A Synchronous-based Code Generator For Explicit
Hybrid Systems Languages

Timothy Bourke! Jean-Louis Colaco?> Bruno Pagano?

Cédric Pasteur? Marc Pouzet3!

1. INRIA Paris-Rocquencourt
2. Esterel-Technologies/ANSYS, Toulouse

3. DI, Ecole normale supérieure, Paris

CC'2015
London, ETAPS
April 17, 2015

Synchronous Block Diagram Languages: SCADE

» Widely used for critical control software development;
» E.g., avionic (Airbus, Ambraier, Comac, SAFRAN), trains (Ansaldo).

5 % LI
[@se ot el
[DEu@ @ wrx o 882K [Aos®@ | HiiALLl“‘"@!ﬁm R

IEEE L L R L o e JS“ﬁJsmm Slm

o g [

m

B

ZDam

PE[EE[E=a

EERE

E TN] Qe [
For Help, press Pl S \
B e AQAXDIGRBBE 7| @cl | Ds] ys] S1c| en Go s 1| W5 | 55| G Qe | En] Byc] BB Scf wsgmssnn%

But modern systems need
more. . .

The Current Practice of Hybrid Systems Modeling

Embedded software interacts with physical devices.

The whole system has to be modeled: the controller and the plant.!

'Image by Esterel-Tech nologies/ANSYS.

Current Practice and Objective

Current Practice

v

Simulink, Modelica used to model, rarely to implement critical soft.

v

Software must be reimplemented in SCADE or imperative code.
Interconnect tools (Simulink+Modelica+SCADE~+Simplorer+...)

v

v

Interchange format for co-simulation: S-functions, FMU/FMI

Objective and Approach

» Increase the confidence in what is simulated
Use SCADE both to simulate and implement

v

v

Synchronous code for both the controller and the plant

v

Reuse the existing compiler infrastructure
Run with an off-the-shelf numerical solver (e.g., SUNDIALS)

v

Hybrid System Modelers

Simulink / FMI Simplorer / Modelica
Ordinary differential equation | Differential algebraic equation
y="f(y,1) fly,y,t)=0
Explicit Implicit

Causal Acausal

Hybrid System Modelers

Simulink / FMI / Zélus / Scade Hybrid

Simplorer / Modelica

Ordinary differential equation

Differential algebraic equation

y="f(y,t) fly,y,t)=0
Explicit Implicit
Causal Acausal

Background: [Benveniste et al., 2010 - 2014]

“Build a hybrid modeler on synchronous language principles”

Milestones

v

Do as if time was global and discrete [JCSS'12]

Lustre with ODEs [LCTES'11]

Hierarchical automata, both discrete and hybrid [EMSOFT'11]
Causality analysis [HSCC'14]

v

v

v

This was experimented in the language Zélus [HCSS'13]

The validation on an industrial compiler remained to be done.

SCADE Hybrid (summer 2014)

» Prototype based on KCG 6.4 (last release)
» SCADE Hybrid = full SCADE + ODEs
» Generates FMI 1.0 model-exchange FMUs with Simplorer

Synchronous languages in a slide

» Compose stream functions; basic values are streams.

» Operation apply pointwise + unit delay (fby) + automata.

(x computes [x(n) + y(n) + 1] at every instant [n])
funadd (x,y) =x+y+1

(* returns [true] when the number of [t] has reached [bound] x)
node after (bound, t) = (¢ = bound) where

rec ¢ = 0 fby (min(tick, bound))

and tick = if t then ¢ + 1 else c

The counter can be instantiated twice in a two state automaton,

node blink (n, m, t) = x where

automaton

| On — do x = true until (after(n, t)) then Off
| Off — do x = false until (after(m, t)) then On

From it, a synchronous compiler produces sequential loop-free code
that compute a single step of the system.

A Simple Hybrid System

Yet, time was discrete. Now, a simple heat controller. 2

(* a model of the heater defined by an ODE with two modes)
hybrid heater(active) = temp where
rec der temp = if active then ¢ —. k *. temp else —. k *. temp init temp0O

(* an hysteresis controller for a heater *)
hybrid hysteresis_controller(temp) = active where
rec automaton
| Idle — do active = false until (up(t-min —. temp)) then Active
| Active — do active = true until (up(temp —. t_max)) then Idle

(¥ The controller and the plant are put parallel x)
hybrid main() = temp where

rec active = hysteresis_controller(temp)

and temp = heater(active)

Three syntactic novelties: keyword hybrid, der and up.

2Hybrid version of N. Halbwachs's example in Lustre at Collége de -France, Jan.10:

From Discrete to Hybrid
The type language [LCTES'11]
D C
bt = float |int |bool |zero]| ---
o n= bt x..x bt — bt x ...x bt
k == DJ|C|A A
Function Definition: fun f(x1,...) = (y1,...)

» Combinatorial functions (4); usable anywhere.

Node Definition: node f(x1,...) = (yi,...)

» Discrete-time constructs (D) of SCADE/Lustre: pre, ->, fby.

Hybrid Definition: hybrid f(x1,...) = (y1,...)

» Continuous-time constructs (C): der x = ..., up, down, etc.

Mixing continuous/discrete parts

Zero-crossing events

» They correspond to event indicators/state events in FMI

> Detected by the solver when a given signal crosses zero

Design choices

> A discrete computation can only be triggered by a zero-crossing
» Discrete state only changes at a zero-crossing event

» A continuous state can be reset at a zero—crossing event

Example

node counter() = cpt where
reccpt =1 — pre cpt + 1

hybrid hybrid_counter() = cpt where
z

rec cpt = present up(z) — counter() init 0
and z = sinus()

Output with SCADE Hybrid + Simplorer

Rectangular Plot0

S SV V. I

SINE1

How to communicate between continuous and discrete
time?

E.g., the bouncing ball

hybrid ball(y0) = y where

rec der y = y_v init y0

and der y.v = —. g init 0.0 reset z — 0.8 *. last y_v
and z = up(—.y)

» Replacing last y_v by y_v would lead to a deadlock.
> In SCADE and Zélus, last y_v is the previous value of y_v.

> It coincides with the left limit of y_v when y_v is left continuous.

Internals

The Simulation Engine of Hybrid Systems

Alternate discrete steps and integration steps

[reinitialize]

reaction integrate
zero-crossing event

o',y = next,(t,y) upz=g,(t,y) y =1,(t,y)

Properties of the three functions

> next, gathers all discrete changes.
> g, defines signals for zero-crossing detection.

» f, is the function to integrate.

Compilation

The Compiler has to produce:

1. Inititialization function init to define y(0) and &(0).
2. Functions f and g.

3. Function next.

The Runtime System

1. Program the simulation loop, using a black-box solver (e.g.,
SUNDIALS CVODE);

2. Or rely on an existing infrastructure.

Zé&lus follows (1); SCADE Hybrid follows (2), targetting Simplorer FMls.

Compiler Architecture

Two implementations: Zélus and KCG 6.4 (Release 2014) of SCADE.
KCG 6.4 of SCADE

> Generates FMI 1.0 model-exchange FMUs for Simplorer.
» Only 5% of the compiler modified. Small changes in:

» static analysis (typing, causality).

» automata translation; code generation.

» FMU generation (XML description, wrapper).

» FMU integration loop: about 1000 LoC.

parsing

typing

causality

control
encoding

optimization

v

C code
generation

deadcode
removal

slicing

SOL
generation

scheduling

A SCADE-like Input Language

Essentially SCADE with three syntax extensions (in red).

d == constx=e| kf(pi)=pivhereE | d;d
:= fun | node | hybrid
e == x|v|op(e, ..e)|vibye|lastx]|f(e,..,e)]|up(e)
p = x| (X, .y X)
pi = Xi | Xiy . Xxi
xi = x|xlaste|xdefaulte
E = p=-el|derx = e

| if ethen Eelse E
| reset E every e
| local piin E | do E and ... E done

A Clocked Data-flow Internal Language

The internal language is extended with three extra operations.
Translation based on Colaco et al. [EMSOFT'05].

A X Qo

L

ck

constx=c | kf(p) = awhere C | d;d
fun | node | hybrid
(X,' = a,-)X,.E/ with Vi 75_/'.X,' 7& Xj

eck

x|v|op(a,..,a)| v by a|pre(a)
| f(a,...,a)everya
| merge(a, a, a) | a when a
| integr(2, 2) | up(a)

x| (x,..., %)

base | ck on a

Clocked Equations Put in Normal Form
Name the result of every stateful operation. Separate into syntactic

categories.
> se: strict expressions
> de: delayed expressions
> ce: controlled expressions.

Equation /x = integr(x’, x) defines Ix to be the continuous state
variable; possibly reset with x.

eq = x=ce*|x="f(sa,..,sa)everysa™ | x = de
sa = sek

ca u= cek

se == x|v|op(sa,...,sa)|sawhen sa

ce = se|merge(sa,ca,ca)| cawhen sa

de 1= pre(ca)|v fby ca| integr(ca,ca) | up(ca)

Well Scheduled Form

Equations are statically scheduled.

Read(a): set of variables read by a.

Given C = (x; = aj)xe/, a valid schedule is a one-to-one function
Schedule(.) : I — {1...]l]}

such that, for all x; € I, x; € Read(a;) N I
1. if a; is strict, Schedule(x;) < Schedule(x;) and
2. if a; is delayed, Schedule(x;) < Schedule(x;).

From the data-dependence point-of-view, integr(cai, cap) and up(ca)
break instantaneous loops.

A Sequential Object Language (SOL)

» Translation into an intermediate imperative language [Colaco et al.,
LCTES'08]

> Instead of producing two methods step and reset, produce more.

» Mark memory variables with a kind m

md

R, L

Iv

| constx=c¢
| const f = class(M, I, (method;(p;) = e;where S;)ic[1..n])

[x :m[=v];...;x:m[= V]|

[o:f;..;0:f]

Discrete | Zero | Cont

v|Iv|op(e,..,e) | o.method(e,..., e)
(Ollvee|S;S|varx,...,xin S| if cthenSelse S
S;.;S

x | Iv.field | state (x)

State Variables

Discrete State Variables (sort Discrete)

» Read with state (x);

» modified with state (x) < ¢

Zero-crossing State Variables (sort Zero)

> A pair with two fields.

» The field state (x).zin is a boolean, true when a zero-crossing on x
has been detected, false otherwise.

» The field state (x).zout is the value for which a zero-crossing must
be detected.

Continuous State Variables (sort Cont)

» state (x).der is its instantaneous derivative;

> state (x).pos its value

Example: translation of the bouncing ball

let bouncing = machine(continuous) {
memories disc init_25 : bool = true;
zero result_17 : bool = false;
cont y_v_15 : float = 0.; cont y_14 : float = O.

method reset =
init_25 <- true; y_v_15.pos <- 0.

method step time_23 y0_9 =
(if init_25 then (y_14.pos <- y0_9; ()) else 0);
init_25 <- false;
result_17.zout <- (7-.) y_14.pos;
if result_17.zin
then (y_v_15.pos <- (*.) 0.8 y_v_15.pos);
y_14.der <- y_v_15.pos;
y_v_15.der <- ("-.) g; y_14.pos }

Finally

1. Translate as usual to produce a function step.

2. For hybrid nodes, copy-and-paste the step method.

3. Either into a cont method activated during the continuous mode, or
two extra methods derivatives and crossings.

4. Apply the following:

» During the continuous mode (method cont), all zero-crossings
(variables of type zero, e.g., state (x).zin) are surely false. All
zero-crossing outputs (state (x).zout < ...) are useless.

» During the discrete step (method step), all derivative changes
(state (x).der < ...) are useless.

» Remove dead-code by calling an existing pass.

5. That’s alll
Examples (both Zélus and SCADE) at: zelus.di.ens.fr/cc2015

zelus.di.ens.fr/cc2015

Conclusion

Two full scale experiments

v

The Zélus academic langage and compiler.
The industrial KCG 6.4 (Release 2014) code generator of SCADE.
For KCG, less than 5% of extra LOC, in all.

The extension is fully conservative w.r.t existing SCADE.

v

v

v

Lessons

> The existing compiler infrastructure of SCADE, based on successive
rewritting, helped a lot.

» Synchronous languages principles are useful to build a real hybrid
systems modeling language.

Yet, doing the same for ODEs + constraints (DAEs) is far less clear.

http://zelus.di.ens.fr

Zélus Publications Contact

Download

mples

-G

Zélus

A synchrono

»

Compiler

Zélus is a synchronous language extended with Ordinary Differential
Equations (ODEs) to model systems with complex interaction between
discrete-time and continuous-time dynamics. It shares the basic
principles of Lusire with features from Lucid Synchrone (type
inference, hierarchical automata, and signals). The compiler is written

us langua

ge with ODEs

Research
Zélus is used to experiment with new techniques for building hybrid
modelers like Simulink/S w and Modelica on top of a synchronous

language. The language exploits novel techniques for defining the
semantics of hybrid modelers, it provides dedicated type systems to
ensure the absence of discontinuities during integration and the

http://zelus.di.ens.fr

	Overview

