MiniLustre mais il fait le Maximum!

or

Towards the Development of a Certified Compiler for Lustre

Marc Pouzet
Université Paris-Sud 11 & INRIA Proval
Orsay

Workshop SYNCHRON
Bamberg, nov. 27th, 2007

Joint work with Dariusz Biernacki, Jean-Louis Colaço and Grégoire Hamon
A Certified compiler for SCADE/Lustre

Implement a verified compiler for a synchronous data-flow language with the help of the proof assistant Coq

Combines certified compilation and translation validation

Certified translation

- Write a compilation function $C : L_1 \rightarrow L_2$ in Coq with its proof of semantics preservation
- natural for local program transformation (e.g., data-flow to sequential code)

Translation validation

- Write C independently (e.g., in Caml) and a validation function $V : L_1 \times L_2 \rightarrow \text{bool}$ with its proof of semantics preservation
- easier for non local transformation (e.g., type or clock inference, find a clever scheduling of equation, memory optimization)

See Xavier Leroy’s work for a discussion on pros and cons of both
Motivations (first step)

First build a reference compiler, as small as possible, purely functional (as much as possible) and based on local rewriting rules.

Focus on synchronous block-diagrams as found in Lustre/SCADE or (a subset of) Simulink.

- formalize the code generation into imperative sequential code (e.g., C)
- as small as possible but realistic (the code should be efficient)
- make it modular, i.e., the definition of a stream function is compiled once for all

as a way to:

- build a certified compiler inside a Proof assistant
- complement previous works on the extension/formalization of synchronous languages
Code Generation

Principle:

A stream function $f : \text{Stream}(T) \rightarrow \text{Stream}(T')$ is compiled into a pair:

- an initial state and a transition function: $\langle s_0 : S, f_t : S \times T \rightarrow T' \times S \rangle$

A stream equation $y = f(x)$ is computed sequentially by $y_n, s_{n+1} = f_t(s_n, x_n)$

An alternative (more general) solution:

- an initial state: $s_0 : S$
- a value function: $f_v : S \times T \rightarrow T'$
- a state modification ("commit") function: $f_s : S \times T \rightarrow S'$

Final remarks:

- this generalises to MIMO systems
- in actual implementations, states are modified in place
- synchrony finds a very practical justification here: a data-flow can be implemented as a single scalar variable
Modular Code Generation

• produce a transition function for each block definition

• compose them together to produce the main transition function

• static scheduling following data-dependences

But modular code generation is not always feasible even in the absence of causality loops

\[(y, z) = f(t, y)\]

This observation has led to two different approaches to the compilation problem
Two Traditional Approaches

Non Modular Code Generation

- full static inlining before code generation starts
- enumeration techniques into (very efficient) automata ([Halbwachs et all., Raymond PhD. thesis, POPL 87, PLILP 91])
- keeps maximal expressiveness but at the price of modular compilation and the size of the code may explode
- finding the adequate boolean variables to get efficient code in both code and size is difficult

Modular code generation

- mandatory in industrial compilers
- no preliminary inlining (unless requested by the user)
- imposes stronger causality constraints: every feedback loop must cross an explicit delay
- well accepted by SCADE users and justified by the need for tracability
Proposal

- a compiler where everything can be “traced” with a precise semantics for every intermediate language

- introduce a basic **clocked** data-flow language as the input language

- general enough to be used as a input language for Lustre

- be a “good” input language for modern ones (e.g., mix of automata and data-flow as found in SCADE 6 or Simulink/StateFlow)

- provides a slightly more general notion of clocks

- and a reset construct

- compilation through an intermediate “object based” intermediate language to represent transition function

- provide a translation into imperative code (e.g., structured C, Java)
Organisation of the Compiler

Static checking Translation EmitC

ClockedFlowKernel Annotated DK OBL Structured C
Static Checking

Type checking Clock checking

CDK → CDK+Types → CDK+Types+Clocks

Causality Check

CDK+Types+Clocks

Initialization Check

CDK+Types+Clocks
A Clocked Data-flow Basic Language
A data-flow kernel where every expression is explicitly annotated with its clock

\[a ::= e^{ct} \]

\[e ::= v \mid x \mid v \text{ fby } a \mid a \text{ when } C(x) \mid (as) \]
\[\mid op(a, ..., a) \mid f(a, ..., a) \text{ every } a \]
\[\mid \text{merge } x (C' \rightarrow a) \ldots (C' \rightarrow a) \]

\[D ::= \text{pat} = a \mid D \text{ and } D \]
\[pat ::= x \mid (\text{pat}, ..., \text{pat}) \]
\[d ::= \text{node } f(p) = p \text{ with var } p \text{ in } D \]
\[p ::= x : bt; \ldots; x : bt \]
\[td ::= \text{type } bt \mid \text{type } bt = C + \ldots + C \]
\[v ::= C \mid i \]
\[ck ::= \text{base} \mid ck \text{ on } C(x) \]
\[ct ::= ck \mid ct \times \ldots \times ct \]
Informal Semantics

<table>
<thead>
<tr>
<th>h</th>
<th>True</th>
<th>False</th>
<th>True</th>
<th>False</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>...</td>
</tr>
<tr>
<td>y</td>
<td>y_0</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>...</td>
</tr>
<tr>
<td>$v fby x$</td>
<td>v</td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>...</td>
</tr>
<tr>
<td>$x + y$</td>
<td>$x_0 + y_0$</td>
<td>$x_1 + y_1$</td>
<td>$x_2 + y_2$</td>
<td>$x_3 + y_3$</td>
<td>...</td>
</tr>
<tr>
<td>$z = x \text{ when } \text{True}(h)$</td>
<td>x_0</td>
<td></td>
<td>x_2</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>$t = y \text{ when } \text{False}(h)$</td>
<td></td>
<td></td>
<td></td>
<td>y_1</td>
<td>y_3</td>
</tr>
<tr>
<td>merge h</td>
<td>x_0</td>
<td></td>
<td>y_1</td>
<td></td>
<td>x_2</td>
</tr>
</tbody>
</table>

$(\text{True} \rightarrow z)$

$(\text{False} \rightarrow t)$

- z is at a slower rate than x. We say its clock is ck on $\text{True}(h)$
- The `merge` construct needs its two arguments to be on complementary clocks
- Statically checked through a dedicated type system (clock calculus)
Derived Operators

if \(x \) then \(e_2 \) else \(e_3 \) = merge \(x \)

\[(\text{True} \rightarrow e_2 \text{ when } \text{True}(x)) \]
\[(\text{False} \rightarrow e_3 \text{ when } \text{False}(x)) \]

\(y = e_1 \rightarrow e_2 \) = \(y = \text{if } \text{init} \text{ then } e_1 \text{ else } e_2 \)

and \(\text{init} = \text{True} \) fby \(\text{False} \)

pre(\(e \)) = nil fby \(e \)

Example (counter)

node counting (tick:bool; top:bool) = (o:int) with
var \(v: \text{int} \) in
\[o = \text{if } \text{tick} \text{ then } v \text{ else } 0 \rightarrow \text{pre } o + v \]
and \(v = \text{if } \text{top} \text{ then } 1 \text{ else } 0 \)
N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to produce a faster one:

Example: `merge c (a when c) (b whennot c)`

Generalization:

- can be generalized to n inputs with a specific extension of clocks with enumerated types
- the sampling e when c is now written e when $True(c)$
- the semantics extends naturally and we know how to compile it efficiently
- thus, a good basic for compilation

introduced in Lucid Synchrone V1 (1996), input language of ReLuC
Reseting a behavior

• in SCADE/Lustre, the “reset” behavior of an operator must be explicitely designed with a specific reset input

```plaintext
node count() returns (s:int);
let
  s = 0 fby s + 1
tel;
```

```plaintext
node resetable_counter(r:bool) returns (s:int);
let
  s = if r then 0 else 0 fby s + 1;
tel;
```

• painful to apply on large model

• propose a primitive that applies on node instance and allow to reset any node (no specific design condition)
Modularity and reset

Specific notation in the basic calculus: \(f(a_1, \ldots, a_n) \) every \(c \)

- all the node instances used in the definition of node \(x \) are reseted when the boolean \(c \) is true
- the reset is “asynchronous”: no clock constraint between the condition \(c \) and the clock of the node instance

is-it a primitive construct? yes and no

- modular translation of the basic language with reset into the basic language without reset ([PPDP00], with G. Hamon)
- essentially a translation of the initialization operator \(\rightarrow \)
- \(e_1 \rightarrow e_2 \) becomes \(\text{if } c \text{ then } e_1 \text{ else } e_2 \)
- very demanding to the code generator whereas it is trivial to compile!
- useful translation for verification tools, basic for compilation
- thus, a good basic for compilation
Translation

Annotated CDK

Normalization

data-flow transformations
(CSE, Constant Prop.)
Inlining

Annotated CDK
(normalized)

Local Transformation
+ (naive to clever) scheduling

ObjBasedLanguage

EmitC

Structured C
Syntactic Dependences and Scheduling

Programs which cannot be statically scheduled are rejected during the causality analysis

- we define $\text{Left}(e)$ for the list of variables from e which are free in e and not as an argument of a delay fbY

- $\text{Left}(D)$ is the union of such variables for any expression of D

- for any $\text{pat} = a$ from D, any variable from pat depends on $\text{Left}(D)$

- the transitive closure defines the notion of static dependence (Halbwachs et al, [PLILP 91])

- the program can be statically scheduled if there is no cycle

- simple inductive definitions (see [APGES 07] paper)

- an equation $x = v \text{fbY} y + 2$ is executed after every equations using x

Remark: several classical “graph based” optimization can be applied on this data-flow kernel

- Common Sub-expression Elimination, Constant Propagation, Inlining
Putting Equations in Normal Form

- prepare equations before the translation
- extract delays from nested expressions by a linear traversal
- Equations are transformed such that delays are extracted from nested computation.

Normal Form:

\[
\begin{align*}
a & ::= e^{ck} \\
e & ::= a \text{ when } C(x) | op(a, ..., a) | x | v \\
ce & ::= \text{merge } x \ (C \rightarrow ca) \ ... \ (C' \rightarrow ca) | e \\
ca & ::= ce^{ck} \\
eq & ::= \ x = ca | x = \ (v \ \text{fby a})^{ck} \\
& \quad | \ (x, ..., x) = (f(a, ..., a) \ \text{every } x)^{ck} \\
D & ::= D \ \text{and} \ D \ | \ eq
\end{align*}
\]
Example

\[z = (((4 \text{ fby } o) \ast 3) \text{ when } \text{True}(c)) + k)^{ck \text{ on True}(c)} \]
and \(o = (\text{merge } c \ (\text{True} \rightarrow (5 \text{ fby } (z + 1)) + 2) \]
\[\text{(False} \rightarrow ((6 \text{ fby } x)) \text{ when False}(c)))^{ck} \]

is rewritten into:

\[z = ((((t_1 \ast 3) \text{ when } \text{True}(c)) + k)^{ck \text{ on True}(c)} \]
and \(o = (\text{merge } c \ (\text{True} \rightarrow t_2 + 2) \]
\[\text{(False} \rightarrow t_3 \text{ when False}(c)))^{ck} \]

and \(t_1 = (4 \text{ fby } o)^{ck} \]
and \(t_2 = (5 \text{ fby } (z + 1))^ {ck \text{ on True}(c)} \]
and \(t_3 = (6 \text{ fby } x)^{ck} \]
Intermediate Language

\[d ::= \text{class } f = \]
\[
\langle \text{memory } m, \]
\[
\text{instances } j, \]
\[
\text{reset()} \text{ returns } () = S, \]
\[
\text{step}(p) \text{ returns } (p) = \text{var } p \text{ in } S \rangle \]

\[S ::= x := c \mid \text{state}(x) := c \mid S ; S \mid \text{skip} \]
\[
| o.\text{reset} \mid (x, ..., x) = o.\text{step}(c, ..., c) \]
\[
| \text{case } (x) \{ C : S; ...; C : S \} \]

\[c ::= x \mid v \mid \text{state}(x) \mid \text{op}(c, ..., c) \]

\[v ::= C \mid i \]

\[j ::= o : f, ..., o : f \]

\[p, m ::= x : t, ..., x : t \]
Intermediate Language

- the minimal need to represent transition functions
- we introduce an ad-hoc intermediate language to represent them
- it has an “object-based” flavor (with minimal expressiveness nonetheless)
- static allocation of states only
- it can be trivially translated into an imperative language
- we only need a subset set of C (functions and static allocation of structures, very simple pointer manipulation)
Principles of the translation

- Hierarchical memory model which corresponds to the call graph: one local memory for each function call

- Control-structure (invariant): a computation on clock ck is executed when ck is true

- A guarded equations $x = e^{ck}$ translates into a control-structure

E.g., the equation:

$$x = (y + 2)_{\text{base on } C_1(x_1) \text{ on } C_2(x_2)}$$

is translated into a piece of control-structure:

$$\text{case } (x_1) \{ C_1 : \text{case } (x_2) \{ C_2 : x = y + 2 \} \}$$
• local generation of a control-structure from a clock

\[Control(\text{base}, S) = S \]
\[Control(ck \text{ on } C(x), S) = Control(ck, \text{ case } (x) \{ C : S \}) \]

• merge them locally

\[Join(\text{case } (x) \{ C_1 : S_1; \ldots; C_n : S_n \}, \]
\[\text{case } (x) \{ C_1 : S'_1; \ldots; C_n : S'_n \}) \]
\[= \text{case } (x) \{ C_1 : Join(S_1, S'_1); \ldots; C_n : Join(S_n, S'_n) \} \]
\[Join(S_1, S_2) = S_1; S_2 \]

• the translation is made on a linear traversal of the sequence of normalized and scheduled equations

• every function defines a machine (a “class”)

• control-optimization: find a static schedule which gather equations guarded by related clocks
A context \((m, si, j, d, s)\):

- \(m\) is the state memory \([v_1/x_1, \ldots, v_n/x_n]\)
- \(si\) is the initialization code (reset method)
- \(j\) is the instance memory \([f_1/o_1, \ldots, f_m/o_m]\)
- \(d\) is the set of local variables
- \(s\) is a sequence of instructions

A few mutually recursive functions:

- \(TE(m, si, j, d, s)(e)\) translates an expression in context \((m, si, j, d, s)\)
- \(TA(m, si, j, d, s)(x, e^{ck})\) translates an expression storing the result in \(x\)
- \(TEq(m, si, j, d, s)(eq)\) for equations
- \(TEqList(m, si, j, d, s)(eq\text{list})\) for a list of equations
A few definitions (see paper [APGES07] for details)

\[TA_{(m,si,j,d,s)} (x, e^{ck}) = (m, si, j, d, Control(ck, x := TE_{(m,si,j,d,s)} (e))) \]

\[TEq_{(m,si,j,d,s)} (x = ca) = TA_{(m,si,j,d,s)} (x, ca) \]

\[TEq_{(m,si,j,d+[x:t],s)} (x = (v \downarrow by \ a)^{ck}) = let \ c = TE_{(m,si,j,d,s)} (a) in \]
\[(m + [x : t], [state(x) := v]@si, j, d, [Control(ck, state(x) := c)]@s) \]
Example

node count (x : int; z : bool) returns (o : int);
var
 i : bool; o2:int;
let
 i = true fby false;
 o = merge i (true -> (x + o2) when true(i))
 (false -> (0 fby o + 1) when false(i));
 o2 = merge i (true -> (42 fby (o when true(i))) + 1)
 (false -> 0);
 tel;
class count {
 x_1 : bool; x_3 : int; x_2 : int;

 reset() { mem x_1 = true; mem x_3 = 42; mem x_2 = 0; }

 step(x : int; z : bool) returns (o : int) {
 i : bool; o2 : int;

 i = mem(x_1);
 mem x_1 = false;
 switch (i) {
 case false :
 o2 = 0;
 o = mem(x_2) + 1;
 case true :
 o2 = mem(x_3) + 1;
 o = x + o2;
 mem x_3 = o;
 };
 mem x_2 = o; }
}
Example (modularity)

- each function is compiled separately
- a function call needs a local memory

```plaintext
def count(x: int) returns (o: int):
    let
        o = 0 fby o + x;
    tel;

def condact(c: bool; input: int) returns (o: int):
    let
        o = merge c (true -> count(input when true(c)))
            (false -> (0 fby o) when false(c));
    tel;
```
class contact {
 x_2 : int; x_4 : count;

 reset() {
 x_4.reset();
 mem x_2 = 0;
 }

 step(c : bool; input : int) returns (o : int) {
 x_3 : int;

 switch (c) {
 case true :
 (x_3) = x_4.step(input);
 o = x_3;
 case false :
 o = mem(x_2);
 };
 mem x_2 = o; }
MiniLustre in Numbers

<table>
<thead>
<tr>
<th>Administrative code</th>
<th>335</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract syntax + printers</td>
<td></td>
</tr>
<tr>
<td>Lexer&Parser</td>
<td>546</td>
</tr>
<tr>
<td>main (misc, symbol tables, loader)</td>
<td>285</td>
</tr>
<tr>
<td>Basis</td>
<td></td>
</tr>
<tr>
<td>graph</td>
<td>74</td>
</tr>
<tr>
<td>scheduling</td>
<td>67</td>
</tr>
<tr>
<td>type checking</td>
<td>269</td>
</tr>
<tr>
<td>clock checking</td>
<td>190</td>
</tr>
<tr>
<td>causality check</td>
<td>30</td>
</tr>
<tr>
<td>normalization</td>
<td>95</td>
</tr>
<tr>
<td>translate (to ob)</td>
<td>132</td>
</tr>
<tr>
<td>Emitters to concrete languages</td>
<td></td>
</tr>
<tr>
<td>(C, Java and Caml)</td>
<td>aroun 300 each</td>
</tr>
<tr>
<td>Optimizations</td>
<td></td>
</tr>
<tr>
<td>Inline + reset</td>
<td>250</td>
</tr>
<tr>
<td>Dead-code Removal</td>
<td>42</td>
</tr>
<tr>
<td>Data-flow network minimization</td>
<td>162</td>
</tr>
</tbody>
</table>
Extensions (towards a full language)

Purely DataFlow Language
+ automata, signals, loop iteration, richer clocks, etc.

Clocked DataFlow Language

- extend the source language with new programming constructs
- translation semantics into the basic data-flow language
- this is essentially the approach we have followed previously (Lucid Synchrone, ReLuC compiler of SCADE)
- clocks play a central role
- simple and gives very good code
- reuse of the existing code generator (adequate in the context of a certification process)

Question: What about polymorphism and higher-order?
Formal Certification (Coq programming)

In parallel, we have done:

- an implementation of MiniLustre in the programming language of Coq (1500 loc)
- extracted caml code + hand-coded caml code to get the compiler
- type and clock inference also done

We are currently working on the semantics and proof of equivalence between the source language and the intermediate language.
Semantics

We (finally) choose a “reaction semantics” (in SOS style) for the source language

Values: \[w^+ ::= w | (w^+, \ldots, w^+) \]
\[w ::= \text{abs} | v \]

Reaction Environment: \[R ::= [w_1/x_1, \ldots, w_n/x_n] \quad (i \neq j \Rightarrow x_i \neq x_j) \]

Reaction: \[R \vdash_{ck} e_1 \xrightarrow{w^+} e_2 \quad R \vdash D \xrightarrow{R'} D' \]

Lemma 1 (Normalization) \text{if } D_N \in \text{Norm}(D) \text{ then } R \vdash D \xrightarrow{R'} D' \text{ then } \]
\[R \vdash D_N \xrightarrow{R'} D'_N \land D'_N \in \text{Norm}(D') \]

Lemma 2 (Scheduling) \text{if } D_S \in \text{Sch}(D) \text{ then } R \vdash D \xrightarrow{R'} D' \text{ then } \]
\[R \vdash D_S \xrightarrow{R'} D'_S \land D'_S \in \text{Sch}(D) \]

We define the predicate \[R \vdash_{seq} D \xrightarrow{R'} D' \] for normalized and scheduled equations; \(\text{Init}(D) \) gives the initial state (left part of \(\text{fb} \) by).

Lemma 3 (Sequential computation) \text{if } D_S \in \text{Sch}(\text{Norm}(D)) \text{ then } R, R' \vdash D \xrightarrow{R'} D' \text{ iff } \]
\[R, \text{Init}(D) \vdash_{seq} D_S \xrightarrow{R_0} D'_S \land D'_S \in \text{Sch}(\text{Norm}(D')) \land R' = \text{Init}(D_S), R_0 \]
Semantics for the Intermediate Language

An operational one (in SOS style two). No fix-point.

\[\rho ::= [v_1/x_1; \ldots; v_m/x_n] \text{ where } x_i \neq x_j \text{ for all } i \neq j \]

and

\[m ::= [v_1/x_1; \ldots; v_n/x_n] \]
\[j ::= [O_1/o_1; \ldots; O_m/o_m] \]
\[M ::= \langle m, j \rangle \]
\[O ::= \langle M, \text{reset} = S, \text{step} = \lambda p.q \text{ with } S \rangle \]

Two predicate:

- \[M, \rho \vdash e \downarrow v: e \text{ evaluates to } v \text{ in } M \text{ and } \rho \]

- \[M, \rho \vdash S \downarrow \rho', M' \text{ for instructions} \]

Prove the preservation of semantics for the translation function.
Conclusion

Current

- a reference (small) MiniLustre compiler has been implemented
- semantics “on paper” (source and intermediate language) and semantics preservation of the translation

Future (relatively close)

- Coq development of the semantics preservation
- finish the Coq programming of the reference compiler (combines translation validation (e.g., scheduling) and certified compilation)

Future (longer term)

- mixed systems (data-flow systems + mode-automata)
- source-to-source transformation into the data-flow system
- translation semantics (as done in ReLuC [EMSOFT’05, EMSOFT’06])
- the reference implementation MiniLustre has been done accordingly (about 300 extra lines of Caml code)