# Confluence, local confluence, cirtical pair lemma, orthogonal systems

Kim Quyen LY

### 26 June 2012 Supervisor: Frédéric BLANQUI

> < = > < = >





### 2 Critical pair lemma



-

・ 同 ト ・ ヨ ト ・ ヨ ト

## Term rewriting system (TRS)

- Let  $\mathcal{X}$  be a set of variables,
- Let  $\mathcal{F}$  be a set of function symbols disjoint from  $\mathcal{X}$ , each symbol  $f \in \mathcal{F}$  being equipped with a fixed arity  $ar(f) \ge 0$ ,
- Let  $\mathcal{R}$  be a set of rewrite rules over the set  $\mathcal{T}(\mathcal{F}, \mathcal{X})$  of first-order terms.

### Definition

A TRS  $\mathcal{R}$  over  $\mathcal{T}(\mathcal{F}, \mathcal{X})$  is a set of pairs  $(I, r) \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \times \mathcal{T}(\mathcal{F}, \mathcal{X})$  for which

- $I \notin \mathcal{V}$  and
- all variables of r occur in l

Pairs (I, r) are called rewrite rules and are usually written as  $I \rightarrow r$ 

くロト く得ト くほト くほト 二日

# Confluence and local confluence

#### Definition

A TRS  $\mathcal{R}$  is called **confluent** if and only if for every two reduction sequences  $t_1 \leftarrow_{\mathcal{R}}^* s \rightarrow_{\mathcal{R}}^* t_2$  and there is a term u such that there are two reduction sequences  $t_1 \rightarrow_{\mathcal{R}}^* u \leftarrow_{\mathcal{R}}^* t_2$ .

#### Definition

A TRS  $\mathcal{R}$  is called locally confluent or weakly confluent if and only if for every two one-step reductions  $t_1 \leftarrow_{\mathcal{R}} s \rightarrow_{\mathcal{R}} t_2$  there is a term u such that there are two reduction sequences  $t_1 \rightarrow_{\mathcal{R}}^* u \leftarrow_{\mathcal{R}}^* t_2$ .

くロト く得ト くヨト くヨト 三日

### Check confluence

- Difficult to check confluence "directly":
  - **1** must check for infinitely many start terms t
  - 2 must check for arbitrarily many steps from each t to  $t_1$  and  $t_2$
- Solutions:
  - Newman's lemma: sufficient to check w.r.t terms  $t_1$  and  $t_2$  that can be reached in one step from start term t.
  - 2 Critical pairs lemma: consider a finite set of start terms t

### Relation between confluence and local confluence

Confluence implies local confluence, but not vice versa.

**Example** 
$$f(x, x) \rightarrow a$$
  
 $f(x, g(x)) \rightarrow b$   
 $c \rightarrow g(c)$   
Term *c* has no normal form, but  $f(c, c)$  has two *a* and *b*

However, confluence may be derived from local confluence if the TRS is also terminating, a result that is known as Newman's lemma.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

### Newman's lemma

Let  $\mathcal{R}$  be a TRS,  $\mathcal{R}$  is called terminating or noetherian if there is no infinite sequence of terms  $t_1, t_2, ...$  such that  $t_i \rightarrow_{\mathcal{R}} t_{i+1}$  for all  $i \ge 1$ 

#### Lemma

If  $\mathcal{R}$  is terminating then it is confluent if and only if it is locally confluent.

Remark: Thus, if termination can be proved, local confluence sufficies for proving confluence.

In practical critical pairs may help in determining whether a TRS is locally confluent.

## Unifier and most general unifier

A term t matches a term s if there exists a substitution  $\sigma$  such that  $t\sigma = s$ .

#### Definition

A unifier of two terms t and s is a substitution  $\sigma$  such that  $t\sigma = s\sigma$ 

- If  $\sigma$  is a unifier of t, s then each instance of  $\sigma$  is also a unifier for the terms.
- $\sigma$  is a most general unifier (mgu) for t, s if there is a  $\theta$  such that  $\rho = \theta \circ \sigma$  ( $\rho$  is an instance or extension of  $\sigma$ )

### Critical pair

Problem: If  $t_1 \leftarrow_{\mathcal{R}} s \rightarrow_{\mathcal{R}} t_2$  does there exists a term u such that  $t_1 \rightarrow_{\mathcal{R}}^* u \leftarrow_{\mathcal{R}}^* t_2$ ?

Answer:

- If the two rewrite steps happen in different subtress (disjont redexes): YES
- If the two rewrite steps happen below each other (overlap at or below a variable position) : YES
- If the left-hand sides of the two rules overlap at a non-variable position: needed further investigation

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 同

# Critical pair(Cont.)

### Definition

- Let  $l_i \rightarrow r_i (i = 1, 2)$  be two rewrite rules in a TRS  $\mathcal{R}$  whose variables have been renamed such that:  $var(\{l_1, r_1\}) \cap var(\{l_2, r_2\}) = \emptyset$
- Let p ∈ Pos(l<sub>1</sub>) be a position such that l<sub>1</sub>|<sub>p</sub> is not a variable and σ is an mgu of l<sub>1</sub>|<sub>p</sub> and l<sub>2</sub>.
- Then  $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_p$ ,  $< r_1 \sigma, (l_1 \sigma [r_2 \sigma]_p) >$  is called a critical pair of  $\mathcal{R}$
- If  $l_1 \rightarrow r_1$  and  $l_2 \rightarrow r_2$  are different rewrite rules such that  $l_1\sigma = l_2\sigma$  for some subtitution  $\sigma$ , then the critical pair  $< r_1\sigma, r_2\sigma >$  is called an overlay.

くロト く得ト くヨト くヨト 三日

# Critical pairs lemma

### Definition

A critical pair < s, t > is called joinable if there exist a term u such that  $s \rightarrow^*_{\mathcal{R}} u \leftarrow^*_{\mathcal{R}} t$ 

#### Lemma

A TRS is locally confluent if and only if its critical pairs are joinable.

This proof can be easily be checked by going though all posible types of overlap.

Remark: The critical pair lemma states that a TRS is locally confluent iff it has no critical pairs.

### Orthogonal systems

A TRS for which all critical pairs are overlays is called an overlay system.

A term is linear if every variable occurs at most once in the term.

A TRS for which the left-hand side of every rule is a linear term, is called a left-linear TRS.

A TRS without critical pairs, is called a non-overlapping TRS.

A left-linear and non-overlapping TRS is called an orthogonal TRS.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Confluence of orthogonal systems

#### Theorem

Every orthogonal system is confluent.

 $\begin{array}{l} \mathsf{Remark:} \rightarrow_{\mathcal{R}} \subseteq \not\rightarrow_{\mathcal{R}} \subseteq \rightarrow_{\mathcal{R}}^{*} \mathsf{ hence, } \not\rightarrow_{\mathcal{R}}^{*} = \rightarrow_{\mathcal{R}}^{*} \end{array}$ 

Parallel reduction relation is a sufficient condition for the confluent of TRS  $\ensuremath{\mathcal{R}}.$ 

We need to consider parallel rewriting because if  $s \to t_1$  and  $s \to t_2$  at position that are not disjoint then a subterm of s may appear many times in  $t_1$  or  $t_2$  and all of these occurrences may have to be rewritten in parallel to obtain a u to which both  $t_1$  and  $t_2$  rewrite in one (parallel) step.

くロト く得り くほり くほう 二日

### Top relation

### Definition

For a TRS  $\mathcal{R}$  the top relation  $\rightarrow_{\mathcal{R}}^{\epsilon}$  on  $\mathcal{T}(\mathcal{F}, \mathcal{X})$  is defined by  $t \rightarrow_{\mathcal{R}}^{\epsilon} u$  iff there is an rewrite rule  $l \rightarrow r \in \mathcal{R}$  and a subtitution  $\sigma : \mathcal{X} \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{X})$ such that  $t = l\sigma$  and  $u = r\sigma$ 

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 同

# Parallel reduction relation

Parallel rewriting is rewriting at one or more disjoint redexes at the same time.

### Definition

Let  $\mathcal{R}$  be a TRS, the parallel reduction relation included by  $\mathcal{R}$  is the smallest relation  $\nrightarrow_{\mathcal{R}}$  such that

- $t \in \mathcal{X} \cup \mathcal{C}$  then  $t \nrightarrow_{\mathcal{R}} t$
- $t_1 \not\rightarrow_{\mathcal{R}} u_1 ... t_n \not\rightarrow_{\mathcal{R}} u_n$  then  $ft_1 ... t_n \not\rightarrow_{\mathcal{R}} fu_1 ... u_n$
- $t \not\rightarrow^{\epsilon}_{\mathcal{R}} u$  then  $t \not\rightarrow_{\mathcal{R}} u$

- ・ 同 ト ・ ヨ ト ・ ヨ

## Parallel reduction of a substitution

#### Definition

Let  $\sigma$  and  $\theta$  be subtitutions and  $\mathcal{X}$  be a set of variable symbols. We write:  $\sigma \nleftrightarrow \theta$  if  $\sigma(x) \nleftrightarrow \theta(x)$  for all  $x \in \mathcal{X}$ 

#### Lemma

Let  $\sigma$  and  $\theta$  be subtitutions and t be a term. If  $\sigma \not\rightarrow \theta$  and  $\mathcal{V}ar(t) \subseteq \mathcal{X}$ then  $t\sigma \not\rightarrow t\theta$ 

イロト イポト イヨト イヨト 三日

### Thank you for your attention!!!