Zélus: a synchronous language with ODEs

Timothy Bourke®? Marc Pouzet?!

1. INRIA Paris-Rocquencourt

2. Ecole normale supérieure (DI)

http://www.di.ens.fr/ParkasTeam.html

informatics, , ‘mathematics

zla—

HSCC 2013, CPS Week, April 8-11, Philadelphia, USA

http://www.di.ens.fr/ParkasTeam.html

Hybrid Systems Modelers

Program complex discrete systems and
their physical environments in a single language

Many tools exist

» Simulink/Stateflow, LabVIEW, Modelica, Ptolemy, ...

Focus on programming language issues to improve safety
Our proposal

» Build a hybrid modeler on top of a synchronous language
> Recycle existing techniques and tools

» Clarify underlying principles and guide language design/semantics

Typical system

oot)

discrete controller —

Discrete controller

» Dataflow equations

» Hierarchical automata

Physical environment

pull() on (not segin)

» ODEs with reset

der v = (0.7 /. maxf) *. error init 0.0 reset hit(v0) — vO

» Hierarchical hybrid automata

!

rate = 0.0

push() on (not segout) Q)atlimit

rate = maxf
atlimit = up(angle — max)

Y

atlimit() on (last v > 0.3 * maxf)
7 emit hit = —0.8 * last v

rate = —maxf
atlimit = up(min — angle)

Y

atlimit() on (last v < —0.3 * maxf)
/ emit hit = —0.8 * last v

atlimit()

Reuse existing tools and techniques

Synchronous languages (SCADE/Lustre)

» Widely used for critical systems design and implementation

» mathematically sound semantics
» certified compilation (DO178C)

» Expressive language for both discrete controllers and mode changes

Off-the-shelf ODEs numeric solvers
» Sundials CVODE (LLNL) among others, treated as black boxes

» Exploit existing techniques and (variable step) solvers

A conservative extension:
Any synchronous program must be compiled,
optimized, and executed as per usual

Type systems to separate continuous from discrete

What is a discrete step?

» Reject unreasonable parallel compositions
» Ensure by static typing that discrete changes occur on zero-crossings

» Statically detect causality loops, initialization issues

Simulation engine

l [reinitialize]

reaction °-° integrate

zero-crossing event

o' =d,(t,y) upz=g,(t.y) y="1(ty)

Compiler architecture

lexing/ . f | causality/ o R
parsing > typing > initialization > |n||n|ng »| automata
normalize
let/in
Built on an existing synchronous compiler v
» Source-to-source and traceable transformations PR
» Resulting program is synchronous and translated to v
sequential code discrete
zero-crossing
code present/
generation signals
. R ODEs variable
scheduling |« optimization last/fby/— |« el completion

Comparison with existing tools

Simulink /Stateflow (Mathworks)

> Integrated treatment of automata vs two distinct languages

» More rigid separation of discrete and continuous behaviors

Modelica
» Do not handle DAEs

» Our proposal for automata will be integrated into new version 3.4
Ptolemy (E.A. Lee et al., Berkeley)

» A unique computational model: synchronous

» Everything is compiled to sequential code (not interpreted)

Zélus: A Synchronous Language with ODEs
Timothy Bourke Marc Pouzet

INRIA Team PARKAS, Ecole normale supérieure (Paris, France)
http://www.di.ens.fr/ParkasTeam.html

Hybrid simulation run-time

Programming embedded systems and | [reinitialize]
their environments in the same language

» A Lustrelike language with O pope Spproximate

+ Dedicated type systems to separate discrete PR\

time from continuous time behaviors. The Type system \ /3 \ P sondee
+ A compiler architecture based on c A \
source-to-source transformations.

20mi

» Simulate with an of

570 mihe

Hybrid Systems: Computation and Control
9-11 April 2013
Philadelphia, USA

2
2
s
£
3
2
g
2
3
s
3
S
g
B}
=
&
@
g
3
?
2
@
g
3
g
o
2
z
4
&
5
2
£
S
o

