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Hybrid Systems Modelers

Program complex discrete systems and
their physical environments in a single language

Many tools exist
I Simulink/Stateflow, LabVIEW, Modelica, Ptolemy, . . .

Focus on programming language issues to improve safety

Our proposal
I Build a hybrid modeler on top of a synchronous language
I Recycle existing techniques and tools
I Clarify underlying principles and guide language design/semantics
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Reuse existing tools and techniques
Synchronous languages (SCADE/Lustre)

I Widely used for critical systems design and implementation
I mathematically sound semantics
I certified compilation (DO178C)

I Expressive language for both discrete controllers and mode changes
I Do not support modelling continuous dynamics!

Off-the-shelf ODEs numeric solvers
I Sundials CVODE (LLNL) among others, treated as black boxes
I Exploit existing techniques and (variable step) solvers

A conservative extension:
Any synchronous program must be compiled,

optimized, and executed as per usual
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Type systems to separate continuous from discrete
What is a discrete step?

I Reject unreasonable parallel compositions
I Ensure by static typing that discrete changes occur on zero-crossings
I Signals are continuous during integration
I Statically detect causality loops, initialization issues

Simulation engine

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′ = dσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)
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Strange beasts. . .
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Typing issue: Mixing continuous and discrete components
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I Warning with ‘Unit Delay’ but not with
‘Memory’.

I The shape of cpt depends on the steps
chosen by the solver.

I Putting another component in parallel
can change the result.

I Similar issues with Stateflow.
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Causality issue: the Simulink state port
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The output of the state port is the same as the output of the
block’s standard output port except for the following case. If
the block is reset in the current time step, the output of the
state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)

t < 2: x(t) = t, y(t) = t2

2
t = 2: x = −3 · last y = −6,

y = −4 · last x = −8

But: y = −4 · x = 24 !
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Zélus
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Combinatorial and sequential functions
Time is logical as in Lustre. A signal is a sequence of values and nothing
is said about the actual time to go from one instant to another.

let add (x,y) = x + y

let node min_max (x, y) = if x < y then x, y else y, x

let node after (n, t) = (c = n) where
rec c = 0 → pre(min(tick, n))
and tick = if t then c + 1 else c

When feed into the compiler, we get:
val add : int × int A→ int
val mix_max : α× α D→ α× α
val after : int × int D→ bool

Here x, y, etc. are sequences.
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The counter can be instantiated as a two state automaton,
let node blink (n, m, t) = x where
automaton
| On → do x = true until (after(n, t)) then Off
| Off → do x = false until (after(m, t)) then On

which returns a value for x that alternates between true for n occurrences
of t and false for m occurrences of t.

let node blink_reset (r, n, m, t) = x where
reset
automaton
| On → do x = true until (after(n, t)) then Off
| Off → do x = false until (after(m, t)) then On

every r

The type signatures inferred by the compiler are:
val blink : int × int × int D→ bool
val blink_reset : int × int × int × int D→ bool
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Examples
Up to syntactic details, these programs could have been written as is in
Scade 6 or Lucid Synchrone. Now, a simple heat controller with
ODEs.1

(∗ an hysteresis controller for a heater ∗)
let hybrid heater(active) = temp where
rec der temp = if active then c −. temp else −. temp init temp0

let hybrid hysteresis_controller(temp) = active where
rec automaton

| Idle → do active = false until (up(t_min −. temp)) then Active
| Active → do active = true until (up(temp −. t_max)) then Idle

let hybrid main() = temp where
rec active = hysteresis_controller(temp)
and temp = heater(active)

1This is the hybrid version of one of Nicolas Halbwachs’ examples with which he
presented Lustre at the Collège de France, in January 2010.
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The Bouncing ball
let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where

der(x) = x’ init x0
and
der(x’) = 0.0 init x’0

and
der(y) = y’ init y0

and
der(y’) = −. g init y’0 reset up(−. y) → −. 0.9 ∗. last y’

Its type signature is:
float × float × float C→ float × float

I When −. y crosses zero, re-initialize the speed y’ with −. 0.9 ∗ last y’.
I last y’ stands for the previous value of y’.
I As y’ is immediately reset, writing last y’ is mandatory

—otherwise, y’ would instantaneously depend on itself.
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ODEs and Zero-crossings
E.g., the sawtooth signal, the two-state automaton.
let hybrid sawtooth() = t where
rec der t = 1.0 init −1.0 reset up(last t −. 1.0) → −1.0
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let hybrid fm’() = t where
rec init t = 0.0
and automaton

| Up → do der t = 1.0
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Zero-crossings and Valued Signals

I up(e) tests the zero-crossing of expression e from strictly negative to
strictly positive.

I Performed by the solver during integration.
I If x = up(e), all handlers using x are governed by the same

zero-crossing.
I Handlers have priorities.

let hybrid f(x, y) = (v, z1, z2) where
rec v = present z1 → 1 | z2 → 2 init 0
and z1 = up(x)
and z2 = up(y)

val f : float × float C→ float × zero × zero
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Valued events and left limit
Emit a value on a zero-crossing

let hybrid f(x, y) = o where
rec o = present (up(x)) → 42 | (up(y) → 43

val f: float −C→ int signal

o is only present when either up(x) or up(y) and it carries an integer value.
let hybrid default(x, x0) = o where
rec o = present x(p) → p init x0

val f: int signal −C→ int

The left limit
last(x) is the “previous” value of x . It coincides with the left-limit of x .

I During integration, last(x) ≈ x (same standard part).
I During a discrete step, last(x) is the previous value of x .
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Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let wrong () = ()
where rec
der time = 1.0 init 0.0
and y = sum (time)

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices
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Mixing discrete (logical) time and continuous time
Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Define:
let hybrid correct () = ()
where rec
der time = 1.0 init 0.0
and y = present up(ez) → sum (time)

init 0.0
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function acting in discrete time
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function acting in continuous time
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Basic typing [LCTES’11]
A simple ML type system with effects.

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t k−→ t
k ::= D | C | A A

D C

Initial conditions
(+) : int× int A−→ int
if : ∀β.bool× β × β A−→ β

(=) : ∀β.β × β D−→ bool
pre(·) : ∀β.β D−→ β

· fby · : ∀β.β × β D−→ β

up(·) : float C−→ zero
· on · : zero× bool A−→ zero
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What about continuous automata? [EMSOFT’11]
Stateflow User’s Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 Modeling Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26

“Summary of Rules for Continuous-Time Modeling” on page 16-26

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects— such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:

16-26

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink

16-27

16 Modeling Continuous-Time Systems in Stateflow® Charts

functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see Chapter 24, “Using Simulink Functions in
Stateflow Charts”.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
following model generates an error if the chart uses a continuous update
method.

16-28

· · ·

‘Update local data only in transition, entry, and exit actions’

‘Do not call Simulink functions in state during
actions or transition conditions’

‘Compute derivatives only in during actions’

I ‘Restricted subset of Stateflow chart semantics’
I restricts side-effects to major time steps
I supported by warnings and errors in tool (mostly)

I Our D/C/A/zero system extends naturally for the same effect.
I For both discrete (synchronous) and continuous (hybrid) contexts.
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This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
following model generates an error if the chart uses a continuous update
method.
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· · ·

‘Update local data only in transition, entry, and exit actions’

‘Do not call Simulink functions in state during
actions or transition conditions’

‘Compute derivatives only in during actions’

I ‘Restricted subset of Stateflow chart semantics’
I restricts side-effects to major time steps
I supported by warnings and errors in tool (mostly)

I Our D/C/A/zero system extends naturally for the same effect.
I For both discrete (synchronous) and continuous (hybrid) contexts.
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Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26

“Summary of Rules for Continuous-Time Modeling” on page 16-26

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects— such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:

16-26

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
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• State exit actions, which execute before leaving the state at the beginning
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Causality issues (feedback loops)
Which programs should we accept?

I OK to reject (no solution).
rec x = x +. 1.0

I OK as an algebraic constraint (e.g., Simulink and Modelica)
rec x = 1.0 −. x

I OK in constructive logic (Esterel)
rec z1 = if c then z2 else y
and z2 = if c then x else z1

I Modularity:
let node gonthier(x,y) = (x, y)
let node feedback(x) = y where
rec (z, y) = gonthier(x, z)

At the moment, we stick to a simple Lustre-like solution:
every feedback loop must cross a delay
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Yet, what is a delay in mixed systems?
Associate a type that express input/output dependences. E.g.,

let node plus(x, y) = x + 0 → pre y

We get: f : ∀α1, α2.α1 × α2 → α1

I pre(x) is a, discrete-time only, unit delay.
I der x breaks a loop: der temp = c −. temp init 20.0 is correct.
I last(x) is the left limit of a signal:

I when x is a continuous-state variable (der x = . . .), this is the
Simulink state port.

I writting last x in a discrete context always make sense.

The following is rejected; the next is accepted.
rec der y’ = −. g init 0.0 reset up(−.y) → −0.9 ∗. y’
and der y = y’ init y0

rec der y’ = −. g init 0.0 reset up(−.y) → −0.9 ∗. last y’
and der y = y’ init y0
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Compiler architecture
lexing/
parsing typing causality/

initialization
inlining automata

normalize
let/in

periods

discrete
zero-crossing

present/
signals

variable
completion

ODEs
zero-crossingslast/fby/→optimizationscheduling

code
generation

Built on an existing synchronous compiler
I Source-to-source and traceable transformations
I Resulting program is synchronous and translated to

sequential code
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Comparison with existing tools

Simulink/Stateflow (Mathworks)

I Integrated treatment of automata vs two distinct languages
I More rigid separation of discrete and continuous behaviors

Modelica
I Do not handle DAEs
I Our proposal for automata has been integrated into version 3.3

Ptolemy (E.A. Lee et al., Berkeley)

I A unique computational model: synchronous
I Everything is compiled to sequential code (not interpreted)
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What next?

Typing, Causality analysis, Optimization
I The current type system is very limited: if x and y are integers, x = y

is rejected in a hybrid node.
I Share states and zero-crossings, as much as possible.

DAEs
I Only ODEs for the moment.
I DAEs raise several issues: index reduction, etc.
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