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Hybrid Systems Modelers

Program complex discrete systems and
their physical environments in a single language

Many tools exist

» Simulink/Stateflow, LabVIEW, Modelica, Ptolemy, ...

Focus on programming language issues to improve safety
Our proposal

» Build a hybrid modeler on top of a synchronous language
> Recycle existing techniques and tools

» Clarify underlying principles and guide language design/semantics



Typical system
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Discrete controller

» Dataflow equations

» Hierarchical automata

Physical environment
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Reuse existing tools and techniques

Synchronous languages (SCADE/Lustre)

» Widely used for critical systems design and implementation

» mathematically sound semantics
» certified compilation (DO178C)

» Expressive language for both discrete controllers and mode changes

Off-the-shelf ODEs numeric solvers
» Sundials CVODE (LLNL) among others, treated as black boxes

» Exploit existing techniques and (variable step) solvers

A conservative extension:
Any synchronous program must be compiled,
optimized, and executed as per usual



Type systems to separate continuous from discrete

What is a discrete step?

» Reject unreasonable parallel compositions
» Ensure by static typing that discrete changes occur on zero-crossings

» Statically detect causality loops, initialization issues

Simulation engine

l [reinitialize]
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Compiler architecture
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Built on an existing synchronous compiler v
» Source-to-source and traceable transformations PR
» Resulting program is synchronous and translated to v
sequential code discrete
zero-crossing
code present/
generation signals
. R ODEs variable
scheduling |« optimization last/fby/— |« el completion




Comparison with existing tools

Simulink /Stateflow (Mathworks)

> Integrated treatment of automata vs two distinct languages

» More rigid separation of discrete and continuous behaviors

Modelica
» Do not handle DAEs

» Our proposal for automata will be integrated into new version 3.4
Ptolemy (E.A. Lee et al., Berkeley)

» A unique computational model: synchronous

» Everything is compiled to sequential code (not interpreted)
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Hybrid simulation run-time

Programming embedded systems and | [reinitialize]
their environments in the same language

» A Lustrelike language with O pope Spproximate

+ Dedicated type systems to separate discrete PR\

time from continuous time behaviors. The Type system \ /3 \ P sondee
+ A compiler architecture based on c A \
source-to-source transformations.
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