Programming hybrid systems with synchronous languages

Marc Pouzet1,2,3

Albert Benveniste3 Timothy Bourke3,1 Benoît Caillaud3

1. École normale supérieure (LIENS)
2. Université Pierre et Marie Curie
3. INRIA

CSDM 2011, December 7–9, Paris
Reactive systems

- They react continuously to the external environment.
- At the speed imposed by this environment.
- Statically bounded memory and response time.

Conciliate three notions in the programming model:

- Parallelism, concurrency while preserving determinism.
 e.g., control at the same time rolling and pitching
 \rightarrow parallel description of the system

- Strong temporal constraints.
 e.g., the physics does not wait!
 \rightarrow temporal constraints should be expressed in the system

- Safety is important (critical systems).
 \rightarrow well founded languages, verification methods
Synchronous Kahn Networks

- parallel processes communicating through data-flows
- communication in zero time: data is available as soon as it is produced.
- a global logical time scale even though individual rhythms may differ
- these drawings are not so different from actual computer programs
SAO (Spécification Assistée par Ordinateur)—Airbus 80’s

Describe the system as block diagrams (synchronous communicating machines)
SCADE 4 (Safety Critical Application Development Env. – Esterel-Tech.)

From computer assisted drawings to executable (sequential/parallel) code!
Lustre: a dataflow programming language

Programming with streams
Lustre: a dataflow programming language

Programming with streams

constants 1 = 1 1 1 1 1 ...
Lustre: a dataflow programming language

Programming with streams

constants

\[1 \quad = \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad \cdots \]

operators

\[x + y \quad = \quad x_0 + y_0 \quad x_1 + y_1 \quad x_2 + y_2 \quad x_3 + y_3 \quad \cdots \]

\((z = x + y \text{ means that at every instant } i : z_i = x_i + y_i)\)
Lustre: a dataflow programming language

Programming with streams

constants

\[
\begin{align*}
1 & = 1 & 1 & 1 & 1 & 1 & \cdots \\
\end{align*}
\]

operators

\[
\begin{align*}
x + y & = x_0 + y_0 & x_1 + y_1 & x_2 + y_2 & x_3 + y_3 & \cdots \\
\end{align*}
\]

\(z = x + y\) means that at every instant \(i: z_i = x_i + y_i\)

unit delay

\[
\begin{align*}
0 \ fby \ (x + y) & = 0 & x_0 + y_0 & x_1 + x_1 & x_2 + x_2 & \cdots \\
\end{align*}
\]
Lustre: a dataflow programming language

Programming with streams

constants
\[1 = 1 1 1 1 \ldots\]

operators
\[x + y = x_0 + y_0 \quad x_1 + y_1 \quad x_2 + y_2 \quad x_3 + y_3 \quad \ldots\]

\[z = x + y \text{ means that at every instant } i: z_i = x_i + y_i\]

unit delay
\[0 \ fby (x + y) = 0 x_0 + y_0 \quad x_1 + x_1 \quad x_2 + x_2 \quad \ldots\]

\[\pre (x + y) = \text{nil} x_0 + y_0 \quad x_1 + x_1 \quad x_2 + x_2 \quad \ldots\]
Lustre: a dataflow programming language

Programming with streams

constants

\[1 = 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \cdots \]

operators

\[x + y = x_0 + y_0 \ x_1 + y_1 \ x_2 + y_2 \ x_3 + y_3 \ \cdots \]

\(z = x + y \) means that at every instant \(i : z_i = x_i + y_i \)

unit delay

\[0 \ \text{fby} \ (x + y) = \ 0 \ x_0 + y_0 \ x_1 + x_1 \ x_2 + x_2 \ \cdots \]

\[\text{pre} \ (x + y) = \ \text{nil} \ x_0 + y_0 \ x_1 + x_1 \ x_2 + x_2 \ \cdots \]

\[0 \ \rightarrow \ \text{pre} \ (x + y) = \ 0 \ x_0 + y_0 \ x_1 + x_1 \ x_2 + x_2 \ \cdots \]
Lustre: a dataflow programming language

\[
\begin{align*}
\text{let node iir_filter_2 x = y} \\
\text{where} \\
\text{rec} \\
\quad y &= a \cdot x + \text{fby} \cdot u \\
\quad \text{and} \\
\quad u &= b \cdot x - d \cdot y + \text{fby} \cdot v \\
\quad \text{and} \\
\quad v &= c \cdot x - e \cdot y
\end{align*}
\]
Lustre: a dataflow programming language

```
let node irr_filter_2 x = y
where
  rec
  y = a ∗ x + (0.0 fby u)
  and
  u = b ∗ x − d ∗ y + (0.0 fby v)
  and
  v = c ∗ x − e ∗ y
```

\[u = b \times x - d \times y + (0.0 \ fby \ v) \]

\[\text{and} \ v = c \times x - e \times y \]
rec \(y = a \times x + (0.0 \ fby \ u) \)

and \(u = b \times x - d \times y + (0.0 \ fby \ v) \)

and \(v = c \times x - e \times y \)
Lustre: a dataflow programming language

```
let node iir_filter_2 x = y
  where
    rec y = a * x + (0.0 fby u)
    and u = b * x - d * y + (0.0 fby v)
    and v = c * x - e * y
```
Lustre: a dataflow programming language

let node iir_filter_2 x = y where

rec y = a * x + (0.0 fby u)

and u = b * x - d * y + (0.0 fby v)

and v = c * x - e * y
Lustre: beautiful ideas

- A simple and pure notion of execution in **discrete time**

- Parallel composition is
 - well-defined
 - deterministic: very important in practice for reproducibility

- Parallelism is compiled: programs can be translated into efficient sequential

- The code executes in **bounded memory and bounded time**

- Programs are **finite-state** and can be verified by model-checking
Lustre: beautiful ideas

- A simple and pure notion of execution in **discrete time**

- Parallel composition is
 - well-defined
 - deterministic: very important in practice for reproducibility

- Parallelism is compiled: programs can be translated into efficient sequential

- The code executes in **bounded memory and bounded time**

- Programs are **finite-state** and can be verified by model-checking
Lustre: beautiful ideas

- A simple and pure notion of execution in **discrete time**

- Parallel composition is
 - well-defined
 - **deterministic**: very important in practice for reproducibility

- Parallelism is compiled: programs can be translated into efficient sequential

- The code executes in **bounded memory and bounded time**

- Programs are **finite-state** and can be verified by model-checking
Lustre: beautiful ideas

- A simple and pure notion of execution in discrete time

- Parallel composition is
 - well-defined
 - deterministic: very important in practice for reproducibility

- Parallelism is compiled: programs can be translated into efficient sequential

- The code executes in bounded memory and bounded time

- Programs are finite-state and can be verified by model-checking
Lustre: beautiful ideas

- A simple and pure notion of execution in discrete time
- Parallel composition is
 - well-defined
 - deterministic: very important in practice for reproducibility
- Parallelism is compiled: programs can be translated into efficient sequential
- The code executes in bounded memory and bounded time
- Programs are finite-state and can be verified by model-checking
Lustre: beautiful ideas

- A simple and pure notion of execution in discrete time

- Parallel composition is
 - well-defined
 - deterministic: very important in practice for reproducibility

- Parallelism is compiled: programs can be translated into efficient sequential

- The code executes in bounded memory and bounded time

- Programs are finite-state and can be verified by model-checking

No need to write control programs in C!
Lustre: beautiful ideas

- A simple and pure notion of execution in discrete time

- Parallel composition is
 - well-defined
 - deterministic: very important in practice for reproducibility

- Parallelism is compiled: programs can be translated into efficient sequential

- The code executes in bounded memory and bounded time

- Programs are finite-state and can be verified by model-checking

No need to write control programs in C!

Lustre can be extended in several ways...
Extended dataflow programming: automata

```haskell
let node counter (flip, stop) = x
where
  rec lx = 0 fby x
  and automaton
    | Up →
      do
        x = lx + 1
      until flip then Down
      | stop then Stop(true)
    done
    | Down →
      do
        x = lx - 1
      until flip then Up
      | stop then Stop(false)
    done
    | Stop(was_up) →
      do
        x = lx
      until flip & was_up then Up
      | flip then Down
    done
end
```

- Parallel composition of dataflow equations and automata
- `x` has a different definition in each mode
- But only a single definition in a reaction
Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
  rec lx = 0 fby x
and automaton
  | Up →
    do
      x = lx + 1
    until flip then Down
    | stop then Stop(true)
  done

  | Down →
    do
      x = lx - 1
    until flip then Up
      | stop then Stop(false)
  done

  | Stop(was_up) →
    do
      x = lx
    until flip & was_up then Up
      | flip then Down
    done
end
```

- Parallel composition of dataflow equations and automata
 - x has a different definition in each mode
 - But only a single definition in a reaction

Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0
and automaton
  | Up →
    do
      x = lx + 1
    until flip then Down
    | stop then Stop(true)
  done

  | Down →
    do
      x = lx - 1
    until flip then Up
    | stop then Stop(false)
  done

  | Stop(was_up) →
    do
      x = lx
    until flip & was_up then Up
    | flip then Down
  done
end
```

- Parallel composition of dataflow equations and automata
 - x has a different definition in each mode
 - But only a single definition in a reaction

Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec
lx = 0 fby x
and automaton
  | Up →
  |   do
  |     x = lx + 1
  |     until flip then Down
  |     stop then Stop(true)
  | done
  |
  | Down →
  |   do
  |     x = lx - 1
  |     until flip then Up
  |     stop then Stop(false)
  | done
  |
  | Stop(was_up) →
  |   do
  |     x = lx
  |     until flip & was_up then Up
  |     flip then Down
  | done
end
```

- Parallel composition of dataflow equations and automata
 - x has a different definition in each mode
 - But only a single definition in a reaction

Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
  | Up →
  do
    x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done

  | Down →
  do
    x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done

  | Stop(was_up) →
  do
    x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Parallel composition of dataflow equations and automata
- x has a different definition in each mode
- But only a single definition in a reaction
Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
| Up →
  do
    x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done
| Down →
  do
    x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done
| Stop(was_up) →
  do
    x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Parallel composition of dataflow equations and automata
- x has a different definition in each mode
- But only a single definition in a reaction

Extended dataflow programming: automata

```plaintext
let node counter (flip : bool, stop : bool) = x
where
rec
lx = 0 fby x
and automaton
| Up →
  do
    x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done
|
| Down →
  do
    x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done
| Stop(was_up) →
  do
    x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Parallel composition of dataflow equations and automata
- \(x \) has a different definition in each mode
- But only a single definition in a reaction
Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
  | Up →
     do
       x = lx + 1
     until flip then Down
     | stop then Stop(true)
     done

  | Down →
     do
       x = lx - 1
     until flip then Up
     | stop then Stop(false)
     done

  | Stop(was_up) →
     do
       x = lx
     until flip & was_up then Up
     | flip then Down
     done
end
```

- Automata are just a convenient syntax
- They can be reduced to discrete dataflow equations by a source-to-source transformation
Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
| Up →
  do
    x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done
| Down →
  do
    x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done
| Stop(was_up) →
  do
    x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Automata are just a convenient syntax
- They can be reduced to discrete dataflow equations by a source-to-source transformation

Extended dataflow programming: automata

Let node counter (flip, stop) = x

where

rec lx = 0 fby x

and automaton

| Up →
| do
| x = lx + 1
| until flip then Down
| stop then Stop(true)
| done

| Down →
| do
| x = lx - 1
| until flip then Up
| stop then Stop(false)
| done

| Stop(was_up) →
| do
| x = lx
| until flip & was_up then Up
| flip then Down
| done

end

Automata are just a convenient syntax
They can be reduced to discrete dataflow equations by a source-to-source transformation

lexing/parsing → typing/caus./init. → automata → scheduling → code gen.

Extended dataflow programming: automata

```
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
| Up →
  do
    x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done

| Down →
  do
    x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done

| Stop(was_up) →
  do
    x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Automata are just a convenient syntax
- They can be reduced to discrete dataflow equations by a source-to-source transformation

lexing/parsing → typing/caus./init. → automata → … → scheduling → code gen.

Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
  | Up →
  do
    x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done

  | Down →
  do
    x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done

  | Stop(was_up) →
  do
    x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Automata are just a convenient syntax
- They can be reduced to discrete dataflow equations by a source-to-source transformation

lexing/parsing ➔ typing/caus./init. ➔ automata ➔ ... ➔ scheduling ➔ code gen.

Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
  | Up →
    do
      x = lx + 1
    until flip then Down
    | stop then Stop(true)
    done
  | Down →
    do
      x = lx - 1
    until flip then Up
    | stop then Stop(false)
    done
  | Stop(was_up) →
    do
      x = lx
    until flip & was_up then Up
    | flip then Down
    done
end
```

- Automata are just a convenient syntax
- They can be reduced to discrete dataflow equations by a
 source-to-source transformation

lexing/parsing → typing/caus./init. → automata → ... → scheduling → code gen.

Extended dataflow programming: automata

```latex
\text{let node} \ c\text{ounter} = (\text{flip}, \text{~stop}) = x
\text{where}
\text{rec} \ l\text{x} = 0 \ \text{fby} x
\text{and automaton}
\begin{align*}
| \text{Up} & \rightarrow \begin{cases} 
  x = l\text{x} + 1 & \text{until} \ \text{flip then Down} \\
  \text{stop then} \ Stop(\text{true}) & \text{done}
\end{cases} \\
| \text{Down} & \rightarrow \begin{cases} 
  x = l\text{x} - 1 & \text{until} \ \text{flip then Up} \\
  \text{stop then} \ Stop(\text{false}) & \text{done}
\end{cases}
\end{align*}
| \text{Stop(was\_up)} & \rightarrow \begin{cases} 
  x = l\text{x} & \text{until} \ \text{flip & was\_up then Up} \\
  \text{flip then} \ Down & \text{done}
\end{cases}
\end{align*}
\text{end}
```

Automata are just a convenient syntax
They can be reduced to discrete dataflow equations by a source-to-source transformation

lexing/parsing \rightarrow\text{ typing/\text{caus.}/init.} \rightarrow \text{ automata} \rightarrow \cdots \rightarrow \text{scheduling} \rightarrow \text{code gen.}

Extended dataflow programming: automata

```plaintext
let node counter (flip, stop) = x
where
rec lx = 0 fby x
and automaton
| Up →
  do
  x = lx + 1
  until flip then Down
  | stop then Stop(true)
  done
| Down →
  do
  x = lx - 1
  until flip then Up
  | stop then Stop(false)
  done
| Stop(was_up) →
  do
  x = lx
  until flip & was_up then Up
  | flip then Down
  done
end
```

- Automata are just a convenient syntax
- They can be reduced to discrete dataflow equations by a source-to-source transformation

lexing/parsing ▶ typing/caus./init. ▶ automata ▶ ... ▶ scheduling ▶ code gen.

SCADE Suite® 6.2

- Industrial version of Lustre/Lucid Synchrone with automata
- Used in critical systems (DO-178B certified)
- Airbus flight control; Train (interlocking, on-board); Nuclear safety
So, what’s left to do?

- We want a language for programming complex discrete systems and modelling their physical environments
- (Also: embedded software that includes physical models)
So, what’s left to do?

- We want a language for programming complex discrete systems and modelling their physical environments
- (Also: embedded software)
So, what’s left to do?

- We want a language for programming complex discrete systems and modelling their physical environments
- (Also: embedded software that includes physical models)

- Something like Simulink/Stateflow, but
 - Simpler and more consistent semantics and compilation
 - Better understand interactions between discrete and continuous
 - Simpler treatment of automata
 - Certifiability for the discrete parts

Understand and improve the design of such modelling tools
Lee and Zheng. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. EMSOFT’07.
Lee and Zheng. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. EMSOFT'07.

Ptolemy and HyVisual

- Programming languages perspective
- Numerical solvers as directors
- Working tool and examples
Simulink/Stateflow

- Simulation \sim development
- two distinct simulation engines
- semantics & consistency: non-obvious

Lee and Zheng. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. EMSOFT'07.

Carloni et al. Languages and tools for hybrid systems design. 2006.
Lee and Zheng. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. EMSOFT’07.

Our approach

- Source-to-source compilation
- Automata \leadsto data-flow
- Extend other languages (SCADE 6)
Approach

- Add Ordinary Differential Equations to an existing synchronous language

- Two concrete reasons:
 - Increase modelling power (hybrid programming)
 - Exploit existing compiler (target for code generation)

- Simulate with an external off-the-shelf numerical solver (Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. 2005.)

- Conservative extension: synchronous functions are compiled, optimized, and executed as per usual.
Approach

- Add Ordinary Differential Equations to an existing synchronous language

 - Two concrete reasons:
 - Increase modelling power (hybrid programming)
 - Exploit existing compiler (target for code generation)

- Simulate with an external off-the-shelf numerical solver (Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. 2005.)

- Conservative extension: synchronous functions are compiled, optimized, and executed as per usual.
Approach

- Add Ordinary Differential Equations to an existing synchronous language

- Two concrete reasons:
 - Increase modelling power (hybrid programming)
 - Exploit existing compiler (target for code generation)

- Simulate with an external off-the-shelf numerical solver (Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. 2005.)

- Conservative extension: synchronous functions are compiled, optimized, and executed as per usual.
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

\[\mathbb{N} \]
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

ignore execution time

hybrid synchronous language: assume infinitely precise base clock

\[\text{How to relate discrete and continuous time correctly?} \]

\[\text{How to simulate effectively?} \]
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

\[\uparrow \quad \uparrow \]

\[\mathbb{N} \]
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

hybrid synchronous language: assume infinitely precise base clock

\[\text{Q. How to simulate effectively?} \]
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

\[\mathbb{N} \]

hybrid synchronous language: assume infinitely precise base clock

\[\text{assume an infinitesimal increment of the base clock—a non-standard semantics} \]

Q. How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

Q. How to relate discrete and continuous time correctly?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

⋆ assume an infinitesimal increment of the base clock—a non-standard semantics

Q. How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: *assume infinitely fast execution*

- time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: *assume infinitely precise base clock*

- How to relate discrete and continuous time correctly?
- How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: *assume infinitely fast execution*

\[\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \]

\[\text{time is a logical sequence of instantaneous reactions—no relation to physical time} \]

hybrid synchronous language: *assume infinitely precise base clock*

\[\rightarrow \mathbb{N} \]

\[\rightarrow \star \mathbb{R} \]
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

How to relate discrete and continuous time correctly?

How to simulate effectively?
Discrete vs Hybrid time

Discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

Hybrid synchronous language: assume infinitely precise base clock

Q. How to relate discrete and continuous time correctly?

Q. How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

Q. How to relate discrete and continuous time correctly?

Q. How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

Q. How to relate discrete and continuous time correctly?

hybrid synchronous language: assume infinitely precise base clock

Q. How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

How to relate discrete and continuous time correctly?

How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

![Diagram showing discrete time as a logical sequence of instantaneous reactions]

- time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

![Diagram showing hybrid time as an infinitesimal increment of the base clock]

- assume an infinitesimal increment of the base clock—a non-standard semantics

Q. How to relate discrete and continuous time correctly?

Q. How to simulate effectively?
Discrete vs Hybrid time

discrete synchronous language: assume infinitely fast execution

time is a logical sequence of instantaneous reactions—no relation to physical time

Q. How to relate discrete and continuous time correctly?

hybrid synchronous language: assume infinitely precise base clock

assume an infinitesimal increment of the base clock—a non-standard semantics

Q. How to simulate effectively?
Which programs make sense?

Given:

```plaintext
let node sum(x) = cpt where
  rec cpt = (0.0 fby cpt) +. x
```

Interpretation:

- Option 1: \(N \subseteq R \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)

Try to minimize the effects of solver parameters and choices
Which programs make sense?

Given:

```
let node sum(x) = cpt where
    rec cpt = (0.0 fby cpt) +. x
```

Evaluate:

```
der time = 1.0 init 0.0
and
y = sum(time)
```

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject
Which programs make sense?

Given:

\[
\text{let } \text{node } \text{sum}(x) = \text{cpt} \quad \text{where} \\
\text{rec } \text{cpt} = (0.0 \text{ fby } \text{cpt}) +. x
\]

Evaluate:

\[
\text{der } \text{time} = 1.0 \quad \text{init } 0.0 \\
\text{and} \\
y = \text{sum}(\text{time})
\]

Interpretation:

- **Option 1**: \(\mathbb{N} \subseteq \mathbb{R}
- **Option 2**: depends on solver
- **Option 3**: infinitesimal steps
- **Option 4**: type and reject
Which programs make sense?

Given:

```
let node sum(x) = cpt where
  rec cpt = (0.0 fby cpt) +. x
```

Evaluate:

```
der time = 1.0 init 0.0
and
y = sum(time)
```

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject
Which programs make sense?

Given:

```plaintext
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
```

Evaluate:

```plaintext
der time = 1.0 init 0.0
and
y = sum(time)
```

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject
Which programs make sense?

Given:

\[
\text{let node } \text{sum}(x) = \text{cpt where } \\
\text{rec cpt} = (0.0 \text{ fby cpt}) +. x
\]

Evaluate:

\[
\text{der time} = 1.0 \text{ init 0.0} \\
\text{and} \\
y = \text{sum(time)}
\]

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

\(\times \)
Which programs make sense?

Given:

\[
\begin{align*}
\text{let node } & \quad \text{sum}(x) = \text{cpt where} \\
\text{rec } & \quad \text{cpt} = (0.0 \ \text{fby} \ \text{cpt}) +. \ x
\end{align*}
\]

Evaluate:

\[
\begin{align*}
\text{der } \text{time} & = 1.0 \ \text{init} \ 0.0 \\
\text{and} & \\
y & = \text{sum}(\text{time}) \ \text{every} \ \text{up(ez)} \ \text{init} \ 0.0
\end{align*}
\]

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject
Which programs make sense?

Given:

\[
\text{let node sum}(x) = \text{cpt where} \\
\text{rec cpt} = (0.0 \ fby \ \text{cpt}) +. x
\]

Evaluate:

\[
\text{der time} = 1.0 \ \text{init} \ 0.0 \\
\text{and} \\
y = \text{sum}(\text{time}) \ \text{every up}(ez) \ \text{init} \ 0.0
\]

Interpretation:

- Option 1: \(\mathbb{N} \subseteq \mathbb{R} \)
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices
Basic typing
Milner-like type system

The type language

\[

t ::= \text{float} | \text{int} | \text{bool} | \text{zero} \\
\sigma ::= \forall \beta_1, ..., \beta_n. t \xrightarrow{k} t \\
k ::= D | C | A
\]

Initial conditions

\[
(+): \text{int} \times \text{int} \xrightarrow{A} \text{int} \\
(=): \forall \beta. \beta \times \beta \xrightarrow{A} \text{bool} \\
\text{if}: \forall \beta. \text{bool} \times \beta \times \beta \xrightarrow{A} \beta \\
\cdot \text{fby} \cdot: \forall \beta. \beta \times \beta \xrightarrow{D} \beta \\
\text{up}(\cdot): \text{float} \xrightarrow{C} \text{zero}
\]
What about continuous automata?

Stateflow User’s Guide

The Mathworks, pages 16-26 to 16-29, 2011.

Design Considerations for Continuous-Time Modeling in Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26
“Summary of Rules for Continuous-Time Modeling” on page 16-28

Rationale for Design Considerations

To guarantee the integrity — or correctness — of the results in continuous-time modeling, you must adhere to a restricted subset of Stateflow chart semantics. The restricted semantics ensure that inputs do not depend on unpredictable factors — or side effects — such as:

• Simulink solver’s guess for number of minor intervals in a major time step
• Number of iterations required to stabilize the integration loop or zero crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor time steps and, therefore, update state only during major time steps when mode changes occur. Using this heuristic, a Stateflow chart can always compute outputs based on a constant state for continuous-time.

A Simulink model reads continuous-time derivatives during minor time steps. When placed in actions, conditions that affect control flow prevent a Stateflow chart from using values that may no longer be valid in the current minor time step. Instead, a Stateflow chart always computes state transitions based on a constant state for continuous-time. Consequently, a Stateflow chart generates informative errors to help you correct semantic violations.

Summary of Rules for Continuous-Time Modeling

Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write to local data only in actions that execute during transitions, as follows:

• State exit actions, which execute before leaving the state at the beginning of the transition
• Transition actions, which execute during the transition
• State entry actions, which execute after entering the new state at the end of the transition
• Condition actions on a transition, but only if the transition directly reaches a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c1 and c2 are false. In this case, s gets updated in a minor time step because there is no state transition.

Do not write to local continuous data in minor actions because these actions execute in minor time steps.

Do not call Simulink functions in state actions during major time steps. This rule applies to continuous-time charts because you cannot call functions during minor time steps. You can call Simulink functions in state entry or exit actions and transition actions. However, if you try to call Simulink functions in state during actions or transition conditions, an error message appears when you simulate your model.

For more information, see Chapter 28, “Using Simulink Functions in Stateflow Charts”.

Compute derivatives only in minor actions

A Simulink model reads continuous-time derivatives during minor time steps. The only part of a Stateflow chart that executes during minor time steps is the minor action. Therefore, you should compute derivatives in minor actions to give your Simulink model the most current calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it prevents a Stateflow chart from using values that may no longer be valid in the current minor time step. Instead, a Stateflow chart always computes outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in continuous-time charts

This restriction prevents mode changes from occurring between major time steps. When placed in minor actions, conditions that affect control flow should be governed by discrete variables because they do not change between major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem and therefore capable of containing in continuous-time. For example, the following model generates an error if the chart uses a continuous update method.

家门口的书架上的书

[“Restricted subset of Stateflow chart semantics’

• restricts side-effects to major time steps
• supported by warnings and errors in tool (mostly)

Our D/C/A/zero system extends naturally for the same effect

For both discrete (synchronous) and continuous (hybrid) contexts
Compilation: source-to-source transformation

```ocaml
let hybrid ball () =
  let rec der v = (-. g / m) init v0
      reset (-. 0.8 *. last v) every up(-. h)
  and der h = v init h0
  in (v, h)

let node ball (z1, (lh, lv), ()) =
  let rec i = true fby false
  and dv = (-. g / m)
  and v = if i then v0
         else if z1 then -. 0.8 *. lv
         else lv
  and dh = v
  and h = if i then h0 else lh
  and upz1 = -. h
  in ((v, h), upz1, (h, v), (dh, dv))
```
let **hybrid ball** () =

let
rec der v = (−. g / m) init v0
reset (−. 0.8 * . last v) every up(−. h)
and der h = v init h0
in (v, h)

let **node ball** (z1, (lh, lv), ()) =
let rec i = true fby false

and dv = (−. g / m)
and v = if i then v0
else if z1 then −. 0.8 * . lv
else lv

and dh = v
and h = if i then h0 else lh

and upz1 = −. h

in ((v, h), upz1, (h, v), (dh, dv))
Compilation: source-to-source transformation

```
let hybrid ball () =
  let
    rec
der v = (−. g / m) init v0
    reset (−. 0.8 *. last v) every up(−. h)
  and
der h = v init h0
  in (v, h)

let node ball (z1, (lh, lv), ()) =
  let rec i = true fby false

  and dv = (−. g / m)
  and v = if i then v0
      else if z1 then −. 0.8 *. lv
      else lv

  and dh = v
  and h = if i then h0 else lh

  and upz1 = −. h
```

Transform into discrete subset, upz1, (h, v), (dh, dv))
let hybrid ball () =
 let rec der v = (— g / m) init v0
 reset (— 0.8 * last v) every up(— h)
 and der h = v init h0
 in (v, h)

let node ball (z1, (lh, lv), ()) =
 let rec i = true fby false

 and dv = (— g / m)
 and v = if i then v0
 else if z1 then — 0.8 * lv
 else lv

 and dh = v
 and h = if i then h0 else lh

 and upz1 = — h

 in ((v, h), upz1, (h, v), (dh, dv))
Compilation: source-to-source transformation

```plaintext
let hybrid ball () =
    let
        rec der v = (-. g / m) init v0
    reset (-. 0.8
```
Compilation: source-to-source transformation

```plaintext
let hybrid ball () =
  let
  rec der v = (-. g / m) init v0
    reset (-. 0.8 *. last v) every up(-. h)
  and der h = v init h0
  in (v, h)

let node ball (z1, (lh, lv), ()) =
  let rec i = true fby false

and dv = (-. g / m)
and v = if i then v0
  else if z1 then -. 0.8 *. lv
  else lv

and dh = v
and h = if i then h0 else lh

and upz1 = -. h

in ((v, h), upz1, (h, v), (dh, dv))
```
Demonstrations

- Bouncing ball (standard)
- Bang-bang temperature controller *(Simulink/Stateflow)*
- Sticky Masses *(Ptolemy)*
Conclusion

- Synchronous languages should and can properly treat hybrid systems
- There are three good reasons for doing so:
 1. To exploit existing compilers and techniques
 2. For programming the discrete subcomponents
 3. To clarify underlying principles and guide language design/semantics
- Our approach
 1. Synchronous data-flow language with automata and ODEs
 2. Static type system to separate discrete from continuous behaviors
 3. Relate discrete to continuous via zero-crossings
 4. Compilation via source-to-source transformations
 5. Simulation using off-the-shelf numerical solvers
- Prototype compiler in OCaml using Sundials CVODE solver
Conclusion

- Synchronous languages **should** and **can** properly treat hybrid systems
- There are three good reasons for doing so:
 1. To exploit existing compilers and techniques
 2. For programming the discrete subcomponents
 3. To clarify underlying principles and guide language design/semantics
- Our approach
 1. Synchronous data-flow language with automata and ODEs
 2. Static type system to separate discrete from continuous behaviors
 3. Relate discrete to continuous via zero-crossings
 4. Compilation via source-to-source transformations
 5. Simulation using off-the-shelf numerical solvers
- Prototype compiler in OCaml using Sundials CVODE solver
Conclusion

- Synchronous languages **should** and **can** properly treat hybrid systems
- There are three good reasons for doing so:
 1. To exploit existing compilers and techniques
 2. For programming the discrete subcomponents
 3. To clarify underlying principles and guide language design/semantics
- Our approach
 1. Synchronous data-flow language with automata and ODEs
 2. Static type system to separate discrete from continuous behaviors
 3. Relate discrete to continuous via zero-crossings
 4. Compilation via source-to-source transformations
 5. Simulation using off-the-shelf numerical solvers
- Prototype compiler in OCaml using Sundials CVODE solver
Conclusion

- Synchronous languages **should** and **can** properly treat hybrid systems
- There are three good reasons for doing so:
 1. To exploit existing compilers and techniques
 2. For programming the discrete subcomponents
 3. To clarify underlying principles and guide language design/semantics

- Our approach
 1. Synchronous data-flow language with automata and ODEs
 2. Static type system to separate discrete from continuous behaviors
 3. Relate discrete to continuous via zero-crossings
 4. Compilation via source-to-source transformations
 5. Simulation using off-the-shelf numerical solvers

- Prototype compiler in OCaml using Sundials CVODE solver
Future work

Short term

- Compiler implementation
 - Language
 - Examples / case studies: more!
Future work

Short term

- Compiler implementation
- Language
 - Examples / case studies: more!
Future work

Short term

- Compiler implementation
- Language
- Examples / case studies: more!

Bibliography at: www.di.ens.fr/pouzet
Future work

Short term

▶ Compiler implementation
▶ Language
▶ Examples / case studies: more!

Longer term

▶ Clock calculus: an finer analysis of piece-wise continuous/continuous/discrete
▶ Causality analysis: (partial) detection of discrete Zeno-behavior
▶ Semantics: how abstract is the solver?
▶ Real-time simulation (trade-off accuracy and execution time)

Bibliography at: www.di.ens.fr/ pouzet