MiniLustre mais il fait le Maximum !

or

Towards the Development of a Certified Compiler for Lustre

Marc Pouzet
Université Paris-Sud 11 & INRIA Proval
Orsay

Workshop SYNCHRON
Bamberg, nov. 27th, 2007

Joint work with Dariusz Biernacki, Jean-Louis Colaço and Grégoire Hamon
A Certified compiler for SCADE/Lustre

Implement a verified compiler for a synchronous data-flow language with the help of the proof assistant Coq

Combines **certified compilation** and **translation validation**

Certified translation

- Write a compilation function \(C : L_1 \rightarrow L_2 \) in Coq with its proof of semantics preservation
- natural for local program transformation (e.g., data-flow to sequential code)

Translation validation

- Write \(C \) independently (e.g., in Caml) and a validation function \(V : L_1 \times L_2 \rightarrow \text{bool} \) with its proof of semantics preservation
- easier for non local transformation (e.g., type or clock inference, find a clever scheduling of equation, memory optimization)

See Xavier Leroy’s work for a discussion on pros and cons of both
Motivations (first step)

First build a reference compiler, as small as possible, purely functional (as much as possible) and based on local rewriting rules.

Focus on synchronous block-diagrams as found in Lustre/SCADE or (a subset of) Simulink.

- formalize the code generation into imperative sequential code (e.g., C)
- as small as possible but realistic (the code should be efficient)
- make it modular, i.e., the definition of a stream function is compiled once for all

as a way to:

- build a certified compiler inside a Proof assistant
- complement previous works on the extension/formalization of synchronous languages
Code Generation

Principle:

A stream function $f : \text{Stream}(T) \rightarrow \text{Stream}(T')$ is compiled into a pair:

- an initial state and a transition function: $\langle s_0 : S, f_t : S \times T \rightarrow T' \times S \rangle$

A stream equation $y = f(x)$ is computed sequentially by $y_n, s_{n+1} = f_t(s_n, x_n)$

An alternative (more general) solution:

- an initial state: $s_0 : S$
- a value function: $f_v : S \times T \rightarrow T'$
- a state modification ("commit") function: $f_s : S \times T \rightarrow S'$

Final remarks:

- this generalises to MIMO systems
- in actual implementations, states are modified in place
- synchrony finds a very practical justification here: a data-flow can be implemented as a single scalar variable
Modular Code Generation

- produce a transition function for each block definition
- compose them together to produce the main transition function
- static scheduling following data-dependences

But modular code generation is not always feasible even in the absence of causality loops

\[(y, z) = f(t, y)\]

This observation has led to two different approaches to the compilation problem
Two Traditional Approaches

Non Modular Code Generation

- full static inlining before code generation starts
- enumeration techniques into (very efficient) automata ([Halbwachs et al., Raymond PhD. thesis, POPL 87, PLILP 91])
- keeps maximal expressiveness but at the price of modular compilation and the size of the code may explode
- finding the adequate boolean variables to get efficient code in both code and size is difficult

Modular code generation

- mandatory in industrial compilers
- no preliminary inlining (unless requested by the user)
- imposes stronger causality constraints: every feedback loop must cross an explicit delay
- well accepted by SCADE users and justified by the need for *tracability*
Proposal

- a compiler where everything can be “traced” with a precise semantics for every
 intermediate language

- introduce a basic **clocked** data-flow language as the input language

- general enough to be used as an input language for Lustre

- be a “good” input language for modern ones (e.g., mix of automata and data-flow as
 found in SCADE 6 or Simulink/StateFlow)

- provides a slightly more general notion of clocks

- and a reset construct

- compilation through an intermediate “object based” intermediate language to represent
 transition function

- provide a translation into imperative code (e.g., structured C, Java)
Organisation of the Compiler

Static checking → Translation → EmitC

ClockedFlowKernel → Annotated DK → OBL → Structured C
Static Checking

Type checking Clock checking

CDK → CDK+Types → CDK+Types+Clocks

Causality Check

CDK+Types+Clocks

Initialization Check

CDK+Types+Clocks

CDK+Types+Clocks
A Clocked Data-flow Basic Language
A data-flow kernel where every expression is explicitly annotated with its clock

\[a ::= e^{ct} \]

\[e ::= v \mid x \mid v \text{ fby} a \mid a \text{ when } C(x) \mid (as) \]
\[\mid \text{ op}(a, \ldots, a) \mid f(a, \ldots, a) \text{ every } a \]
\[\mid \text{ merge } x \,(C \rightarrow a) \ldots (C \rightarrow a) \]

\[D ::= \text{ pat } = a \mid D \text{ and } D \]

\[\text{ pat } ::= x \mid (\text{ pat }, \ldots, \text{ pat }) \]

\[d ::= \text{ node } f(p) = p \text{ with var } p \text{ in } D \]

\[p ::= x : bt; \ldots; x : bt \]

\[\text{ td } ::= \text{ type } bt \mid \text{ type } bt = C + \ldots + C \]

\[v ::= C \mid i \]

\[\text{ ck } ::= \text{ base } \mid \text{ ck on } C(x) \]

\[\text{ ct } ::= \text{ ck } \mid \text{ ct } \times \ldots \times \text{ ct} \]
Informal Semantics

<table>
<thead>
<tr>
<th></th>
<th>True</th>
<th>False</th>
<th>True</th>
<th>False</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>...</td>
</tr>
<tr>
<td>y</td>
<td>y_0</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>...</td>
</tr>
<tr>
<td>$v fby x$</td>
<td>v</td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>...</td>
</tr>
<tr>
<td>$x + y$</td>
<td>$x_0 + y_0$</td>
<td>$x_1 + y_1$</td>
<td>$x_2 + y_2$</td>
<td>$x_3 + y_3$</td>
<td>...</td>
</tr>
<tr>
<td>$z = x \text{ when } \textbf{True}(h)$</td>
<td>x_0</td>
<td>x_2</td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>$t = y \text{ when } \textbf{False}(h)$</td>
<td></td>
<td>y_1</td>
<td>y_3</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>merge h</td>
<td>x_0</td>
<td>y_1</td>
<td>x_2</td>
<td>y_3</td>
<td>...</td>
</tr>
</tbody>
</table>

- z is at a slower rate than x. We say its clock is ck on $\textbf{True}(h)$
- the `merge` constructs needs its two arguments to be on complementary clocks
- statically checked through a dedicated type system (clock calculus)
Derived Operators

\[\text{if } x \text{ then } e_2 \text{ else } e_3 = \text{merge } x \]

\[(\text{True } \rightarrow e_2 \text{ when True}(x)) \]

\[(\text{False } \rightarrow e_3 \text{ when False}(x)) \]

\[y = e_1 \rightarrow e_2 \]

\[y = \text{if } \text{init} \text{ then } e_1 \text{ else } e_2 \]

\[\text{and } \text{init} = \text{True } \text{ fby } \text{False} \]

\[\text{pre}(e) \]

\[= \text{nil } \text{ fby } e \]

Example (counter)

node counting \((\text{tick:bool; top:bool}) = (o:int) \text{ with}\)

\[\text{var v: int in} \]

\[o = \text{if } \text{tick} \text{ then } v \text{ else } 0 \rightarrow \text{pre } o + v \]

\[\text{and } v = \text{if } \text{top} \text{ then } 1 \text{ else } 0 \]
N-ary Merge

`merge` combines two complementary flows (flows on complementary clocks) to produce a faster one:

introduced in Lucid Synchrone V1 (1996), input language of ReLuC

Example: `merge c (a when c) (b whennot c)`

Generalization:

- can be generalized to \(n \) inputs with a specific extension of clocks with enumerated types
- the sampling \(e \ when \ c \) is now written \(e \ when \ True(c) \)
- the semantics extends naturally and we know how to compile it efficiently
- thus, a **good basic for compilation**
Reseting a behavior

- in SCADE/Lustre, the “reset” behavior of an operator must be explicitly designed with a specific reset input

```
node count() returns (s:int);
let
  s = 0 fby s + 1
tel;
```

```
node resetable_counter(r:bool) returns (s:int);
let
  s = if r then 0 else 0 fby s + 1;
tel;
```

- painful to apply on large model

- propose a primitive that applies on node instance and allow to reset any node (no specific design condition)
Modularity and reset

Specific notation in the basic calculus: \(f(a_1, \ldots, a_n) \) every \(c \)

- all the node instances used in the definition of node \(x \) are reseted when the boolean \(c \) is true
- the reset is “asynchronous”: no clock constraint between the condition \(c \) and the clock of the node instance

is-it a primitive construct? yes and no

- modular translation of the basic language with reset into the basic language without reset ([PPDP00], with G. Hamon)
- essentially a translation of the initialization operator \(\rightarrow \)
- \(e_1 \rightarrow e_2 \) becomes \(\text{if } c \text{ then } e_1 \text{ else } e_2 \)
- very demanding to the code generator whereas it is trivial to compile!
- useful translation for verification tools, basic for compilation
- thus, a good basic for compilation
Translation

Normalization

Annotated CDK

data-flow transformations
(CSE, Constant Prop.)
Inlining

Annotated CDK (normalized)

Local Transformation
+ (naive to clever) scheduling

ObjBasedLanguage

EmitC

Structured C
Syntactic Dependences and Scheduling

Programs which cannot be statically scheduled are rejected during the causality analysis

- we define $Left(e)$ for the list of variables from e which are free in e and not as an argument of a delay fby

- $Left(D)$ is the union of such variables for any expression of D

- for any $pat = a$ from D, any variable from pat depends on $Left(D)$

- the transitive closure defines the notion of static dependence (Halbwachs et al, [PLILP 91])

- the program can be statically scheduled if there is no cycle

- simple inductive definitions (see [APGES 07] paper)

- an equation $x = v fby y + 2$ is executed after every equations using x

Remark: several classical “graph based” optimization can be applied on this data-flow kernel

- Common Sub-expression Elimination, Constant Propagation, Inlining
Putting Equations in Normal Form

- prepare equations before the translation
- extract delays from nested expressions by a linear traversal
- Equations are transformed such that delays are extracted from nested computation.

Normal Form:

\[
\begin{align*}
 a & ::= \ e^{ck} \\
 e & ::= \ a \ when \ C(x) \ | \ op(a, \ldots, a) \ | \ x \ | \ v \\
 ce & ::= \ merge \ x \ (C \rightarrow ca) \ldots \ (C' \rightarrow ca) \ | \ e \\
 ca & ::= \ ce^{ck} \\
 eq & ::= \ x = ca \ | \ x = (v \ fby \ a)^{ck} \\
 & \quad \mid (x, \ldots, x) = (f(a, \ldots, a) \ every \ x)^{ck} \\
 D & ::= \ D \ and \ D \ | \ eq
\end{align*}
\]
Example

\[z = (((((4 \text{ fby } o) \ast 3) \text{ when } \text{True}(c)) + k)^{ck} \text{ on True}(c) \]

and \(o = (\text{merge } c \text{ (True } \rightarrow (5 \text{ fby } (z + 1)) + 2) \)

\[(\text{False } \rightarrow ((6 \text{ fby } x)) \text{ when False}(c)))^{ck} \]

is rewritten into:

\[z = (((t_1 \ast 3) \text{ when } \text{True}(c)) + k)^{ck} \text{ on True}(c) \]

and \(o = (\text{merge } c \text{ (True } \rightarrow t_2 + 2) \)

\[(\text{False } \rightarrow t_3 \text{ when False}(c)))^{ck} \]

and \(t_1 = (4 \text{ fby } o)^{ck} \)

and \(t_2 = (5 \text{ fby } (z + 1))^{ck} \text{ on True}(c) \)

and \(t_3 = (6 \text{ fby } x)^{ck} \)
Intermediate Language

\[
d := \text{class } f = \\
\langle \text{memory } m, \\
\text{instances } j, \\
\text{reset()} \text{ returns } () = S, \\
\text{step}(p) \text{ returns } (p) = \text{var } p \text{ in } S \rangle
\]

\[
S := x := c | \text{state}(x) := c | S; S | \text{skip} \\
| \text{o.reset} | (x, ..., x) = \text{o.step}(c, ..., c) \\
| \text{case } (x) \{ C : S; ...; C : S \}
\]

\[
c := x \mid v \mid \text{state}(x) \mid \text{op}(c, ..., c)
\]

\[
v := C \mid i
\]

\[
j := o : f, ..., o : f
\]

\[
p, m := x : t, ..., x : t
\]
Intermediate Language

- the minimal need to represent transition functions
- we introduce an ad-hoc intermediate language to represent them
- it has an “object-based” flavor (with minimal expressiveness nonetheless)
- static allocation of states only
- it can be trivially translated into a imperative language
- we only need a subset set of C (functions and static allocation of structures, very simple pointer manipulation)
Principles of the translation

- Hierarchical memory model which corresponds to the call graph: one local memory for each function call

- Control-structure (invariant): a computation on clock ck is executed when ck is true

- a guarded equations $x = e^{ck}$ translates into a control-structure

E.g., the equation:

$$x = (y + 2)^{\text{base on } C_1(x_1) \text{ on } C_2(x_2)}$$

is translated into a piece of control-structure:

```
case (x_1) {C_1 : case (x_2) {C_2 : x = y + 2}}
```
• local generation of a control-structure from a clock

\[
Control(\text{base}, S) = S \\
Control(\text{ck on } C(x), S) = Control(\text{ck, case } (x) \{C : S\})
\]

• merge them locally

\[
\text{Join(case } (x) \{C_1 : S_1; \ldots; C_n : S_n\}, \\
\text{case } (x) \{C_1 : S'_1; \ldots; C_n : S'_n\}) \\
= \text{case } (x) \{C_1 : \text{Join}(S_1, S'_1); \ldots; C_n : \text{Join}(S_n, S'_n)\}
\]

\[
\text{Join}(S_1, S_2) = S_1; S_2
\]

• the translation is made on a linear traversal of the sequence of normalized and scheduled equations

• every function defines a machine (a “class”)

• control-optimization: find a static schedule which gather equations guarded by related clocks
Translation

A context \((m, si, j, d, s)\):

- \(m\) is the state memory \([v_1/x_1, \ldots, v_n/x_n]\)
- \(si\) is the initialization code (reset method)
- \(j\) is the instance memory \([f_1/o_1, \ldots, f_m/o_m]\)
- \(d\) is the set of local variables
- \(s\) is a sequence of instructions

A few mutually recursive functions:

- \(TE_{(m,si,j,d,s)}(e)\) translates an expression in context \((m, si, j, d, s)\)
- \(TA_{(m,si,j,d,s)}(x, e^{ck})\) translates an expression storing the result in \(x\)
- \(TEq_{(m,si,j,d,s)}(eq)\) for equations
- \(TEqList_{(m,si,j,d,s)}(eqlist)\) for a list of equations
A few definitions (see paper [APGES07] for details)

\[TA_{(m, si, j, d, s)}(x, e^c) = (m, si, j, d, Control(ck, x := TE_{(m, si, j, d, s)}(e))) \]

\[TEq_{(m, si, j, d, s)}(x = ca) = TA_{(m, si, j, d, s)}(x, ca) \]

\[TEq_{(m, si, j, d+[x:t], s)}(x = (v \text{ fiby } a)^c) = \text{let } c = TE_{(m, si, j, d, s)}(a) \text{ in} \]

\[(m + [x:t], [\text{state}(x) := v]@si, j, d, \text{[Control}(ck, \text{state}(x) := c]@s) \]
Example

node count (x : int; z : bool) returns (o : int);
var
 i : bool; o2:int;
let
 i = true fby false;
 o = merge i (true -> (x + o2) when true(i))
 (false -> (0 fby o + 1) when false(i));
 o2 = merge i (true -> (42 fby (o when true(i))) + 1)
 (false -> 0);
tel;
class count {
 x_1 : bool; x_3 : int; x_2 : int;

 reset() { mem x_1 = true; mem x_3 = 42; mem x_2 = 0; }

 step(x : int; z : bool) returns (o : int) {
 i : bool; o2 : int;

 i = mem(x_1);
 mem x_1 = false;
 switch (i) {
 case false :
 o2 = 0;
 o = mem(x_2) + 1;
 case true :
 o2 = mem(x_3) + 1;
 o = x + o2;
 mem x_3 = o;
 }
 mem x_2 = o; } }
Example (modularity)

- each function is compiled separately
- a function call needs a local memory

```plaintext
node count(x:int) returns (o:int);
let
  o = 0 fby o + x;
 tel;

node condact(c:bool;input:int) returns (o:int);
let
  o = merge c (true -> count(input when true(c)))
       (false -> (0 fby o) when false(c));
 tel;
```
class conduct {
 x_2 : int; x_4 : count;

 reset() {
 x_4.reset();
 mem x_2 = 0;
 }

 step(c : bool; input : int) returns (o : int) {
 x_3 : int;

 switch (c) {
 case true :
 (x_3) = x_4.step(input);
 o = x_3;
 case false :
 o = mem(x_2);
 };
 mem x_2 = o; }
}
MiniLustre in Numbers

<table>
<thead>
<tr>
<th>Administrative code</th>
<th>Abstract syntax + printers</th>
<th>335</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lexer&Parser</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>main (misc, symbol tables, loader)</td>
<td>285</td>
</tr>
<tr>
<td>Basis</td>
<td>graph</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>scheduling</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>type checking</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>clock checking</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>causality check</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>normalization</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>translate (to ob)</td>
<td>132</td>
</tr>
<tr>
<td>Emitters to concrete languages</td>
<td>(C, Java and Caml)</td>
<td>around 300 each</td>
</tr>
<tr>
<td>Optimizations</td>
<td>Inline + reset</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Dead-code Removal</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Data-flow network minimization</td>
<td>162</td>
</tr>
</tbody>
</table>
Extensions (towards a full language)

Purely DataFlow Language
+ automata, signals, loop iteration, richer clocks, etc.

Clocked DataFlow Language

- extend the source language with new programming constructs
- translation semantics into the basic data-flow language
- this is essentially the approach we have followed previously (Lucid Synchrone, ReLuC compiler of SCADE)
- clocks play a central role
- simple and gives very good code
- reuse of the existing code generator (adequate in the context of a certification process)

Question: What about polymorphism and higher-order?
Formal Certification (Coq programming)

In parallel, we have done:

• an implementation of MiniLustre in the programming language of Coq (1500 loc)

• extracted caml code + hand-coded caml code to get the compiler

• type and clock inference also done

We are currently working on the semantics and proof of equivalence between the source language and the intermediate language
Semantics

We (finally) choose a “reaction semantics” (in SOS style) for the source language

Values:

\[w^+ ::= w | (w^+, \ldots, w^+) \]

\[w ::= \text{abs} | v \]

Reaction Environment:

\[R ::= [w_1/x_1, \ldots, w_n/x_n] \quad (i \neq j \Rightarrow x_i \neq x_j) \]

Reaction:

\[R \vdash_{ck} e_1 \xrightarrow{w^+} e_2 \quad R \vdash D \xrightarrow{R'} D' \]

Lemma 1 (Normalization)

If \(D_N \in \text{Norm}(D) \) then \(R \vdash D \xrightarrow{R'} D' \) then

\[R \vdash D_N \xrightarrow{R'} D'_N \wedge D'_N \in \text{Norm}(D') \]

Lemma 2 (Scheduling)

If \(D_S \in \text{Sch}(D) \) then \(R \vdash D \xrightarrow{R'} D' \) then

\[R \vdash D_S \xrightarrow{R'} D'_S \wedge D'_S \in \text{Sch}(D) \]

We define the predicate \(R \vdash_{seq} D \xrightarrow{R'} D' \) for normalized and scheduled equations; \(\text{Init}(D) \) gives the initial state (left part of \(\text{fby} \)).

Lemma 3 (Sequential computation)

If \(D_S \in \text{Sch}(\text{Norm}(D)) \) then \(R, R' \vdash D \xrightarrow{R'} D' \) iff

\[R, \text{Init}(D) \vdash_{seq} D_S \xrightarrow{R_0} D'_S \wedge D'_S \in \text{Sch}(\text{Norm}(D')) \wedge R' = \text{Init}(D_S), R_0 \]
Semantics for the Intermediate Language

An operational one (in SOS style two). No fix-point.

\[\rho ::= [v_1/x_1; \ldots; v_m/x_n] \text{ where } x_i \neq x_j \text{ for all } i \neq j \]

and

\[m ::= [v_1/x_1; \ldots; v_n/x_n] \]
\[j ::= [O_1/o_1; \ldots; O_m/o_m] \]
\[M ::= \langle m, j \rangle \]
\[O ::= \langle M, \text{reset} = S, \text{step} = \lambda p.q \text{ with } S \rangle \]

Two predicate:

- \(M, \rho \vdash e \Downarrow v \): \(e \) evaluates to \(v \) in \(M \) and \(\rho \)

- \(M, \rho \vdash S \Downarrow \rho', M' \) for instructions

Prove the preservation of semantics for the translation function.
Conclusion

Current

- a reference (small) MiniLustre compiler has been implemented
- semantics “on paper” (source and intermediate language) and semantics preservation of the translation

Future (relatively close)

- Coq development of the semantics preservation
- finish the Coq programming of the reference compiler (combines translation validation (e.g., scheduling) and certified compilation)

Future (longer term)

- mixed systems (data-flow systems + mode-automata)
- source-to-source transformation into the data-flow system
- translation semantics (as done in ReLuC [EMSOFT’05, EMSOFT’06])
- the reference implementation MiniLustre has been done accordingly (about 300 extra lines of Caml code)