Zélus, a Synchronous Language with ODEs

Marc Pouzet2,3,1 Albert Benveniste1

Timothy Bourke1,2 Benoît Caillaud1

1. INRIA

2. École normale supérieure (DI)

3. Univ. Pierre et Marie Curie

Action d’envergure SYNCHRONICS, Final review, 18 June 2013, Paris
Hybrid Systems Modelers

Program complex discrete systems and their physical environments in a single language

Many tools exist

- Simulink/Stateflow, LabVIEW, Modelica, Ptolemy, ...

Focus on programming language issues to improve safety

Our proposal

- Build a hybrid modeler on top of a synchronous language
- Recycle existing techniques and tools
- Clarify underlying principles and guide language design/semantics
Reuse existing tools and techniques

Synchronous languages (SCADE/Lustre)

- Widely used for critical systems design and implementation
 - mathematically sound semantics
 - certified compilation (DO178C)
- Expressive language for both discrete controllers and mode changes
- Do not support modelling continuous dynamics!

Off-the-shelf ODEs numeric solvers

- Sundials CVODE (LLNL) among others, treated as black boxes
- Exploit existing techniques and (variable step) solvers

A conservative extension:

Any synchronous program must be compiled, optimized, and executed as per usual
Type systems to separate continuous from discrete

What is a discrete step?

- Reject unreasonable parallel compositions
- Ensure by static typing that discrete changes occur on zero-crossings
- Signals are continuous during integration
- Statically detect causality loops, initialization issues

Simulation engine

\[\sigma' = d_\sigma(t, y) \quad upz = g_\sigma(t, y) \quad \dot{y} = f_\sigma(t, y) \]
Strange beasts...
Typing issue: Mixing continuous and discrete components

- Warning with ‘Unit Delay’ but not with ‘Memory’.
- The shape of \texttt{cpt} depends on the steps chosen by the solver.
- Putting another component in parallel can change the result.
Typing issue: Mixing continuous and discrete components

- Warning with ‘Unit Delay’ but not with ‘Memory’.
- The shape of cpt depends on the steps chosen by the solver.
- Putting another component in parallel can change the result.
- Similar issues with Stateflow.

\[
\begin{align*}
\{\text{cpt} := 0\} \\
\{t<=42\}\{\text{cpt} := \text{cpt} + 1\}
\end{align*}
\]
The output of the state port is the same as the output of the block’s standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block’s standard output if the block had not been reset.

–Simulink Reference (2-685)
Causality issue: the Simulink state port

\[t < 2: \quad x(t) = t, \quad y(t) = \frac{t^2}{2} \]
\[t = 2: \quad x = -3 \cdot \text{last } y = -6, \quad y = -4 \cdot \text{last } x = -8 \]

The output of the state port is the same as the output of the block's standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block's standard output if the block had not been reset.

–Simulink Reference (2-685)
Causality issue: the Simulink state port

The output of the state port is the same as the output of the block's standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block's standard output if the block had not been reset.

—Simulink Reference (2-685)
Zélus
Combinatorial and sequential functions

Time is logical as in Lustre. A signal is a sequence of values and nothing is said about the actual time to go from one instant to another.

```plaintext
let add (x,y) = x + y

let node min_max (x, y) = if x < y then x, y else y, x

let node after (n, t) = (c = n) where
    rec c = 0 → pre(min(tick, n))
    and tick = if t then c + 1 else c
```

When feed into the compiler, we get:

```plaintext
val add : int × int → int
val max : α × α → α × α
val after : int × int → bool
```

Here x, y, etc. are sequences.
The counter can be instantiated as a two state automaton,

\[
\text{let node blink (n, m, t) = } x \text{ where }
\]

\[
\begin{align*}
\text{automaton} & \quad | \text{On } \rightarrow \text{ do } x = \text{true } \text{ until (after(n, t)) then Off} \\
& \quad | \text{Off } \rightarrow \text{ do } x = \text{false } \text{ until (after(m, t)) then On}
\end{align*}
\]

which returns a value for \(x\) that alternates between true for \(n\) occurrences of \(t\) and false for \(m\) occurrences of \(t\).

\[
\text{let node blink_reset (r, n, m, t) = } x \text{ where }
\]

\[
\begin{align*}
\text{reset} & \quad | \text{automaton} \\
& \quad | \text{On } \rightarrow \text{ do } x = \text{true } \text{ until (after(n, t)) then Off} \\
& \quad | \text{Off } \rightarrow \text{ do } x = \text{false } \text{ until (after(m, t)) then On}
\end{align*}
\]

every \(r\)

The type signatures inferred by the compiler are:

\[
\begin{align*}
\text{val blink : int } \times \text{int } \times \text{int } & \overset{D}{\rightarrow} \text{bool} \\
\text{val blink_reset : int } \times \text{int } \times \text{int } \times \text{int } & \overset{D}{\rightarrow} \text{bool}
\end{align*}
\]
Examples

Up to syntactic details, these programs could have been written as is in Scade 6 or Lucid Synchrone. Now, a simple heat controller with ODEs.¹

(* an hysteresis controller for a heater *)

let hybrid heater(active) = temp where
 rec der temp = if active then c -. temp else -. temp init temp0

let hybrid hysteresis_controller(temp) = active where
 rec automaton
 | Idle → do active = false until (up(t_min -. temp)) then Active
 | Active → do active = true until (up(temp -. t_max)) then Idle

let hybrid main() = temp where
 rec active = hysteresis_controller(temp)
 and temp = heater(active)

¹This is the hybrid version of one of Nicolas Halbwachs’ examples with which he presented Lustre at the Collège de France, in January 2010.
The Bouncing ball

```
let hybrid bouncing(x0,y0,x'0,y'0) = (x,y) where
  der(x) = x' init x0
and
  der(x') = 0.0 init x'0
and
  der(y) = y' init y0
and
  der(y') = \-g init y'0 reset up(\-y) \rightarrow \-0.9 * last y'
```

Its type signature is:

```
float \times float \times float \rightarrow float \times float
```

- When \-y crosses zero, re-initialize the speed y' with \-0.9 * last y'.
- last y' stands for the previous value of y'.
- As y' is immediately reset, writing last y' is mandatory —otherwise, y' would instantaneously depend on itself.
ODEs and Zero-crossings

E.g., the sawtooth signal, the two-state automaton.

```markdown
let hybrid sawtooth() = t where
  rec der t = 1.0 init −1.0 reset up(last t − . 1.0) → −1.0
```

![Graph showing the sawtooth signal](image)
ODEs and Zero-crossings

E.g., the sawtooth signal, the two-state automaton.

\[\text{let hybrid sawtooth}() = t \text{ where} \]
\[\text{rec der } t = 1.0 \text{ init } -1.0 \text{ reset up(last } t \text{)} \]

\[\text{let hybrid fm}() = t \text{ where} \]
\[\text{rec init } t = 0.0 \]
\[\text{and automaton} \]
\[\mid \text{Up } \rightarrow \text{ do der } t = 1.0 \text{ until (up(t } - . 10.0)) \text{ then Down} \]
\[\mid \text{Down } \rightarrow \text{ do der } t = -1.0 \text{ until (up(} -10.0 - . t)) \text{ then Up} \]

\[\text{let hybrid fm'()} = t \text{ where} \]
\[\text{rec init } t = 0.0 \]
\[\text{and automaton} \]
\[\mid \text{Up } \rightarrow \text{ do der } t = 1.0 \]
\[\hspace{1cm} \text{ until (up(t } - . 10.0)) \text{ then do } t = \text{ last } t \text{ } - . 10.0 \text{ in Down} \]
\[\mid \text{Down } \rightarrow \text{ do der } t = -1.0 \text{ until (up(} -10.0 - . t)) \text{ then Up} \]
ODEs and Zero-crossings

E.g., the sawtooth signal, the two-state automaton.

\[
\text{let hybrid sawtooth()} = t \text{ where}
\begin{align*}
\text{rec} & \text{ der } t = 1.0 \text{ init } -1.0 \text{ reset up(last } t - .1.0) \rightarrow -1.0
\end{align*}
\]

\[
\text{let hybrid fm()} = t \text{ where}
\begin{align*}
\text{rec} & \text{ init } t = 0.0 \\
\text{and automaton} & \\
| \text{Up} & \rightarrow \text{ do der } t = 1.0 \text{ until (up(t - .10.0)) then Down} \\
| \text{Down} & \rightarrow \text{ do der } t = -1.0 \text{ until}
\end{align*}
\]

\[
\text{let hybrid fm'}() = t \text{ where}
\begin{align*}
\text{rec} & \text{ init } t = 0.0 \\
\text{and automaton} & \\
| \text{Up} & \rightarrow \text{ do der } t = 1.0 \\
| & \text{ until (up(t - .10.0)) then do } t = \text{ last } t - .10.0 \text{ in Down} \\
| \text{Down} & \rightarrow \text{ do der } t = -1.0 \text{ until (up(-10.0 - . t)) then Up}
\end{align*}
\]
Zero-crossings and Valued Signals

- \(up(e) \) tests the zero-crossing of expression \(e \) from strictly negative to strictly positive.

- Performed by the solver during integration.

- If \(x = up(e) \), all handlers using \(x \) are governed by the same zero-crossing.

- Handlers have priorities.

```ocaml
let hybrid f(x, y) = (v, z1, z2) where
  rec v = present z1 \rightarrow 1 \mid z2 \rightarrow 2 \ init 0
  and z1 = up(x)
  and z2 = up(y)

val f : float \times float \rightarrow float \times zero \times zero
```
Valued events and left limit

Emit a value on a zero-crossing

```ocaml
let hybrid f(x, y) = o where
  rec o = present (up(x)) \rightarrow 42 \mid (up(y) \rightarrow 43

val f: float →C→ int signal

o is only present when either up(x) or up(y) and it carries an integer value.

let hybrid default(x, x0) = o where
  rec o = present x(p) \rightarrow p init x0

val f: int signal →C→ int
```

The left limit

last(x) is the “previous” value of x. It coincides with the left-limit of x.

1. During integration, last(x) ≈ x (same standard part).
2. During a discrete step, last(x) is the previous value of x.
Mixing discrete (logical) time and continuous time

Given:

```haskell
let node sum(x) = cpt where
    rec cpt = (0.0 fby cpt) +. x
```

Explicitly relate simulation and logical time (using zero-crossings)

Try to minimize the effects of solver parameters and choices
Mixing discrete (logical) time and continuous time

Given:

\[
\text{let node sum}(x) = \text{cpt where} \\
\quad \text{rec } \text{cpt} = (0.0 \ \text{fby} \ \text{cpt}) +. \ x
\]

Define:

\[
\text{let wrong }() = () \\
\quad \text{where rec} \\
\quad \quad \text{der } \text{time} = 1.0 \ \text{init} \ 0.0 \\
\quad \quad \text{and } y = \ \text{sum}(\text{time})
\]
Mixing discrete (logical) time and continuous time

Given:

```ml
let node sum(x) = cpt where
    rec cpt = (0.0 fby cpt) +. x
```

Define:

```ml
let wrong () = ()
where rec
der time = 1.0 init 0.0
    and y = sum (time)
```

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject
Mixing discrete (logical) time and continuous time

Given:

\[\text{let node sum}(x) = \text{cpt where} \]
\[\text{rec cpt} = (0.0 \text{ fby cpt}) +. x \]

Define:

\[\text{let wrong}() = () \]
\[\text{where rec} \]
\[\text{der time} = 1.0 \text{ init 0.0} \]
\[\text{and y = sum (time)} \]

Interpretation:

- **Option 1:** \(\mathbb{N} \subseteq \mathbb{R} \)
- **Option 2:** depends on solver
- **Option 3:** infinitesimal steps
- **Option 4:** type and reject
Mixing discrete (logical) time and continuous time

Given:

\[
\text{let node sum}(x) = \text{cpt where } \\
\quad \text{rec } \text{cpt} = (0.0 \ \text{fby}\ \text{cpt}) +. x
\]

Define:

\[
\text{let wrong}() = () \\
\quad \text{where rec } \\
\quad \quad \text{der time} = 1.0 \ \text{init} 0.0 \\
\quad \quad \text{and } y = \text{sum}(\text{time})
\]

Interpretation:

- **Option 1:** $\mathbb{N} \subseteq \mathbb{R}$
- **Option 2:** depends on solver
- **Option 3:** infinitesimal steps
- **Option 4:** type and reject
Mixing discrete (logical) time and continuous time

Given:

\[
\text{let node sum}(x) = \text{cpt where} \\
\quad \text{rec} \ \text{cpt} = (0.0 \ \text{fby} \ \text{cpt}) +. x
\]

Define:

\[
\text{let wrong}() = () \\
\quad \text{where rec} \\
\quad \text{der} \ \text{time} = 1.0 \ \text{init} \ 0.0 \\
\quad \text{and} \ y = \ \text{sum}(\text{time})
\]

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject
Mixing discrete (logical) time and continuous time

Given:

\[
\text{let node sum(x) = cpt where} \quad \text{rec cpt = (0.0 fby cpt) +. x}
\]

Define:

\[
\text{let wrong () = () where rec der time = 1.0 init 0.0 and y = sum (time)}
\]

Interpretation:

1. Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
2. Option 2: depends on solver
3. Option 3: infinitesimal steps
4. Option 4: type and reject
Mixing discrete (logical) time and continuous time

Given:

```ml
let node sum(x) = cpt where
  rec cpt = (0.0 fby cpt) +. x
```

Define:

```ml
let hybrid correct () = ()
  where rec
der time = 1.0 init 0.0
  and y = present up(ez) → sum (time)
  init 0.0
```

- **node**: function acting in discrete time
- **hybrid**: function acting in continuous time

Explicitly relate simulation and logical time (using zero-crossings)

Try to minimize the effects of solver parameters and choices
Mixing discrete (logical) time and continuous time

Given:

\[
\text{let node sum}(x) = \text{cpt where}
\]
\[
\text{rec cpt} = (0.0 \text{ fby cpt}) +. x
\]

Define:

\[
\text{let hybrid correct} = ()
\]
\[
\text{where rec}
\]
\[
\text{der time} = 1.0 \text{ init } 0.0
\]
\[
\text{and } y = \text{present up}(ez) \rightarrow \text{sum}(\text{time})
\]
\[
\text{init } 0.0
\]

- **node:**
 - function acting in discrete time
- **hybrid:**
 - function acting in continuous time

Explicitly relate simulation and logical time (using zero-crossings)

Try to minimize the effects of solver parameters and choices
Basic typing [LCTES’11]

A simple ML type system with effects.

The type language

\[
\begin{align*}
bt & ::= \text{float} | \text{int} | \text{bool} | \text{zero} \\
t & ::= bt | t \times t | \beta \\
\sigma & ::= \forall \beta_1, \ldots, \beta_n.t \xrightarrow{k} t \\
k & ::= D | C | A
\end{align*}
\]

Initial conditions

\[
\begin{align*}
(+): & \quad \text{int} \times \text{int} \xrightarrow{A} \text{int} \\
\text{if}: & \quad \forall \beta. \text{bool} \times \beta \times \beta \xrightarrow{A} \beta \\
(=): & \quad \forall \beta. \beta \times \beta \xrightarrow{D} \text{bool} \\
\text{pre}(.): & \quad \forall \beta. \beta \xrightarrow{D} \beta \\
\text{fby}(.): & \quad \forall \beta. \beta \times \beta \xrightarrow{D} \beta \\
\text{up}(.): & \quad \text{float} \xrightarrow{C} \text{zero} \\
\text{on}(.): & \quad \text{zero} \times \text{bool} \xrightarrow{A} \text{zero}
\end{align*}
\]
What about continuous automata? [EMSOFT’11]

Stateflow User’s Guide
The Mathworks, pages 16-26 to 16-29, 2011.

Modeling Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in Stateflow Charts

In this section...

"Rationale for Design Considerations" on page 16-26
"Summary of Rules for Continuous-Time Modeling" on page 16-26

Rationale for Design Considerations

To guarantee the integrity — or more accurately — of the results in continuous-time modeling, you must constrain your charts to a restricted subset of Stateflow chart semantics. The restricted semantics ensure that inputs do not depend on unpredictable factors — or rather, such as:
• Simulink solver's guess for number of minor intervals in a major time step
• Number of instructions required to stabilize the integration loop or zero-crossings loop

By minimizing side-effects, a Stateflow chart can maintain its state at minor time steps and, therefore, update state only during major time steps when state changes occur. Using this heuristic, a Stateflow chart can always compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic violations.

Summary of Rules for Continuous-Time Modeling

Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local data (state variables or discrete data) only during physical events at major time steps. In Stateflow charts, physical events cause state transitions. Therefore, write to local data only in actions that execute during transitions, as follows:

• State exit actions, which execute before leaving the state at the beginning of the transition
• Transition actions, which execute during the transition
• State entry actions, which execute after entering the new state at the end of the transition
• Condition actions on a transition, but only if the transition directly reaches a state

Consider the following chart.

![Chart Diagram]

In this example, the action `{n++}` updates even when conditions c1, c2, and c3 are false. In this case, a state gets updated in a minor time step because there is no state transition.

Do not write to local continuous data in during actions because these actions execute in minor time steps.

Do not call Simulink functions in state during actions or transition conditions

This rule applies to continuous-time charts because you cannot call Simulink functions during minor time steps. You can call Simulink functions in state entry or exit actions and transition actions. However, if you try to call Simulink functions in state during actions or transition conditions, an error message appears when you simulate your model.

For more information, see Chapter 24, “Using Simulink Functions in Stateflow Charts”.

Compute derivatives only in during actions

A Simulink model needs continuous-time derivatives during minor time steps. The only part of a Stateflow chart that executes during minor time steps is the during action. Therefore, you should compute derivatives in during actions to give your Simulink model the most accurate calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it prevents a Stateflow chart from using values that may no longer be valid in the current minor time step. Instead, a Stateflow chart always computes outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents changes from occurring between major time steps. When placed in during actions, conditions that affect control flow should be governed by discrete variables, because they do not change between major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem and thereby unable to simulate in continuous-time. For example, the following model generates an error if the chart uses a continuous update method.

I ‘Restricted subset of Stateflow chart semantics’

➤ restricts side-effects to major time steps
➤ supported by warnings and errors in tool (mostly)
What about continuous automata? [EMSOFT’11]

Stateflow User’s Guide

The Mathworks, pages 16-26 to 16-29, 2011.

Design Considerations for Continuous-Time Modeling in Stateflow Charts

Update local data only in transition, entry, and exit actions

Rationale for Design Considerations

To maintain consistency with discrete-time modeling, you must constrain your charts to a restricted subset of Stateflow chart semantics. The restricted semantics ensure that inputs do not depend on unpredictable factors — or — such as:

- Number of iterations required to stabilize the integration loop or semi-
 continuous loop
- To minimize side effects, a Stateflow chart can maintain its state at minor time steps and therefore update state only during major time steps when state changes occur. Using this behavior, a Stateflow chart can always compute outputs based on a consistent state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic violations.

Summary of Rules for Continuous-Time Modeling

Here are the rules for modeling continuous-time Stateflow charts:

- Update local data only in transition, entry, and exit actions
- To maintain consistency in continuous-time simulation, you should update local data in discrete or continuous-chart during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write to local data only in actions that execute during transitions, as follows:

- State exit actions, which execute before leaving the state at the beginning of the transition
- Transition actions, which execute during the transition
- Entry actions, which execute during the new state at the beginning of the transition

Consider the following chart:

![Chart Example]

In this example, the action (++) executes even when conditions c0 and c1 are false. In this case, a gets updated in a minor time step because there is no state transition.

Do not write to local continuous data in minor actions because these actions execute during minor time steps.

Do not call Simulink functions in state during actions or transition conditions

This rule applies to continuous-time charts because you cannot call functions during minor time steps. You can call Simulink functions in state entry or exit actions and transition actions. However, if you try to call Simulink

- Rationale for Design Considerations
- Update local data only in transition, entry, and exit actions
- Design Considerations for Continuous-Time Modeling in Stateflow Charts
- Use discrete variables to govern conditions in discrete actions

Do not read outputs and derivatives in state or transitions

This restriction avoids smooth outputs in a major time step because they prevent a Stateflow chart from using values that may no longer be valid in the current minor time step. Instead, a Stateflow chart always computes outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in discrete actions

This restriction prevents changes from occurring between major time steps. When placed in discrete actions or condition that affect control flow should be governed by discrete variables because they do not change between major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem and therefore unable to simulate in continuous-time. For example, the following model generates an error if the chart uses a continuous update method.

‘Restricted subset of Stateflow chart semantics’

- restricts side-effects to major time steps
- supported by warnings and errors in tool (mostly)
What about continuous automata? [EMSOFT’11]

Stateflow User's Guide

The Mathworks, pages 16-26 to 16-29, 2011.

Design Considerations for Continuous-Time Modeling in Stateflow Charts

- State exit actions, which execute before leaving the state at the beginning of the transition
- Transition actions, which execute during the transition
- Compute derivatives only in actions that execute during transitions, as follows:

 ![Diagram showing state transition actions and conditions]

 - Do not call Simulink functions in state during actions or transition conditions
 - Do not use input events in continuous-time charts
 - Do not read outputs and derivatives in states or transitions

Rationale for Design Considerations

To guarantee the integrity — or predictability — of the results in continuous-time modeling, you must constrain your charts to a restricted subset of Stateflow chart semantics. The restricted semantics means that:

- Standard actions, like if-then-else, for, and while, do not execute
- Number of time steps must be finite
- Side-effects must be restricted
- A Simulink model reads continuous-time derivatives during minor time steps and therefore unable to simulate in continuous-time. For example, the following model generates an error if the chart uses a continuous update method.

Summary of Rules for Continuous-Time Modeling

Here are the rules for modeling continuous-time Stateflow charts:

- Update local data only in transition, entry, and exit actions
- To maintain precision in continuous-time simulation, you should update local data (intrinsic or discrete) only during physical events at major time steps.
- In Stateflow charts, physical events cause state transitions. Therefore, write to local data only in actions that execute during transitions, as follows:

 - Restricts side-effects to major time steps
 - Supported by warnings and errors in tool (mostly)
What about continuous automata? [EMSOFT’11]

Stateflow User’s Guide

The Mathworks, pages 16-26 to 16-29, 2011.

Design Considerations for Continuous-Time Modeling in Stateflow Charts

‘Update local data only in transition, entry, and exit actions’

Do not call Simulink functions in state during actions or transition conditions

‘Compute derivatives only in during actions’

‘Restricted subset of Stateflow chart semantics’

- restricts side-effects to major time steps
- supported by warnings and errors in tool (mostly)
What about continuous automata? [EMSOFT’11]

For both discrete (synchronous) and continuous (hybrid) contexts.

Our D/C/A/zero system extends naturally for the same effect.

For both discrete (synchronous) and continuous (hybrid) contexts.

- Our D/C/A/zero system extends naturally for the same effect.
- For both discrete (synchronous) and continuous (hybrid) contexts.
- Our D/C/A/zero system extends naturally for the same effect.
- For both discrete (synchronous) and continuous (hybrid) contexts.
Causality issues (feedback loops)

Which programs should we accept?

- OK to reject (no solution).
 \[
 \text{rec } x = x + 1.0
 \]

- OK as an algebraic constraint (e.g., Simulink and Modelica)
 \[
 \text{rec } x = 1.0 - x
 \]

- OK in constructive logic (Esterel)
 \[
 \text{rec } z_1 = \text{if } c \text{ then } z_2 \text{ else } y \\
 \text{and } z_2 = \text{if } c \text{ then } x \text{ else } z_1
 \]

- Modularity:
 \[
 \text{let node } \text{gonthier}(x, y) = (x, y) \\
 \text{let node } \text{feedback}(x) = y \text{ where} \\
 \text{rec } (z, y) = \text{gonthier}(x, z)
 \]

At the moment, we stick to a simple Lustre-like solution:
eddy feedback loop must cross a delay
Yet, what is a delay in mixed systems?

Associate a type that express input/output dependences. E.g.,

\[
\text{let node plus}(x, y) = x + 0 \rightarrow \text{pre } y
\]

We get:

\[f : \forall \alpha_1, \alpha_2. \alpha_1 \times \alpha_2 \rightarrow \alpha_1\]

\[\text{pre}(x) \text{ is a, discrete-time only, unit delay.}\]

\[\text{der } x \text{ breaks a loop: der temp } = c - . \text{ temp init } 20.0 \text{ is correct.}\]

\[\text{last}(x) \text{ is the left limit of a signal:}\]

\[\begin{align*}
\text{when } x \text{ is a continuous-state variable (der } x = \ldots), \text{ this is the Simulink state port.} \\
\text{writting last } x \text{ in a discrete context always make sense.}
\end{align*}\]

The following is rejected; the next is accepted.

\[
\text{rec der } y' = -. g \text{ init } 0.0 \text{ reset up}(-.y) \rightarrow -0.9 \ast y'
\]

and der y = y' init y0

\[
\text{rec der } y' = -. g \text{ init } 0.0 \text{ reset up}(-.y) \rightarrow -0.9 \ast \text{last } y'
\]

and der y = y' init y0
Compiler architecture

- Lexing/parsing
- Typing
- Causality/initialization
- Inlining
- Automata
 - Normalize let/in
 - Periods
 - Discrete zero-crossing
 - Present/signals
 - Variable completion
- ODEs zero-crossings
- Last/fby/→
- Optimization
- Scheduling
- Code generation

Built on an existing synchronous compiler

- Source-to-source and traceable transformations
- Resulting program is synchronous and translated to sequential code
Comparison with existing tools

Simulink/Stateflow (Mathworks)

- Integrated treatment of automata vs two distinct languages
- More rigid separation of discrete and continuous behaviors

Modelica

- Do not handle DAEs
- Our proposal for automata has been integrated into version 3.3

Ptolemy (E.A. Lee et al., Berkeley)

- A unique computational model: synchronous
- Everything is compiled to sequential code (not interpreted)
What next?

Typing, Causality analysis, Optimization

- The current type system is very limited: if \(x \) and \(y \) are integers, \(x = y \) is rejected in a hybrid node.
- Share states and zero-crossings, as much as possible.

DAEs

- Only ODEs for the moment.
- DAEs raise several issues: index reduction, etc.