A Conservative Extension of Synchronous Data-flow with State Machines

Marc Pouzet
LRI
Marc.Pouzet@lri.fr

Journées FAC
15 – 16 mars 2007
Toulouse

Joint work with Jean-Louis Colaço, Grégoire Hamon and Bruno Pagano
A Bit of History

Around 1984, several groups introduced domain-specific languages to program/design control embedded systems.

- **Lustre** (Caspi & Halbwachs, Grenoble): data-flow (block diagram) formalisms with functional (deterministic) semantics;

- **Signal** (Benveniste & Le Guernic, Rennes): data-flow formalisms with relational (non-deterministic) semantics to model also under-specified systems;

- **Esterel** (Berry & Gonthier, Sophia): hierarchical automata and process algebra (and SCCS flavor)

All these languages were recognised to belong to the same family, sharing the same synchronous model of time.
The Synchronous Model of Time

- a global logical time scale shared by all the processes;
- every event can be tagged according to this global time scale;
- parallel processes all agree on the presence/absence of events during those instants;
- parallel process do not fight for resources (as opposed to time-sharing concurrency): $P || Q$ means that P and Q (virtually) run in parallel;
- this reconcile parallelism and determinism

maximal reaction time $\max_{n \in \mathbb{N}}(t_n - t_{n-1}) \leq \text{bound}$
Extension Needs for Synchronous Tools

Around 1995, with Paul Caspi, we identified several "language" needs in synchronous tools

- modularity (libraries), abstraction mechanisms
- how to mix dataflow (e.g., Lustre) and control-flow (e.g., Esterel) in a unified way?
- language-based approach (vs verification) in order to statically guarantee some properties at compile time: type and clock inference (mandatory in a graphical tool), absence of deadlocks, etc.
- links with classical techniques from type theory (e.g., mathematical proof of programs, certification of a compiler)
The origins of Lucid Synchrone

What are the relationships between:

- Kahn Process Networks
- Synchronous Data-flow Programming (e.g., Lustre)
- (Lazy) Functional Programming (e.g., Haskell)
- Types and Clocks
- State machines and stream functions

What can we learn from the relationships between synchronous and functional programming?
Lucid Synchrone

Build a laboratory language to investigate those questions

- study extensions for SCADE/Lustre
- experiment things and write programs!
Milestones

• Synchronous Kahn Networks [ICFP’96]
• Clocks as types [ICFP’96]
• Compilation (co-induction vs co-iteration) [CMCS’98]
• Clock calculus à la ML [Emsoft’03]
• Causality analysis [ESOP’01]
• Initialization analysis [SLAP’03, STTT’04]
• Higher-order and typing [Emsoft’04]
• Mixing data-flow and state machines [EMSOFT’05, EMSOFT’06]]
• N-Synchronous Kahn Networks [EMSOFT’05, POPL’06]
Some examples (V3)

- \texttt{int} denotes the type of integer streams,
- \texttt{1} denotes the (infinite) constant stream of 1,
- usual primitives apply point-wise

\begin{tabular}{c|cccc}
 c & t & f & t & \ldots \\
 \hline
 x & x_0 & x_1 & x_2 & \ldots \\
 \hline
 y & y_0 & y_1 & y_2 & \ldots \\
 \hline
 if c then x else y & x_0 & y_1 & x_2 & \ldots \\
\end{tabular}
Combinatorial functions

Example: 1-bit adder

let xor x y = (x & not (y)) or (not x & y)

let full_add(a, b, c) = (s, co)
 where
 s = (a xor b) xor c
 and co = (a & b) or (b & c) or (a & c)

The compiler automatically infer the type and clock signature.

val full_add : bool * bool * bool -> bool * bool
val full_add :: 'a * 'a * 'a -> 'a * 'a
Full Adder (hierarchical)

Compose two “half adder”

let half_add(a, b) = (s, co)
where
 s = a \text{xor} b
 and co = a \text{and} b

Instantiate it twice

let full_add(a, b, c) = (s, co)
where
 (s1, c1) = half_add(a, b)
 and (s, c2) = half_add(c, s1)
 and co = c1 \text{or} c2
Temporal operators

Operators $\text{fby, } \rightarrow, \text{pre}$

- fby: unit initialized delay
- \rightarrow: stream initialization operator
- pre: non initialized delay (register)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td>y_0</td>
<td>y_1</td>
<td>y_2</td>
<td>\ldots</td>
</tr>
<tr>
<td>$x \text{ fby } y$</td>
<td>x_0</td>
<td>y_0</td>
<td>y_1</td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>$\text{pre } x$</td>
<td>nil</td>
<td>x_0</td>
<td>x_1</td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>$x \rightarrow y$</td>
<td>x_0</td>
<td>y_1</td>
<td>y_2</td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>
Sequential functions

- Functions may depend on the past (the system has a state)
- Example: edge front detector

```ocaml
let node edge x = x -> not (pre x) & x

val edge : bool => bool
val edge :: 'a -> 'a
```

<table>
<thead>
<tr>
<th>x</th>
<th>t</th>
<th>f</th>
<th>t</th>
<th>t</th>
<th>t</th>
<th>f</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge x</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>...</td>
</tr>
</tbody>
</table>

In the V3, we distinguish combinatorial functions (->) from sequential ones (=>)
Polymorphism (code reuse)

let node delay x = x -> pre x

val delay : 'a => 'a
val delay :: 'a -> 'a

let node edge x = false -> x <> pre x

val edge : 'a => 'a
val edge :: 'a -> 'a

In Lustre, polymorphism is limited to a set of predefined operators (e.g., if/then/else, when) and do not pass abstraction barriers.

Other features: higher-order, data-types, etc.

Question: How to mix data-flow and control-flow in an arbitrary way?
Designing Mixed Systems

Data dominated Systems: continuous and sampled systems, block-diagram formalisms
 - Simulation tools: Simulink, etc.
 - Programming languages: SCADE/Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite State Machine formalisms
 - StateFlow, StateCharts
 - SyncCharts, Argos, Esterel, etc.

What about mixed systems?
 - most system are a mix of the two kinds: systems have “modes”
 - each mode is a big control law, naturally described as data-flow equations
 - a control part switching these modes and naturally described by a FSM
Extending SCADE/Lustre with State Machines

SCADE/Lustre:

- data-flow style with synchronous semantics
- certified code generator

Motivations

- activation conditions between several “modes”
- arbitrary nesting of automata and equations
- well integrated, inside the same language (tool)
- in a uniform formalism (code certification, code quality, readability)
- be conservative: accept all Scade/Lustre and keep the semantics of the kernel
- which can be formally certified (to meet avionic constraints)
- efficient code, keep (if possible) the existing certified code generator
First approach: linking mechanisms

- two (or more) specific languages: one for data-flow and one for control-flow
- “linking” mechanism. A sequential system is more or less represented as a pair:
 - a transition function \(f : S \times I \rightarrow O \times S \)
 - an initial memory \(M_0 : S \)
- agree on a common representation and add some glue code
- this is provided in most academic and industrial tools
- PtolemyII, Simulink + StateFlow, Lustre + Esterel Studio SSM, etc.
An example: the Cruise Control (SCADE V5.1)
Observations

- Automata can only appear at the leaves of the data-flow model: we need a finer integration.
- Forces the programmer to make decisions at the very beginning of the design (what is the good methodology?)
- The control structure is not explicit and hidden in boolean values: nothing indicates that modes are exclusive.
- Code certification?
- Efficiency/simplicity of the code?
- How to exploit this information for program analysis and verification tools?

Can we provide a finer integration of both styles inside a unique language?
Extending Synchronous Data-flow with Automata

[EMSOFT05]

Basis

- Mode-Automata by Maraninchi & Rémond [ESOP98, SCP03]
- SignalGTI (Rutten [EuroMicro95] and Lucid Synchrone V2 (Hamon & Pouzet [PPDP00])

Proposal

- extend a basic clocked calculus with automata constructions
- base it on a translation semantics into well clocked programs; gives both the semantics and the compilation method

Two implementations

- Lucid Synchrone language and compiler
- ReLuC compiler of SCADE at Esterel-Technologies; the basis of SCADE V6 (released in summer 2007)
Semantic principles

- only one set of equations is executed during a reaction
- two kinds of transitions: Weak delayed ("until") or Strong ("unless")
- both can be "by history" (H* in UML) or not (if not, both the SSM and the data-flow in the target state are reseted)
- at most one strong transition followed by a weak transition can be fired during a reaction
- at every instant:
 - what is the current active state?
 - execute the corresponding set of equations
 - what is the next state?
- forbids arbitrary long state traversal, simplifies program analysis, better generated code
Translation semantics into well-clocked programs

- use clocks to give a precise semantics: we know how to compile clocked data-flow programs efficiently
- give a translation semantics into the basic clocked data-flow language;
- clocks are fundamental here: classical one-hot (clock-less) coding (as done for circuits) does not allow to generate good sequential code afterwards
- type and clock preserving source-to-source transformation
 - $T : \text{ClockedBasicCalculus} + \text{Automata} \rightarrow \text{ClockedBasicCalculus}$
 - $H \vdash e : ty \iff H \vdash T(e) : ty$
 - $H \vdash e : cl \iff H \vdash T(e) : cl$
A clocked data-flow basic calculus

Expressions:

\[e ::= C | x | e \text{ fby } e | (e, e) | x(e) \]
\[| x(e) \text{ every } e \]
\[| e \text{ when } C(e) \]
\[| \text{merge } e \ (C \rightarrow e) \ldots (C' \rightarrow e) \]

Equations:

\[D ::= D \text{ and } D | x = e \]

Enumerated types:

\[td ::= \text{type } t | \text{type } t = C_1 + \ldots + C_n | td; td \]

Basics:

- synchronous data-flow semantics, type system, clock calculus, etc.
- efficient compilation into sequential imperative code
N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to produce a faster one:

```
  .. a3  a2  .. a1
  .. b7 b6 b5 b4 b3 b2 b1
```

introduced in Lucid Synchrone V1 (1996), input language of ReLuC

Example: merge c (a when c) (b whennot c)

Generalization:

- can be generalized to *n* inputs with a specific extension of clocks with enumerated types
- the sampling *e when c* is now written *e when True(c)*
- the semantics extends naturally and we know how to compile it efficiently
- thus, a good basic for compilation
Reseting a behavior

- in Scade/Lustre, the “reset” behavior of an operator must be explicitly designed with a specific reset input

```plaintext
let node count () = s where
    rec s = 0 -> pre s + 1
```

```plaintext
let node resetable_counter r = s where
    rec s = if r then 0 else 0 -> pre s + 1
```

- painful to apply on large model

- propose a primitive that applies on node instance and allow to reset any node (no specific design condition)
Modularity and reset

Specific notation in the basic calculus: \(x(e) \) every \(c \)

- all the node instances used in the definition of node \(x \) are reseted when the boolean \(c \) is true

- the reset is “asynchronous”: no clock constraint between the condition \(c \) and the clock of the node instance

is-it a primitive construct? yes and no

- modular translation of the basic language with reset into the basic language without reset [PPDP00]

- essentially a translation of the initialization operator ->

- \(e_1 \rightarrow e_2 \) becomes if true \(c \) then \(e_1 \) else \(e_2 \)

- very demanding to the code generator whereas it is trivial to compile!

- useful translation for verification tools, basic for compilation

- thus, a good basic for compilation
Automata extension

- Scade/Lustre implicit parallelism of data-flow diagrams
- automata can be composed in parallel with these diagrams
- hierarchy: a state can contain a parallel composition of automata and data-flow
- each hierarchy level introduces a new lexical scope for variables
An example: the Franc/Euro converter

In concrete (Lucid Synchrone) syntax:

```
let node converter v c = (euro, fr) where
    automaton
        Franc -> do fr = v and eur = v / 6.55957
            until c then Euro
        | Euro -> do fr = v * 6.55957 and eur = v
            until c then Franc
    end
```

Remark: fr and eur are shared flow but with only one definition at a time
Strong vs Weak pre-emption

Two types of transitions can be considered

let node converter v c = (euro, fr) where
 automaton
 Franc -> do fr = v and eur = v / 6.55957
 unless c then Euro
 | Euro -> do fr = v * 6.55957 and eu = v
 unless c then Franc
 end

• until means that the escape condition is executed after the body has been executed

• unless means that the escape condition is executed before and determines the active state of the reaction
Equations and Expressions in States

- every state defines the current value of a shared flow
- a flow must be defined only once per cycle
- the Lustre “pre” is local to its upper state (\(\text{pre } e\) gives the previous value of \(e\), the last time \(e\) was alive)
- the substitution principle of Lustre is still true at a given hierarchy \(\Rightarrow\) data-flow diagrams make sense!
- the notation \(\text{last } x\) gives access to the latest value of \(x\) in its scope (Mode Automata in the Maraninchi & Rémond sense)
- an absent definition for a shared flow \(x\) is implicitly complemented (i.e., \(x = \text{last } x\))
Mode Automata, a simple example

let node two_modes () = x where
 rec automaton
 Up -> do x = 0 -> last x + 1
 until x = 5 continue Down
 | Down -> do x = last x - 1
 until x = -5 continue Up
 end

Remark: replacing until by unless would lead to a causality error!
The Cruise Control with Scade 6
The extended language

\[
\begin{align*}
e & ::= \cdots | \text{last } x \\
D & ::= D \text{ and } D | x = e \\
& \quad | \text{match } e \text{ with } C \to D \cdots C \to D \\
& \quad | \text{reset } D \text{ every } e \\
& \quad | \text{automaton } S \to u s \cdots S \to u s \\
u & ::= \text{let } D \text{ in } u | \text{do } D \ w \\
s & ::= \text{unless } e \text{ then } S \ s | \text{unless } e \text{ continue } S \ s | \epsilon \\
w & ::= \text{until } e \text{ then } S \ w | \text{until } e \text{ continue } S \ w | \epsilon
\end{align*}
\]
Translation semantics

- several steps in the compiler, each of them eliminating one new construction
- must be preserve type (in the general sense)

Several steps

- compilation of the automaton construction into the control structures (match/with)
- compilation of the reset construction between equations into the basic reset
- elimination of shared memory last x
Translation

\[T(\text{reset } D \text{ every } e) = \text{let } x = T(e) \text{ in CReset}_x T(D) \]

where \(x \not\in \text{fv}(D) \cup \text{fv}(e) \)

\[T(\text{match } e \text{ with } C_1 \to D_1 \ldots C_n \to D_n) = \text{CMatch}(T(e)) \]

\[(C_1 \to (T(D_1), \text{Def}(D_1))) \]

\[\ldots \]

\[(C_n \to (T(D_n), \text{Def}(D_n))) \]

\[T(\text{automaton } S_1 \to u_1 s_1 \ldots S_n \to u_n s_n) = \text{CAutomaton} \]

\[(S_1 \to (T_{S_1}(u_1), T_{S_1}(s_1))) \]

\[\ldots \]

\[(S_n \to (T_{S_n}(u_n), T_{S_n}(s_n))) \]
Static analysis

- They should mimic what the translation does
- Well-typed source programs must be translated into well-typed basic programs

Typing: easy

- Check unicity of definition (SSA form)
- Can we write `last x` for any variable?
- No (in Lucid Synchrone): only shared variables can be accessed through a `last`
- Otherwise, possible confusion with the regular `pre`

Clock calculus: easy under the following conditions

- Free variables inside a state are all on the same clock
- The same for shared variables
- Corresponds exactly to the translation semantics into `merge`
Initialization analysis

More subtle: must take into account the semantics of automata

```plaintext
let node two x = o where
    automaton
    S1 -> do o = 0 -> last o + 1
        until x continue S2
    | S2 -> do o = last o - 1 until x continue S1
end

o is clearly well defined. This information is hidden in the translated program.

let node two x = o where
    o = merge s (S1 -> 0 -> (pre o) when S1(s) + 1)
        (S2 -> (pre o) when S2(s) - 1)
    and
    ns = merge s (S1 -> if x when S1(s) then S2 else S1)
        (S2 -> if x when S2(s) then S1 else S2)
    and
    clock s = S1 -> pre ns
```

36
This program is not well initialized:

let node two x = o where
 automaton
 S1 -> do o = 0 -> last o + 1
 unless x continue S2
 | S2 -> do o = last o - 1
 until x continue S1 end

• we can make a local reasoning
• because at most two transitions are fired during a reaction (strong to weak)
• compute shared variables which are necessarily defined during the initial reaction
• intersection of variables defined in the initial state and variables defined in the successors by a strong transition
• implemented in Lucid Synchrone (soon in ReLuC)
New questions and extensions

A more direct semantics

- the translation semantics is good for compilation but...
- can we define a more “direct” semantics which expresses how the program reacts?
- we introduce a logical reaction semantics

Further extensions

- can we go further in closing the gap between synchronous data-flow and imperative formalisms?
- Parameterized State Machines: this provides a way to pass local information between two states without interfering with the rest of the code
- Valued Signals: these are events tagged with values as found in Esterel and provide an alternative to regular flows when programming control-dominated systems
Parameterized State Machines

- It is often necessary to communicate values between two states upon taking a transition.
- E.g., a setup state communicate initialization values to a run state.

\[
\begin{align*}
\text{Setup} & \quad \text{cond/x<-...} \quad \text{Run}
\end{align*}
\]

- Can we provide a safe mechanism to communicate values between two states?
- Without interfering with the rest of the automaton, i.e.,
- Without relying on global shared variables (and imperative modifications) in states nor transitions?

Parameterized states:

- States can be parameterized by initial values which can be used in turn in the target automaton.
- Preserves all the properties of the basic automata.
A typical example

several modes of normal execution and a failure mode which needs some contextual information

let node controller in1 in2 = out where

 automaton
 | State1 ->
 do out = f (in1, in2)
 until (out > 10) then State2
 until (in2 = 0) then Fail_safe(1, 0)
 | State2 ->
 let rec x = 0 -> (pre x) + 1 in
 do out = g (in1,x)
 until (out > 1000) then Fail_safe(2, x)
 | Fail_safe(error_code, resume_after) ->
 let rec
 resume = resume_after -> (pre resume) - 1 in
 do out = if (error_code = 1) then 0
 else 1000
 until (resume <= 0) then State2
 end
Parameterized states vs global modifications on transitions

Is all that useful?

- **expressiveness?** every parameterized state machine can be programmed with regular state machines using global shared flows
- **efficiency?** depends on the program and code-generator (though parameters only need local memory and are not all alive at the same time)

But this is bad!

- who is still using global shared variables to pass parameters to a function in a general-purpose language?
- passing this information through shared memory would mean having global shared variables to hold it
- they would receive meaningless values during normal execution and be set on the transition itself
- this breaks locality, modularity principles and is error-prone
- making sure that all such variables are set correctly before being use is not trivial
Parameterized states

- we want the language to provide a safer way to pass local information
- complementary to global shared variables and do not replace them
- keep the communication between two states local without interfering with the rest of the automaton
- do not raise initialization problems
- reminiscent to continuation passing style (in functional programming)
- yet, we provide the same compilation techniques (and properties) as in the case of unparameterized state machines (initialization analysis, causality, type and clocks)
Example (encoding Mealy machines)

- reduces the need to have equations on transitions
- adding equations on transitions is feasible but make the model awfully complicated

```
automaton
  ...
  | S(v) -> do o = v unless c1 then T1(o1)
  ... 
  unless cn then Tn(on)
  ... 
end
```
Valued Signals and Signal Pattern Matching

• in a control structure (e.g., automaton), every shared flow must have a value at every instant

• if an equation for x is missing, it keeps implicitly its last value (i.e., $x = \text{last } x$ is added)

• how to talk about absent value? If x is not produced, we want it to be absent

• in imperative formalisms (e.g., Esterel), an event is present if it is explicitly emitted and considered absent otherwise

• can we provide a simple way to achieve the same in the context of data-flow programming?
An example

let node vend drink cost v = (o1, o2) where
 match v >= cost with
 true ->
 do emit o1 = drink
 and o2 = v - cost
 done
 | false ->
 do o2 = v done
end

- o2 is a regular flow which has a value in every branch
- o1 is only emitted when \(v \geq cost \) and is supposed to be absent otherwise
Accessing the value of a valued signal

- the value of a signal is the one which is emitted during the reaction

- what is the value in case where no value is emitted?

- Esterel: keeps the last computed value (i.e., implicitly complement the value with a register)

 `emit S(?A + 1)`

 this is unsafe and raises initialization problems: what is the value if it has never been emitted?

- need extra methodology development rules to guard every access by a test for presence

 `present A then ... emit S(?A + 1) ...`

 provide a programming construct which forbid the access to a signal which is not emitted
Signal pattern matching

- a pattern-matching construct testing the presence of valued signals and accessing their content
- a block structure and only present value can be accessed

let node sum x y = o where
 present
 | x(v) & y(w) -> do emit o = v + w done
 | x(v1) -> do emit o = v1 done
 | y(v2) -> do emit o = v2 done
 | _ -> do done
end
Signals as existential clock types

let node sum x y = o where
 present
 | x(v) & y(w) -> do emit o = v + w done
 | x(v1) -> do emit o = v1 done
 | y(v2) -> do emit o = v2 done
 | _ -> do done
end

- o is partially defined and should have clock \(ck \) on \((x \land y) \lor x \lor y\) if \(x \) and \(y \) are themselves on clock \(ck \)

- giving it the existential type \(\Sigma (c : ck).ck \) on \(c \), that is, “exists \(c \) on clock \(ck \) such that the result is on clock \(ck \) on \(c \) is a correct abstraction
Clock type of a signal: a dependent pair \(ck \text{ sig} = \Sigma (c : ck).ck \text{ on } c \) made of:

- a boolean sequence \(c \) which is itself on clock type \(ck \)
- a sequence sampled on \(c \), that is, with clock type \(ck \) on \(c \)

The flow is boxed with its presence information

- this is a restriction compared to what can provide a synchronous data-flow language equipped with a powerful clock calculus
- but this is the way Esterel valued signal are implemented
- reminiscent to the constraints in Lustre to return the clock of a sampled stream

Clock verification (and inference) only need modest techniques

- box/unbox mechanisms of a Milner type system + extension by Laufer & Odersky for abstract data-types

\[
H \vdash e : ck \text{ on } c
\]

\[
\begin{align*}
\hline
H \vdash \text{emit } x = e : [x : ck \text{ sig}] \\
\hline
\end{align*}
\]
Translation Semantics

- parameterized state machines and signals can be combined in an arbitrary way
- a translation semantics of the extension into a basic language

Example

let node sum \((a, b, r) = o \) where

automaton

| Await \(\rightarrow \) do unless \(a(x) \& b(y) \) then Emit \((x + y) \)
| Emit \((v) \) \(\rightarrow \) do emit \(o = v \) unless \(r \) then Await
• a signal of type t is represented by a pair of type $\text{bool} \times t$

• nil stands for any value with the right type (think of a local stack allocated variable)

let node sum $(a,b,r) = o$ where
match $pnextstate$ with
| Await -> match (a,b) with
 | ((True,x), (True,x)) -> $state = \text{Emit}(x + y)$
 | _ -> $state = \text{Await}$
| Emit(v) -> match r with
 | true -> $state = \text{Await}$
 | false -> $state = \text{Emit}(v)$

and
match $state$ with
| Await -> $o = (\text{False}, \text{nil})$ and $nextstate = \text{Await}$
| Emit(v) -> $o = (\text{True}, \text{nil})$ and $nextstate = \text{Emit}(v)$

and

$pnextstate = \text{Await} \rightarrow \text{pre } nextstate$
Conclusion

• An extension of a data-flow language with automata constructs
• various kinds of transitions, yet quite simple
• translation semantics relying on the clock mechanism which give a good discipline
• the existing code generator has not been modified and the code is (at least as) efficient than direct ad-hoc techniques
• fully implemented in Lucid Synchrone; integration in Scade 6 is under way
• distribution and documentation: www.lri.fr/~pouzet/lucid-synchrone
References

