
  

INTERNSHIP REPORT 

 

Studying and implementing 3D geometric routing 

algorithm and spanners 
 

 

UNIVERSITY BORDEAUX 1 

 

  

BY 

LY KIM QUYEN 

 

 

 

SUPERVISED BY 

NICOLAS BONICHON, CYRIL GAVOILLE 

 

 

 

 

FROM 

15th JUNE, 2009 

 

 

TO 

11th NOVEMBER, 2009 

1 



PREFACE 
 
The purpose of this report is to explain what I had done and learned 

during my internship at the France National Institute for Research in 

Computer Science and Control (INRIA). The report focuses primarily on 

what I had done in the subject “Studying and implementing 3D 

geometric routing algorithm and spanners”, handled and succeeded 

assignments, working environment, and working experience during my 

internship.  
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ABSTRACT 

In this report we present about the Geometric spanner in 3D. t – 

Spanners are Euclidean graphs in which distances between vertices in G 

are at most t times the Euclidean distances between them. We focus on 

an important family of geometric spanners: θ -graphs. The basic idea of 

the θ -graph is to cut the space around each node into sectors (cones) of 

equal angle and to connect each node to the nearest neighbor in each of 

its sectors. We modified the θ -graph to ½ θ -graph; the ½ θ -graph is to 

choose the half sectors of θ -graph, each sector chosen is know as a 

positive sector.  

And then, we want to know if the generalization of ½ θ -graph is a 

spanner or not in 3D. We proven that the ½ θ -graph with eight cones is 

not a spanner. Moreover, we continue to study it with theθ -graph. We 

prove that the θ -Walk algorithm in the θ -graph with eight cones has a 

stretch factor greater than t, for any t. The property ofθ -graph with 

Meeting algorithm is a t-spanner then t stretch factors. The other 

property of the 

7.67≥

θ -graph is a t-spanner then t stretch factors. 3≥
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1. Introduction 
 
As an intern with INIRA, I was working in the Geometric spanner with 

spanner based on the θ -graph in 3D under the supervision of Prof. 

Nicolas Bonichon; Theθ -graph, which insist on adding an edge in each 

of k different directions for each of the n input points. Thus, to find a 

short path from one vertex in the graph to another, that is, pick an edge 

in the general direction of the destination.  

I began my internship program on 15th June, 2009 with INRIA. The 

internship was to last for five (5) months and as result my internship 

came to an end on 11th November, 2009. 

In somewhat more concrete terms, the θ -graph start with some starting 

points such as: six cones, eight cones in the plane and in 3D, and then 

modified the θ -graph to the ½ θ -graph with these starting points, use 

routing algorithm to find properties for this graph. It is while I was with 

eight cones in 3D and with compass routing. I will present the major 

areas identified as research about the θ -graph in 2D and 3D, write the 

report for the ½ θ -graph with six cones in the plane, ½ θ -graph with 

eight cones in 3D, and implemented 2 compass routing algorithm for θ -

graph with eight cones in 3D.  

About the INRIA, it is the French national institute for research in 

computer science and control, operating under the dual authority of the 

Ministry of Research and the Ministry of Industry, is dedicated to 

fundamental and applied research in information and communication 

science and technology (ICST). The Institute also plays a major role in 

technology transfer by fostering training through research, diffusion of 

scientific and technical information, development, as well as providing 

expert advice and participating in international programs. 
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It has eight research centers in:  

• INRIA Bordeaux – Sud – Ouest 

• INRIA Grenoble – Rhône – Alpes 

• INRIA Lille – Nord Europe 

• INRIA Nancy – Grand – Est 

• INRIA Paris – Rocquencourt 

• INRIA Rennes – Bretagne Atlantique 

• INRIA Saclay – Ile – de – France 

• INRIA Sophia Antipolis – Méditerranée 

The organization chart: 

 

Figure 1: Organization chart of INRIA 
 
The INRIA's major goal for 2008-2012 is to achieve scientific and 

technological breakthroughs in seven priority domains: 
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• Modeling, simulation and optimization of complex dynamic 

systems 

• Programming: security and reliability of computing systems 

• Communication, information, and ubiquitous computing 

• Interaction with real and virtual worlds 

• Computational engineering 

• Computational sciences 

• Computational medicine 

Work experiences: 

Under supervision of Prof. Nicolas Bonichon, I was able to understand 

the assigned problems and to what extend I was capable to fulfill it. The 

following were some of the motivations that made my work better and 

enjoyable: 

• Working on projects and publications that I believed would 

eventually provide a clear understanding on the state of the art 

geometric spanner. This gave me the morale to work even harder 

in order to achieve more challenging objectives.  

• Attending the seminar and workshop EuroComp 2009 about 

Combinatorics, Graph Theory and Applications was excellent! 

• Meeting with professionals, experiencing the way they trouble 

shoot and solve problems.  

Successes: There were many successes. Personally the followings are 

what I succeeded on:  

• First, to me it was a success having been given a chance to 

handle work on various informative publications that I believe 

will go a long way in geometric spanner. 
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• Through my work in here, my knowledge about geometric 

spanner is improved such as how to use the algorithm to look for 

properties for the graph, how to prove a mathematic for 

geometric spanner. 

• I was not familiar with geometric spanner, mathematic proving 

and java3d before but now I can confidently understand it and 

program it.  

• Besides, I improved the skill of writing the report.  

• I can saw my weakness, and I learnt from it. It helps me improve 

myself about working and studying for the future.  

Weakness: In this period I recognized my deficiency.  

• I was not a familiar of mathematic so it made me hard to give 

Theorems, lemmas, and proving it.  

• I was hardly to communicate with my supervisor; it made my 

work slowly and very hard to understand what the purpose of my 

work.  

• Internet has a lot of information, sometime I lost myself in this. 
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2. Problem definition 
Notation and Definition: Let S be a finite set of points in the plane and 

let G be a graph with vertex set S, in which edge (u, v) has a weight 

equal to the Euclidean distance |uv| between u and v. For a real 

number , we say that G is a t-spanner for S, if for any two point’s u 

and v of S, there exists a path in G between u and v whose Euclidean 

length is at most t|uv|. The smallest such t is called the stretch factor of 

G.  

1t ≥

Let |uv| to denote the Euclidean distance between u and v; then we use 

the notation |uv|G to denote the Euclidean length of a shortest path 

between u and v in a geometric network G, we have| | . | |Guv t uv≤ . To a 

comprehensive overview of geometric spanners, see the book by 

Narasimhan and Smid [20]. The geometric spanner we use is the θ -

graphs.  

The θ -graph: Let S be a set of points, for eachu S∈ , among all “nearly 

– parallel” edges incident on u in the complete graph, the θ -graph 

retains the “shortest” one. These graphs are t-spanner for an appropriate 

value of t. [20]  

 
Figure 2: The graph of ( , )S kθ in 3D 
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In the geometric spanner, let S be a set of points in the plane and let k be 

an integer, we want to know the ½ ( , )S kθ [12] in the plane what are 

properties for this graph and properties of the ( , )S kθ in 3D. Which ½ 

( , )S kθ in the plane we give one of starting points with six cones and we 

show that it works in the plane. After that we give starting points with 

eight cones in 3D, we tested with the ½ ( ,S k)θ and with the ( , )S kθ . We 

also present two algorithms: Meeting walk and Walkθ − .  

Problems are formalized below. 

Problem 1 (½θ -graphs in 3D with eight cones): Let 8k =  be an 

integer, let 2 / kθ π= , and let S be a set of points in . Assume that we 

have an undirected graph ½ 

3\

( , )S kθ does there exist a t-spanner for S?  

Problem 2 (θ -graphs in 3D with eight cones): Let 8k =  be an integer, 

let 2 / kθ π= , and let S be a set of points in . Assume that we have an 

undirected graph 

3\

( , )S kθ has a t-spanner, and what are properties of 

( , )S kθ in 3D? 

3. Key results 
We have some results with the graphθ −  , ½ graphθ −  in 3D. In the 

½ graphθ −  with eight cones in 3D, we used the Meeting walk 

algorithm and we show that it is not a t- spanner. In the graphθ − with 

eight cones we used two algorithms: Meeting - Walk and Walkθ − .  

Let us define the path for routing algorithm, let S be a set of points in the 

plane. Assume that we have an undirected graph G with the property that 

for a two distinct points u and v in S. Then, we can (attempt to) construct 

a path in G between u and v. We have a path P (s = u0, u1,…,ui = t).  

 

We have a stretch of this path is: 1|
| |

i iu u
st

+ |∑ , and the stretch factor of this 

routing algorithm is: 
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,

max(min ( )) ( ( , ))routing
Ps t

s t

stretch P stretch P s t
−

≤  

We also give properties for this graph: For any t there exists a set S such 

that the Walkθ − algorithm have a stretch factor greater than t. For the 

Meeting walk algorithm we have shown that this algorithm is a t-spanner 

then t ≥ 7.67 stretch factors. The property of graphθ −  is a t-spanner 

then t ≥ 3 stretch factors. 

To show the geometric spanner graph on the  ½ graphθ − and the 

graphθ − with eight cones and simulate our results we were 

programming the software in 3D. Also we simulate the Walkθ − ’s and 

Meeting walk’s algorithms. We give some design to show properties for 

this graph. 
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4. Introduction to Spanner  
 
Chew [5] discovered in 1986 that even planar networks (i.e. without 

crossings) could ensure small transmission distances. It was the 

beginning of a long standing study about the so-called spanner networks, 

which corresponds to the ratio between the actual path and the straight 

line distance – when moving in the networks from one site to another is 

at most a constant. 

The first spanners Chew introduced were based on L1 metric Delaunay 

triangulations: the spanning ratio- is bounded by 10 . Chew [6], Dobkin 

et al. [9], and Keil and Gutwin [16] all studied the spanning ratio of 

Euclidean Delaunay Triangulations, and concluded that it is upper 

bounded by 2 2.42
2cos / 6

π
π

≈ . 

Spanners with small size and/or weight are referred to as sparse spanner.  

• Size: is defined as the number of edges in the network. In general, 

it is preferable to have networks with as few edges as possible, 

perhaps linear in the number of points. 

• Weight: is defined as the sum of the weights of the edges. Since 

any network must connect all the points, its weight is bounded 

from below by the weight of a minimum spanning tree. The 

weight is a good measure of the cost of building the network; 

thus, it is often desirable to have networks with small weight. 

Let us give some definition of Spanner: 

Definition 1.1 (Spanner): Let S be a set of n points in and let be 

a real number. A t-spanner for S is an undirected graph G with vertex set 

S, such that for any two points u and v of S, there is a path in G between 

u and v, whose length is less than or equal to t|uv|. Any path satisfying 

condition is called a t-spanner path between u and v. 

d\ 1t ≥
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If G is a t-spanner for the point set S, then obviously, G is also a t’-

spanner for any real number t’ with t’>t. This leads to the following 

definition: 

Definition 1.2 (Stretch factor): Let S is a set of n points in and let G 

be a Euclidean graph with vertex set S. The stretch factor of G is the 

smallest real number t such that G is a t-spanner of S.  

d\

We will denote the stretch factor by t. Let | is the Euclidean length 

of a shortest path between u and v in a geometric network G, |uv| is the 

Euclidean distance between u and v. Note that 

|Guv

max : , ,G
uv

t u v S
uv

u v
⎧ ⎫⎪ ⎪= ∈ ≠⎨ ⎬
⎪ ⎪⎩ ⎭

 

5. The ⊖-graph 
In this section we define θ -graph in two – dimension and higher – 

dimension. After, we present some important properties of it. We use the 

½ graphθ − with six cones in the plane and eight cones in 3D to find 

some properties, after we want to find properties for graphθ − in 3D 

with eight cones. 

The θ -graph has a rich history in the computational geometry.  Yao [4] 

used this construction to compute the minimum spanning tree 

connecting n points in the d-dimensional space under the L1, L2 and 

metricL∞
1. Using this graph Clarkson [13] solved the following motion 

planning problem in two and three – dimensions.  

The notion of θ -graph were introduced by Keil [16]. Keil [16] and Keil 

and Gutwin [17] studied graphs approximating the complete Euclidean 

graph in the two dimensional space and they proved a trade off between 

                                                 
1 For any real 1 the Lp distance of two points in is defined as (s, t) : = p≤ ≤ ∞ d\

1/

1

p
p

i i
i d

s t
≤ ≤

⎛ ⎞
⎟−⎜

⎝ ⎠
∑ , where si and ti denote the ith coordinate of s and t, respectively 
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the number of cones and the stretch factor of the θ -graph. Ruppert and 

Seidel [22] improved this trade off using some stronger definition of the 

θ -graph and they generalized it for higher dimensions.  

Let θ and k be constants, with 2 /k π θ= . We restrict k to be an integer, 

such that θ divides 2π . A graphθ − G is a directed graph defined by a 

point set V. Each vertex has up to k outgoing edges connected to the 

closet vertex in k different cones. The ith cone associated to a vertex u in 

a graphθ − is the subspace containing all the points with absolute angle 

for u between iθ included and ( 1)i θ+ excluded. As there are 

2 /π θ= cones for each vertex, the k cones cover the plane. k

 
Figure 3: Plane subdivision using 8 cones, as used in graphsθ −  

Figure 3 show cones associated with one vertex. In each cone i of the 

vertex u, an outgoing edge is connected to the closet vertex, denoted by 

ui, if such a vertex exists.  

graphθ − have at most kn edges, at most k outgoing edges per vertex 

and at most n – 1 ingoing edges. The diameter of the graph is ( )nθ for 

instance when the vertices of the graph are placed on a line (here 

θ indicates an asymptotically tight bound, and not the parameter of the 

graph). 
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Figure 4: θ - Graph in the plane 

5.1 The two – dimension θ -graph 
In this subsection we present the definition of the θ -graph in 2D done 

by G. Narasimhan and M. Smid [20] and give some basic properties of 

this spanner. Then we introduce the Walkθ  algorithm to find the 

compass routing from source to the destination.  

A cone is the region in the plane between two rays that emanate from the 

same point, called the apex of the cone. 

Let S be a set of n points in , be an integer and 2\ 2k ≥ 2 / kθ π= an 

angle. If we rotate the positive x – axis by angles ,0i i kθ ≤ < , then we 

get k rays. Each pair of successive rays defines a cone whose apex is at 

the origin. We denote the collection of these k cones by Ck. It is clear 

that the cones of Ck partition the plane. Also, the two bounding rays of 

any cone of Ck make an angleθ . 

For each cone , let be a fixed ray that emanates from the origin 

and that is contained in C. The ray can be chosen arbitrarily; as a 

concrete example, we can choose it to be the bisector of C. In other 

words, for the set of direction in cone C, lC is a representative direction. 

kC C∈ Cl

Cl

Let C be any cone of Ck and let p be any point in the plane. We 

defined ; that is, Cp is the cone obtained by 

translating C such that its apex is at p. Similarly, we define, 

: : { :pC C p x p x C= + = + ∈ }

p, :C p Cl l= + . 

17 



Hence, is the ray that emanates from p, that is contained in the 

translated cone Cp and that is parallel to lC.  

,C pl

Definition 2.1 (θ  -graph) [20]: Let  be an integer, let2k ≥ 2 / kθ π= , 

and let S be a set of points in the plane. The undirected graph ( , )S kθ is 

defined as follows: 

a. The vertices of ( , )S kθ are the points of S. 

b. For each point p of S and for each cone C of Ck , such that the 

translated cone Cp contains one or more points of S \ {p}, the graph 

( , )S kθ contains one edge {p, r}, where r is a point in \{ }, 

whose orthogonal projection onto lC,p is closet to p. 

pC S p∩

 
Figure 5: The graph ( , )S kθ contains an edge between p and r for k = 6 

Remark: If we take for r a point in that is closet to p, in the 

Euclidean metric, then we obtain a graph that is called the geometric 

neighborhood graph. It can be shown that this graph has properties 

similar to that of a 

\{ }pC S p∩

θ -graph and is a sparse t-spanner, for some real 

number t that depends on the angleθ . 

5.1.1 Spanner property 

Keil [11] proved that the θ -graph for a given set of points is a spanner if 

0
4
πθ< < and he established an upper bound on the stretch factor of the 

obtained graph in dependence on the value ofθ . G. Narasimhan and M. 
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Smid [20] proved the spanner property of the θ -graph for  an upper 

bound on the length of the path is at most a constant factor times the 

Euclidean distance, where the constant depends on k. In this subsection 

we present an obvious algorithm that constructs a path in 

9k ≥

( , )S kθ between two points’ u and v of S. 

θ -Walk Algorithm 

Goal: Give source u and destination v; find a path from u to v. 

Idea: Let S be a set of points in the plane. Assume that we have an 

undirected graph G with the property that for an two distinct points u 

and v in S, G contains an edge (u, r) such that 

a. the vector ur
→

points “in the general direction” of v, and 

b. Following this edge from u to r does not take us “too far” beyond 

v. 

Then, we can (attempt to) construct a path in G between u and v as 

follows: Start at u0 := u. Let i ≥ 0, and assume we have already 

constructed a path u0, u1,…,ui. If ui = v, then we have reached our 

destination. Otherwise, if iu v≠ , but (ui, v) is an edge of G, then we 

follow this edge, and arrive at our destination. Assume that iu v≠ , and 

(ui, v) is not an edge of G. Let ui+1 be a point of S such that (ui, ui+1) is an 

edge of G that satisfies a. and b. above. That is, (ui, ui+1) takes us in the 

general direction of v, but not too far beyond v. Then ui+1 are the next 

point on our path.  

A formal description of this algorithm is given below. 

Algorithm θ -WALK (u, v) 

Comment: This algorithm take as input two points u and v in S, and 

returns a path in θ (S, k) between u and v. 
u0 := u; 

i := 0 

while ui  v ≠
do  

19 



C := cone of Ck such that v ∈ iuC ; 

ui+1 := point of S\{ui} such that {ui, ui+1} 

is an edge of 

iuC ∩

θ (S, k); 
 i := i + 1; 

endwhile; 

return the path u0, u1,…,ui 

 
Figure 6: Path in 2D 

Below, we prove an upper bound on the length of the path constructed 

by this algorithm. 

Theorem 2.2: [20] Let  be an integer; let9k ≥ 2 / kθ π= , and let S be a 

set of points in the plane. The graph ( ,S k)θ is a t – spanner for S, 

for t 1/ (cos sin )θ θ= − . It contains at most kn edges. 

The proof of this Theorem is based on the following lemma 2.3. 

Lemma 2.3: [20] Let be an integer, let 8k ≥ 2 / kθ π= , let u and v be 

two distinct points in the plane, and let C be the cone of Ck such that 

. Let r be a point in Cu such that the orthogonal projection of r 

onto the ray lC,u is at least as close to u as the orthogonal projection of v 

onto lC,u. Then, 

uv C∈

a. / cosur uv θ≤ ,and 

b. (cos sin )rv uv urθ θ≤ − −  

These proves are presented in [20].  

20 



5.1.2 The spanner property ½ θ -graph with six 

cones in the plane 

In this subsection we give a formal definition of ½ θ - graph [12] and 

present the “Meeting - walk” algorithm. After that, we prove which ½ 

θ -graph with six cones has a property spanner and its stretch factor is 2 

– spanners and it is a spanner of TD – Delaunay graph [6]. 

Let , and define2k ≥ 2 / kθ π= , let Ck be the collection of these k cones. 

It is clear that Ck partition the plane into k cones. Recall that (i) each 

cone in Ck has its apex at the origin, (ii) the angular diameter of each 

cone in Ck is at mostθ , (iii) between two adjacent cones (sectors), 

choose 1 cone, this cone is know as a positive cone; For each positive 

cone define each color.  

As in definition of θ -graph, for each cone kC C∈ , a ray lC that 

emanates from the origin and that is contained in C. For any point p in 

the plane, we define and lC,p:=lC + p. : { :C C p x p x= + = + ∈ }Cp

Definition 2.4 (½θ -graph): Let be an integer, let6k ≥ 2 / kθ π= , and 

let S be a set of points in the plane.  The ½ θ -graph θ (S, k) is defined 

as follows: 

a. The vertices of ½ θ (S, k) are the points of S in positive cones.  

b. For each positive cone give each color.  

c. For each point p of S and for each cone C of Ck, such that the 

translated cone Cp contains one or more points of S\{p}, the graph ½ 

θ (S, k) contains one edge {p, r}, where r is a point in 

\{ }whose orthogonal projection onto lC,p is closet to p. pC S p∩

For example:  For k = 6 in graphθ − , we have 6 cones with 6 directions: 

North_East, North, North_West, South_West, South_East, South. In ½ 

graphθ − we have 3 cones with 3 directions: North (color1), 

South_West (color2), South_East (color3). 
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Figure 7: ½ graphθ − with six cones 

 
Figure 8: ½ graphθ −  with six cones in the plane 
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Figure 9: ½ graphθ −  with eight cones in 3D 
“Meeting Walk” algorithm 

Goal:  Give source u and destination v; find a path from u to v and a 

path from v to u. 

Idea: Let S be a set of points in the plane. Assume that we have an 

undirected graph G with the property that for a two distinct points u and 

v in S, G contains an edge (u, v) such that 

a. The vector ur points “in the positive cone” of v, and 
JJG

b. Following this edge from u to r does not take us “too far” beyond 

v. 

Then, we can (attempt to) construct a path in G between u and v as 

follows: Start at u0 = u, v0 = v. Let , and assume we have already 

constructed paths u0, u1… ui; v0, v1… vj. If ui = vj, then we have reached 

our destination. Otherwise, if u

, 0i j ≥

i jv≠ but (ui, vj) is an edge in positive 

cone of G, then we follow this edge, and arrive at our destination. 

Assume that iu v j≠  and (ui, vj) is not an edge in positive cone of G.  

If ui is in a “positive” cone of vj, let vj+1 is a point of S such that (vj, vj+1) 

is the edge in the positive cone of vj containing ui. Then vj+1 is the next 

point on our path. 

Else if vj is in a “positive” cone of ui, let ui+1 be a point of S such that (ui, 

ui+1) takes us go to the direction of v, but not too far beyond v. Then ui+1 

is the next point on our path.  

A formal description of this algorithm is given below. 

Algorithm Meeting Walk (u, v) 

Comment: This algorithm take as input two points u and v in S, and 

returns a path in ½ ( , )S kθ between u and v. 

u0 = u; 

v0 = v; 

i := 0; 

j := 0; 

23 



while  i ju v≠

do  

if (ui is in a “positive” cone of vj) 

C := cone of Ck such that this is a positive 

cone and  
ji vu C∈

Vj+1 := point of such that (vj, vj+1) 

is an edge in the positive cone of ½ 

\{ }
jvC S v∩ j

( , )S kθ ; 

j := j + 1; 

else 

C := cone of Ck such that this is a positive 

cone and  
ij uv C∈

ui+1 := point of such that (ui, ui+1) 

is an edge in the positive cone of ½ 

\{ }
iuC S u∩ i

( , )S kθ ; 

i := i + 1;  

endwhile; 

return the path u = u0, u1, …, ui; v = v0, v1,…,vj 

Theorem 2.5: Let let 2 / 6θ π= . For any two points u and v of S, 

algorithm Meeting Walk (u, v) constructs a t-spanner path in Meeting 

Walk (S, 6) between u and v, for t = 2. 

The proof this Theorem is based on the following lemma 2.6. 

Lemma 2.6: The meeting path is the union of 2 mono-colored oriented 

path that stays in the triangle u, v 

Proof (Lemma 2.6): 
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Figure 10: Two oriented p s in the triangle u, v 

Let
ath stay

2 / 6θ π= , let S be a set of points in the plane, let ,u v S∈ , let G (S, 6) 

is the graph of ½ graphθ − . By the definition of ½ graphθ − , we have 3 

positive cones such as: North, South_West, South_East, for each cone 

we have different colors: color1-blue (the oriented path go from u to v), 

color2-green (the oriented path go from v to the lef  of u), color3-orange 

(the oriented path go from v to the right of u). See figure 10. 

 

 

t
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Figure 11: ½ θ -graph has stretch factors 2-spanners 

In this proof, we use the notation of algorithm Meeting-Walk. Consider 

the two partial paths u = u0, u1, u2… and v = v0, v1, v2… that are 

constructed by the algorithm. The proof of the lemma is by induction on 

the number of levels. To prove the base case, assume that Meeting –

Walk consists of only one level. In the first level, a path u = u0, u1, u2… 

er terminal if and only if the last point on this 

C be the positive cone of u such that v 

is constructed. This inn

path is equal to v. Let 0i ≥ and consider the point’s ui and ui+1. Then ui ≠ 

v. Let ∈  Cui. We have the triangle 

) has u is the apex,  is above u. It fo rom the algorithm and 

the definition of the graph 

(u, v  v llows f

θ (S, 6) that: (i) , ui+1) is an edge of this 

graph, (ii) ui+

(ui

1∈Cui. As a result, this inner while – loop terminates. Let j 

v

u
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be the number of iterations made. Then the algorithm has constructed a 

path u = u0, u1, u2…uj = v.  

The second case is when ui+1 remains at the right of v, the triangle (ui+1, 

v) is empty because by the definition of θ -graph we do not have two 

paths stays in one cone.   

Consider again the first iteration of the inner while-loop a path v = v0, v1, 

v2… is constructed. This inner terminal if and only if the last point on 

this path is equal to ui+1. Let 0j ≥ and consider the points vj and vj+1. 

Then vj ≠ ui+1. Let C be the positive cone of v such that ui+1 ∈  Cvj. It 

follows from the algorithm inition of the graph  and the def θ  (S, 6) that: 

(i) (vj, vj+1) is an edge of this graph, (ii) vj+1∈Cvj er 

while – loop terminates when 

e have shown that in the triangle the meeting path is union 2 mono-

. As a result, this inn

vj+1 and ui+1 are meeting.  See figure 11. 

W

colored oriented direction path.   

■ 

Proof (Theorem 2.5):  

Now we prove the stretch factor of this graph is 2 – spanners. See figure 

12. 
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Figure 12: Path from u to v 

 
Let P (u, v) is the path between u and v. Let C be any cone of Ck, let 

Cl be a fixed ray that emanates from the each vertex and that is contained 

in C. Consider the two partial paths u=u , u , u … and v=v , v , v … that 

the Meeting algorithm

stay the

=

0 1 2 0 1 2

are constructed by the algorithm Meeting walk. From the Lemma 2.4, 

 is the path union of 2 mono-colored oriented path 

s in  triangle u, v.  

Let l  = '| u u  1 0 0 , | 2l  'u v  

' ''

0

, let  be the projection of ui+1 onto , let 0i∀ ≥ 1iu + 1l 1iu +  be the projection 
 onto

Applying the triangle inequality, we get:  
of ui+1 2l  

' ' '' ''
1 1 1 1i i i i i iu u u u u u+ + + +≤ +  

The path between u and v has length at most: 
1 1i i

P u
− −

' ' '' ''
1 1 1( , ) i i i i

i i
v u u u u

0 0
+ + +

= =

≤ +∑ ∑  

We have: 

( , )P u v l l1 2≤ +  
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We have: 

2 2
1 2 1 2uv l l l l= + −  

      1 2

2
uv l l+

≤  

      ( , ) 2 | |P u v uv≤  
We have shown that the graph ½ θ (S, k) is a t-spann  2. 

■ 
er of S for t =

5.2 The higher – dimension θ - graph [20] 

Now we examine the d-dimensional θ -graph, where 3d ≥ an integer is 

constant. We introduce the notion of cones. A (simplicial) cone is the 

intersection of d half-spaces in d\ . The hyper-planes that bound these 

half-spaces are assumed to be in general position, in the s  ense that their

a poin

anating 

intersection is t, called the apex of the cone. In the plane, a cone 

having its apex at the point p is wedge bounded by two rays em

from p that make an angle at most equal to π . 

Let C be any cone in its apex at the point p. The angular 

diameter of C is defined as the maximum angle between any two vectors 

d\ having 

pq and
JJG

pr , where q and r range over all points ofC R∩ .  

For a point dp \ and  = {v1, v2,…,vk} of poin

JJG
d

∈ a set V ts in , we define 

e set 

V). Thus cone (V)  

 d\

the cone with apex p that is generated by V to be th

1
( , ) : : 0, 1, 2,...,

k
j

j j
j

cone p V p v j kλ λ
=

⎧ ⎫
= + ≥ ∀ =⎨ ⎬
⎩ ⎭

∑  

If p = 0, that is, p is the origin, then we write cone (V) instead of cone (0, 

 is the set of all points obtained by linear combinations

with nonnegative coefficients of points in V, and cone (p, V) is cone (V) 

translated to point p. 

Let θ be a real number, such that 0 θ π< < . A θ -frame is a collection C 

of cones, having the following properties: 

a. Each cone in C has its apex at the origin.  
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b. The cones in C cover d\ ; that is, d
C C C∈ =∪ \  

c. The angular diameter of each cone in C is at most θ  

d. Each cone in C is a simplicial cone. 

We call such a collection C of simplicial cones a θ -frame. We use the 

θ -frame definition suggested by G. Narasimh id [20].  

Let 

an and M. Sm

 be a real number such that 0 θ π< <θ , let 
1

( 1)! 2 ! 2( 1) / (1 cos )
d

dk k k d d dθ

−
θ⎡ ⎤− = − −⎢ ⎥  be the = = , and let Ck θ -

frame  Recall that (i) each cone in Ck has its apex at the origin, (ii) the 

angular diameter of each cone in Ck is at mos

[20].

tθ , (iii) each cone

 half-spaces, (iv) the 

Ck is k O=

 in C  

a sim licial cone; that is, it is the intersec  d

cones in Ck cover , and (v) the number of cones in 

For each cone , let lC be fixed rays that emanates from

and that is c .  

 be any point in the plane. We 

ilarly, we define p

k is

1)d−

p tion of
d\ (1/θ . 

kC C∈  the origin 

ontained in C. The ray lC can be chosen arbitrarily

Let C be any cone of Ck and let p

define : : { : }pC C p x p x C= + = + ∈ ; that is, Cp is the cone obtained by 

translating C such that its apex is at p. Sim , :C p Cl l= + . 

Definition 2.6 (θ -graph in 3\ ): Let S be a s of n point in 3\ . The 3-

dimension

et 

al θ -graph ( , )S kθ is defined as follows: 

a. The vertices of θ (S, k) are the points of S. 

b. For each point p of S and for each  of Ck, such tha cone C t the 

graph 

translated cone Cp contains one or more points of S \ {p}, the 

θ (S, k) {p, r}, where r is a point in 

whose orthogonal projection onto is closet to p. 

ized as fo

 contains one edge 

\{ }C S p∩ ,C plp

This section is organ llows. In subsection 5.2.1 we take a closer 

look at proof of the spanner property of the d-dimensional θ -graph

done by G. Narasimhan and M. Smid and we show why it actually 

imensio

the property of ½ 

, 
[20] 

works also in d-d nal. After this, in Subsection 5.2.2 we present 

θ -graph with eight cones in 3D, we show that the 
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graph is not a t-spanner. We give some spanner properties for theθ -

graph with eight cones. 

 
Figure 13: The graph ofθ -graph with eight cones in 3D 

 Spanner property 5.2.1

We give our proof for the d-dimensional version of Lemma 2.7 which is 

base of the proof of the spanner property. 
[20]Theorem 2.7 : Let S be a set of n points in\ , let d θ be a real number 

such that 0 / 4θ π< , and let dk k<
θ

= . 

a. The graph ( , )S kθ is a t – spanner for S, for 1/ (cos sin )t θ θ= −  

b. The graph ( , )S kθ contains at most edges. 

c. The graph 

1( / )dkn O n θ −=

( , )S kθ ca  be n constructed  

space. 

Lemma 2.8 : Let 

in
1 1(( / ) logd dO n θ − − )n time, using 1 2/ logd dnθ − −+( )O n n

This proof is presented in [20]. 
[20] 0 θ π< ≤  and C be a frameθ − . Let p and q be any 

two distinct poi et C be the uch thants in d\ , and l  cone of C s t pq C∈ . Let 

,C pl ir be any point in such that the projection of r onto the ray s d
pC\ ∩
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at least as close to p as the projection of q onto . Then ,C pl

(cos sin )rq pq prθ θ≤ − −  

Proof 

 
Figure 14: The two cases in the proof of Lemma 2.7 

We distinguish two cases depending on whether pr pq≤ pr pq>  or 

Case 1: pr pq≤ . For this case we can simply repeat the proof of case 1 

 by applying the 

 the line 

f r to the 

one axis lC and let r’ be the point on the 2 – dimension plane containing 

the triangle pqr’’such that |pr’|=|pr| and |r’’r’|=|r’’r|. Then we obtain the 

inequalities: 

of Lemma 2.3 , i.e., we immediately obtain the claim

triangle inequality to the triangle rr’q, where r’ is the point on

segment pq such that |pr| = |pr’| 

Case 2: |pr| > |pq|. Let r’’be the perpendicular projection o

c

'' '' ,rq rr r q≤ +                (1) 

'' ' '' 'r q pr r r pq+ ≤ +  (2) 

Inequalities (1) and (2) together with |rr’’| = |r’’r’|; '' sinrr prθ≤  

' cospr pθ≤ r . Imply that: 

'' '' ' 'rq rr r r pq pr≤ + + −  

(cos sin )pq prθ θ≤ − −  
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■ 

5.2.2 The spanner property for ½ θ -graph with eight 

cones 

In this subsection we give properties of ½ θ -graph and θ -graph in 3D 

with the starting point: eight points. First we examine the ½ θ -graph 

for S. We prove the spanner property of this graph is not a -spanner, the 

½

t

θ -graph in 3D is not work. After this w  examine we ithθ -graph, we 

used the “ Walkθ − ”algorithm and “Mee g Wa  to find 

properties for the

tin lk” algorithm

θ -graph in 3D.  

Let us define positions and colors for 8 points in the space.  

Yellow: (+, +, +) is the cone defined by v1 = (vx, vy, vz);  

Red: (-, -, +) is the cone defined by v2 = (-vx, -vy, vz);  

Green: (+, -, -) is the cone defined by v3 = (vx, -vy, -vz);  

Blue: (-, +, -) is the cone defined by v4 = (-vx, vy,-vz);  

Pink: (-, -, -) is 

vx, vy, vz);  

reen: (+, -, +) is the cone defined by v8 = (vx, -vy, vz);  

 

the cone defined by v5 = (-vx, -vy, -vz);  

Black – white: (+, +, -) is the cone defined by v6 = (vx, vy, -vz);  

Orange: (-, +, +) is the cone defined by v7 = (-

Blue – g

 
Figure 15: θ -graph with 8 cones in the space 

For the ½ θ -graph we have four cones with four positions and colors:  

Yellow: (+, +, +) is the cone defined by v1 = (vx, vy, vz);  
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Red: (-, -, +) is the cone defined by v2 = (-vx, -vy, vz);  

Green: (+, -, -) is the cone defined by v3 = (vx, -vy, -vz);  

Blue: (-, +, -) is the cone defined by v4 = (-vx, vy,-vz);  

 

 
Figure 16: ½ θ -graph with 8 cones in the space 

Theorem 2.9: Let 8k = , let 2 / kθ π= , for any t, there exists a set S such 

that the ½ θ -graph of S is not a t – spanner.  

Proof: 

We present a construction (see Figure 17) for n points in the plane, 

such that the ½ θ -graph of these points is not a t-spanner for any 

constant t. 
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Figure 17: Counter example of ½ θ -graph with eight cones in 3D 

{v

 u0 and v0 sta

Consider the vertex sets U = {u0, u1 u2… um} and V = 1, v2… vm},  

Let u0 = (0, 0, 0) we construct u1 stay in positive cone of y 

in negative cone of u0. By the definition of ½ θ -graph we have the path 

go from u0 to o not have path go to v0. W inue to construct 

the path from u1, w

 u1 and d e cont

e have an edge (u1, u2). At vertex um we have vm stay 

in positive cone of um, we have an edge (um, vm). From vm we construct 

the vertex vm-1 stay in positive cone of vm, we continue until we reached 

v0.  

We have to shown that in the ½ θ -graph the only edges are only 

between vertices (ui, ui+1) and (vi, v  (um, vm). There is only one path 

in the 
i+1),

θ -graph. In this construction we can continue to add vertex u and 

v to infinite.  The length stretch factor of this θ -graph cannot be 

bounded by a constant. We have to shown that for ½ θ (S, k) with eight 

cones is not a t-spanner.  

■ 
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5.2.3 The spanner property for θ -graph with eight 

cones 

In this subsection we present properties of graphθ − with eight cones 

in 3\ . We used two algorithms: Walkθ − and Meeting Walk. To found 

properties we got some questions: 

• What is the worse case for this graph? 

• Does the Walkθ − algorithm work in 3D? 

• What is the stretch t1 of the θ -graph? 

• What is the stretch t2 of Walkθ − path? 

• What is the stretch t3 of Meeting Walk path? 

Theorem 3.0: Let k = 8, let 2 / kθ π= , for any t, there exists a set S such 

that the ⊖-walk algorithm have a stretch greater than t. 

Proof: 

As for ½ θ -graph in 3D, le set of points in 3\ , let u, v, w S . 

Let u (0, 0, 0) and v (xv, yv, zv). ctor ith, define the ghbor

t S be a 

 For a se

∈

neiθ − w 

in the same cone of u and v, such that the distance of  |uv| is same length

. By the definition of graphθ − we always have with |uw| or uw uv≤

path from u to w.  

 
Figure 18: The worst case of θ -graph with eight cones 
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We construct this model like the spiral such that all vertices turn around 

the target.  

For the first round, from the neighbor w, in a sector ith add the vertex has 

a coordinate stay in the same space of w, u; make it as long as possible. 

By the definition of θ  - walk we have a path go from w to this neighbor 

and do not have the path go to u. We continue to construct vertices make 

these vertices turn around our source.  

For a second round, we create an upper vertex is closet to the end of 

vertex of the first round. In a second round make the path is going 

through there vertices. We continue this method until it is the same 

space of the target and we reached our target. See figure 18. 

We have to shown that in this construction the stretch of this path is 

greater than t for any t. 

■ 

Property 1: Let k = 8, let 2 / kθ π= , let S be a set of points in . If 

meeting walk algorithm of 

3\

graphθ − with eight cones in

spanner then t ≥7.67 

Proof: 

Let S be a set of points in the plane, let u, v, w, t

 3\ is a t – 

stretch factors. 

∈S. Let u (0, 0, 0) and v 

(xv, yv, zv). For a sector ith, define the neighborθ − w in the same cone of 

u and v, such that the distance of  same length with |uw| 

or

|uv| is

uw uv≤ . By the definition of graphθ − we always have path from u 

to w.  

Continue to construct the path has general direction goes to v. From 

neighbor w, in sector ith
 , i’th of w, add two vertices w1, w9 stay in same 

space of w and u. Make two vertices as far as possible, from the 

definition of graphθ − we have path from w to w1, and w2 and do no

ave path from u.  

t 

h
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From the sector ith and i’th
9 add four vertices w11, w2 8, w10, 

2, w8 is same space a , and w11, w10 are same space with w1, 

w9. 

 of w1, w , w

such that w s t

wContinue to construct these vertices w7, w3, w4, w5 and 6 is same space 

as t. See figure 19. 

 
Figure 19: The graph of ⊖ –graph  

 
Figure 20: The graph of Meeting path with 7.67 stretch factors 

 
■ 
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3\Property 2: Let k = 8, let , let S be a set of points in2 / kθ π= . If the 

graphθ − with eight con anner then t ≥ 3 stretch es in 3\ is a t – sp

factors. 

Proof: Let S be a set of points in the plane, let u, v, w, t∈S  0, 0) 

and v (xv, yv, zv). For a sector ith, define the neig

. Let u (0,

hbor w in the same θ −

cone of u and v, such that the distance of |u  length with |uw| 

or

v| is same

uw uv≤ . By the definition of graph we aθ − lways have path from u 

to w.  Construct vertices like the figure 21. 

For the bounded of ⊖ –graph in this time we found the stretch t ≥ 3. We 

hope it will have more stretch.  

 
Figure 21: The graph of ⊖ –graph with 3 stretch factors 
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Conclusion 
We have studied the two- and higher dimension graphθ −  for a given 

point set. We have introduced the spanner property of the graphθ −  and 

two routing algorithms: ⊖-walk and Meeting walk.  

Then we have considered higher dimension graphθ − . We have shown 

that in the 3-dimension case, the ½ graphθ −  with eight cones there 

exists a set S such that the ½ graphθ − of S is not a t-spanner. After that, 

algorithm of 

we shown that with the ⊖-walk algorithm for any t, there exists a set S 

have a stretch greater than t. For the meeting walk 

graphθ −  with eight cones we found the property of this algorithm is a 

t-spanner then t ≥7.67 stretch factors. And another property for the 

graphθ − with eight cones is a  stretch factors. t – spanner then t ≥ 3

In this time we just found the property of the Meeting algorithm and the 

graphθ − with eighth cones. We want to know more properties of the 

Meeting algorithm, it has an infinite stretch factor, and what is the 

stretch of the graphθ − .  
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