
Automated verification of termination certificates

Kim Quyen LY

University Joseph Fourier

17 November 2011
Supervisor: Frédéric BLANQUI



Outline

Introduction

Certification Problem Format (CPF)

Definition and proof of the certificate verifier

Conclusions

Work plan for 2012



Motivation

I Termination is an important and difficult problem.

I In general this problem is undecidable.

I Many methods and criteria have been developed, and they are
being used in various programs (termination provers)

I These programs are more and more complex, and their result
difficult to check by hand.

I Every year in the termination competition, some tools are
disqualified because of mistakes found in their proofs.

I For these tools to be used in the certification of critical
systems and proof assistants, their results must be certified.

⇒ How to certify termination proofs generated by termination
provers?



Example of criterion: polynomial interpretations

I for each function symbol f of arity n, we assume given an
integer polynomial Pf with n variables

I a term t can then be interpreted by an integer polynomial Pt

by recursively composing the polynomials interpreting the
function symbols occurring in the term t

I then a program defined by a set R of rules terminates if:
I each Pf is monotone in each variable

I for every rule l → r ∈ R,Pl > Pr on N

certificate: polynomials Pf

such a certificate is correct if the above conditions are satisfied



Goal

develop a safe, efficient and modular termination certificate verifier

our solution:

I write a verifier in Coq

I prove its correctness using the CoLoR library

I extract it to OCaml



XML

termination certificates are given as XML files

<root>

<child1 attribute1="value1">

<subchild> .... </subchild>

</child1>

<child2>

<subchild> .... </subchild>

</child2>

</root>

abstractly, an XML file is a tree whose nodes are tagged and may
have attributes (leaves are strings)



XML Schema (XSD)

an XSD file describes a class of XML files by defining the possible
tags and attributes, and how tagged elements can be composed

XSD type = set of XML elements

It is itself defined as an XML file! with the following tags:

I <sequence>XSD_type1 XSD_type2 ...</sequence>:
product type

I <choice>XSD_type1 XSD_type2 ...</choice>: union
type

I <group name ="<name>">XSD_type</group>: names a
type

I <element name="<tag>">XSD_type</element>:
declares a tag, its attributes and its possible sons

remark: XSD definitions need not be ordered and can be forward
or backward referenced



XSD example (part 1/2)

<xs:group name="symbol">

<xs:annotation>

<xs:documentation>is used as a function symbol in terms, orderings, ....</xs:documentation>

</xs:annotation>

<xs:choice>

<xs:element ref="name"/>

<xs:element name="sharp">

<xs:complexType>

<xs:sequence>

<xs:group ref="symbol"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="labeledSymbol">

<xs:complexType>

<xs:sequence>

<xs:group ref="symbol"/>

<xs:group ref="label"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:group>



CPF

the CPF format is regularly modified and extended with new
features, it is useful to have a tool that can automatically generate
in OCaml and Coq:

I data structures

I parsers

I pretty-printers

for that format



XSD example (part 2/2)

OCaml type corresponding to previous XSD definition:

type label =

| Label_numberLabel of nonNegativeInteger list

| Label_symbolLabel of symbol list

and symbol =

| Symbol_name of name

| Symbol_sharp of symbol

| Symbol_labeledSymbol of symbol * label

problem in Coq: detect mutually inductive types



Dependence relation

type expressions: T = C |T ⇒ T
type definition for a type constant C : a type for each constructor

C def-depends on D, written C  D, if:
C has a constructor in the type of which D occurs

let ≥ (') be the transitive (reflexive and symmetric) closure of  

I two types C and D depend on each other if C ' D

I a type C can be defined before D if C < D

the transitive closure and then the computation and the ordering
of equivalence classes can be done using computations on boolean
matrices



General picture

I define a boolean function:

Fixpoint check : cpf -> bool := ...

I prove that it is correct:

Lemma check_ok : forall c, check c = true -> WF (red c)

where (red c) is the rewrite relation defined in c

for returning useful information in case of failure, instead of bool
we use:

Inductive result (A : Type) : Type :=

| Ok : A -> result A

| Ko : error -> result A.



Translation of CPF types to CoLoR types

problem: CoLoR terms are defined wrt some arity function

Record Signature : Type := mkSignature {

symbol :> Type;

arity : symbol -> nat;

beq_symb : symbol -> symbol -> bool;

beq_symb_ok : forall x y, beq_symb x y = true <-> x = y

}.

Inductive term : Type :=

| Var : variable -> term

| Fun : forall f : Sig, vector term (arity f) -> term.

I the arity can be computed by examining rules

I the translation of terms may fail



Remarks

I check requires many auxiliary functions for testing equality on
CPF types (symbols, terms, etc.)

I the induction principles automatically generated by Coq for
some types is too weak and needs to be redefined

this is currently done by hand ⇒ generate this automatically?



Problem with CoLoR

problem: CoLoR uses modules and functors

they need to be instantiated

I modules cannot be defined inside sections

I certificates are recursive

modules need to be first-class object

solution: change CoLoR to use records instead.



What did I do?

I generator of Coq type definitions from XSD

I generator of OCaml type definitions and parsing functions
from XSD

I replaced modules by records in some CoLoR files

I translation of CPF types into CoLoR types

I definition of a certificate verifier for polynomial interpretations

I correctness proof almost finished for polynomial
interpretations



Some figures

cpf.xsd: 1400 lines of XML

ml of xsd.ml: 400 lines of OCaml
cpf.ml: 1200 lines of generated OCaml

coq of xsd.ml: 200 lines of OCaml
cpf.v: 250 lines of generated Coq

rainbow.v: 1200 lines of Coq
modified CoLoR files: 650 lines of Coq



What did I learn?

I XML and XML Schema

I OCaml

I more on Coq

remark: the use of dependent types in CoLoR makes definitions
and proofs more difficult



Work plan for 2012

I November 2011: finish the new implementation of the OCaml
and Coq type definitions generator from XSD

I December 2011: finish the correctness proof for polynomial
interpretations on integers

I January 2012: extraction to OCaml, linking with CPF parser
and testing on the Termination Problem Data Base (TPDB)

I February 2012 - October 2012: extension to other termination
techniques



Thank you for your attention!!!


	Introduction
	Certification Problem Format (CPF)
	Definition and proof of the certificate verifier
	Conclusions
	Work plan for 2012

