta.

The lemma wf Q N prove it is well-founded from the domain (Q+, >δ) to
(N, >N) such that x >δQ y ⇒ f(x) >N f(y).

Lemma wf_Q_N : forall x y, x >= 0 /\ y >= 0 -> x>Ay -> (f(x)>f(y)).

23

We consider polynomials using nonnegative, rational coefficients and proved
it is well-founded by using the lemma wf Q N above.

Definition gtA_not_neg x y := gtA x y /\ x >= 0 /\ y >= 0.

Theorem well_founded_gtA_not_neg: well_founded (transp gtA_not_neg).

6.4 Improved monotony criterion

In this subsection we present an improved definition of weak and strong monotony
criterion, also checked the correctness of its condition by using the boolean func-
tion.

The definition of monomial xki :

Fixpoint mxi n : forall i, i < n -> nat -> monom n :=

match n as n return forall i, i < n -> nat -> monom n with

| O => fun i h _ => False_rec (monom O) (lt_n_O i h)

| S n’ => fun i =>

match i as i return lt i (S n’) -> nat -> monom (S n’) with

| O => fun _ k => Vcons k (mone n’)

| S _ => fun h k => Vcons O (mxi (lt_S_n h) k)

end

end.

Improve the monotony criterion which means that the monotonicity of a
polynomial P of n indeterminates is ensured by requiring that, for all i < n, the
coefficient of xki in P is (strictly) positive.

Definition pstrong_monotone2 n (p : poly n) := pweak_monotone p

/\ forall i (H : i < n), exists k, coef (mxi H k) p >A 0.

We have nat lt is a set of natural number smaller than n. nats lt is a list
of natural numbers strictly smaller than n with proofs. nfirst is a list from
(n− 1, ..., 0).

Record nat_lt (n : nat) : Type :=

mk_nat_lt { val : nat; prf : val < n }.

Definition nats_lt : forall n : nat, list (nat_lt n) := ...

(* list of numbers smaller than n with the proofs *)

Fixpoint nfirst n :=

match n with

| 0 => nil

| S k => k :: nfirst k

end.

24

The boolean function of weak monotone checking the absolute positiveness
such that a polynomial is absolutely positive if all its coefficients are non-
negative. We give a variable kmax is a natural number such that kmax > k
testing that each monomial xki is (strictly) positive.

Definition bpweak_monotone n (p : poly n):= bcoef_not_neg p.

Definition bpweak_monotone_ok n (p : poly n):= bcoef_not_neg_ok p.

Variable kmax : nat.

Definition bpstrong_monotone2 n (p : poly n) :=

bcoef_not_neg p

&& existsb

(fun k =>

forallb

(fun x => bgtA (coef (mxi (prf x) k) p) 0)

(nats_lt n))

(nfirst kmax).

Lemma bpstrong_monotone2_ok : forall n (p : poly n),

bpstrong_monotone2 p = true -> pstrong_monotone2 p.

existsb is a boolean function find whether a boolean function can be satisfied
by an elements of the list.

Fixpoint existsb (l:list A) : bool :=

match l with

| nil => false

| a::l => f a || existsb l

end.

forallb also a boolean function find whether a boolean function is satisfied
by all the elements of a lists.

Fixpoint forallb (l:list A) : bool :=

match l with

| nil => true

| a::l => f a && forallb l

end.

6.5 Polynomials of degree 2 with negative coefficients

Next we proof the well-defined of generic quadratic parametric polynomial func-
tion:

fN(x1, ..., xn) = c+
∑n
i=1 bxi +

∑n
i=1

∑n
j=i aijxij ∈ Z[x1, ..., xn].

Theorem 8 [7] The function fN is strictly (weakly) monotone and well-defined
iff c ≥ 0, aij ≥ 0 and b > −aii (b ≥ −aii) for all 1 ≤ i ≤ j ≤ n.

25

Proof. [7] By induction hypothesis, we have the first case: fN(0, ..., 0) ≥ 0
iff c ≥ 0 (∀x1, .., xn ∈ N);
Induction case:

fN(x1, ..., xi + 1, ..., xn) ≥ fN(x1, ..., xi, ..., xn)

becomes
b(xi+1)+aii(xi+1)2+

∑
1≤j≤n,j 6=i aij(xi+1)xj > bxi+aiix

2
i+

∑
1≤j≤n,j 6=i aijxixj

which simplifies to

b+ 2aiixi + aii +
∑

1≤j≤n,j 6=i aijxj > 0

This formula holds for all x1, ..., xn ∈ N iff aij ≥ 0(j 6= i) and 2aiixi+aii+b >
0 for all xi ∈ N iff aii ≥ 0 and b > −aii. Altogether, this proves claim for strict
monotonicity; for weak monotonicity we just have to replace > by ≥ in the
above calculation.

�

Corollary 9 The function fN(x) = ax2 + bx+ c is strictly (weakly) monotone
and well-defined iff a ≥ 0, c ≥ 0, and b > −a (b ≥ −a).

Hence, in a quadratic polynomial all coefficients must be non-negative except
the coefficients of the linear monomials.

Now we formalize it in Coq. The definition of degree and the condition saying
that if the degree of coefficient is greater or equal than 3, its coefficient is equal
to 0.

Fixpoint degree n (v : monom n) {struct v} : nat :=

match v with

| Vnil => O

| Vcons k _ v => (k + degree v)%nat

end.

Variable hyp : forall m : monom n, degree m >= 3 -> coef m p =A= 0.

We have mxij is a monomial multiplication xixj . a,b,c are the coefficients
of polynomial.

Definition mxij i (hi: i<n) j (hj: j<n):=

mmult (mxi hi 1) (mxi hj 1).

Definition a i (hi: i<n) j (hj: j<n) := coef (mxij hi hj) p.

Definition b i (hi: i<n) := coef (mxi hi 1) p.

Definition c := coef (mone n) p.

From theorem 5 we have the definition of the function fN is strictly (weakly)
monotone and well-defined.

26

Definition monotone :=

c >=A 0

/\ forall j (hj: j<n), b hj >=A - a hj hj

/\ forall i (hi: i<n) j (hj: j<n), a hi hj >=A 0.

Definition strict_monotone :=

c >=A 0

/\ forall j (hj: j<n), b hj >A - a hj hj

/\ forall i j (hi: i<n) (hj: j<n), a hi hj >=A 0.

We give the definition checking the well-defined and correctness. The boolean
function saying if the coefficient b of monomial xi is greater than equal the nega-
tive coefficient −a of quadratic polynomial or not, and a proof that this function
is correct.

P is a condition of coefficient xi in linear monomials.

Definition P j := forall (hj: j<n), b hj >=A - a hj hj.

Definition bP j := match lt_ge_dec j n with

| left hj => bgeA (b hj) (- a hj hj)

| _ => true

end.

Lemma bP_ok : forall j, bP j = true <-> P j.

P ′ is the definition of strictly condition. bP ′ is the boolean function of P ′,
we also checking the correctness of this definition.

Definition P’ j := forall (hj: j<n), b hj >A - a hj hj.

Definition bP’ j := match lt_ge_dec j n with

| left hj => bgtA (b hj) (- a hj hj)

| _ => true

end.

Lemma bP’_ok : forall j, bP’ j = true <-> P’ j.

The coefficient of xixj in quadratic polynomial has two conditions, we call
the first one is R such that for all j < n, i < n we have: aij >= 0. bR is a
boolean function of R and after that we proof the correct of definition bR is
true for all j.

Definition R j := forall (hi: i<n) (hj: j<n), a hi hj >=A 0.

Definition bR j :=

match lt_ge_dec i n, lt_ge_dec j n with

| left hi, left hj => bnot_neg (a hi hj)

| _, _ => true

end.

Lemma bR_ok : forall j, bR j = true <-> R j.

27

The definition forall lt is checking for all i < n. Such that P is satisfied for
all i < n and bP is true for all i.

Variables (P: nat -> Prop) (bP: nat -> bool)

(bP_ok: forall i, bP i = true <-> P i).

Definition forall_lt n := forall i, i<n -> P i.

Fixpoint bforall_lt n :=

match n with

| O => true

| S n’ => bP n’ && bforall_lt n’

end.

Now we define the last condition for the quadratic polynomial, for all i < n,
aij >= 0.

Definition Q i := forall_lt (R i) n.

Definition bQ i := bforall_lt (bR i) n.

We generalize the monotone’ using the function forall lt and proving that
it is equality with the definition of monotone.

After that, we give the definition of boolean functions of monotone and
strictly monotone and proof the correctness of this definition.

Definition monotone’ :=

not_neg c /\ forall_lt P n /\ forall_lt Q n.

Lemma monotone_eq’ : monotone <-> monotone’.

Definition bmonotone :=

bnot_neg c && bforall_lt bP n && bforall_lt bQ n.

Definition bstrict_monotone :=

bnot_neg c && bforall_lt bP’ n && bforall_lt bQ n.

Lemma bmonotone_ok : bmonotone = true <-> monotone.

Lemma bstrict_monotone_ok :

bstrict_monotone = true <-> strict_monotone.

7 Conclusion

In this report we presented an approach to certification of termination proofs,
by using interpretation play an important role in termination. We showed how
to formalization in generic interface for rings and orderings in polynomial inter-
pretation. We also showed how this formalization is the well foundedness with
δ-ordering on Q+.

28

Improved the monotony criterion by checking the coefficient of monomial
xki is (strictly) positive. Analyzed polynomials is a bound on the degree 2 or
quadratic polynomials with negative coefficients and checking the correctness of
the parameters by testing the equality of the corresponding boolean functions
to true (reflexivity proof).

Future worke is design termination certificates and develope procedures to
automatically and efficiently verify their correctness with the highest confidence.
To improve this, we need to certify Rainbow7 (a termation certificate checker)
itself in Coq by formalizing the certificates themselves, defining a boolean func-
tion saying if a certificate is correct or not, and proving that this function is
correct, that is, that one can indeed build a termination proof if this function
returns true. Then, by using Coq’s extraction mechanism [8], we can get an
efficient standalone termination certificate checker.

Another way to improve the verification of termination certificates, not only
in speed but also in the number of termination criteria that can be handled, is to
prove the correctness of each node separatly, possibly with different verification
tools.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, Cambridge, 1998.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[3] F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite
relations and its application to the automated verification of termination
certificates, July 2010.

[4] Sébastien Hinderer. Certification of Termination Proofs Using Polynomial
Interpretations. In 17th European Summer School in Logic, Language and
Information - ESSLLI ’05, Edimbourg/Grande Bretagne, 08 2005.

[5] Salvador Lucas. Polynomials over the reals in proof of termination. In
In Proc. 7th Internation Workshop on Termination, Technical Report AIB-
2004-07, RWTH Aachen, pages 39–42, 2004.

[6] Dershowitz Nachum. A Note on Simplification Orderings, Apr. 1979. Report
DCS-4-79-986.

[7] Friedrich Neurauter, Aart Middeldorp, and Harald Zankl. Monotonicity
criteria for polynomial interpretations over the naturals. In IJCAR, pages
502–517, 2010.

7http://color.inria.fr/#rainbow

29

[8] C. Paulin-Mohring. Extracting omega’s programs from proofs in the calculus
of constructions’s programs from proofs in the calculus of constructions. In
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 89–104, New York, NY, USA,
1989. ACM.

[9] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

30

