
Synchronous Kahn Networks
(ten years later)

Marc Pouzet
LRI

Marc.Pouzet@lri.fr

Workshop SYNCHRON, 27/11/06

1



Overview

• The origins

• From Lustre to Lucid Synchrone

• Developping a Language

• Conclusion

2



The origins (sept. 94 – june 96)
(VERIMAG, Montbonnot & McGill University, Montreal)

3



The origins

What are the relationships between:

• Kahn Process Networks

• Synchronous Data-flow Programming (e.g., Lustre)

• (Lazy) Functional Programming (e.g., Haskell)

• Types and Clocks

• State machines and stream functions

What can we learn from the relationships between
synchronous and functional programming?

4



The first intuitions

In 1993 (I was still doing my PhD thesis in Rocquencourt...) Paul noticed the
relationships between functional programming and synchronous programming in
two papers:

• Lucid Synchrone [Caspi, OPOPAC 93],

• Towards Recursive Block Diagrams [Caspi, RTP 94]

He made the following observations:

• Synchronous dataflow can be simulated in a functional lazy language in a few
lines (LazyML at that time).

• We can program in the semantics.

• We can benefit from all the features of the host language: type inference,
modularity, higher-order, recursion.

• with the idea that extending Lustre with functional features was both natural
and fruitful

5



Lustre and Lazy streams

module Streams where

-- lifting constants

constant x = x : (constant x)

-- pointwise application

extend (f:fs) (x:xs) = (f x):(extend fs xs)

-- delays

(x:xs) ‘fby‘ y = x:y

pre x y = x : y

-- sampling

(x : xs) ‘when‘ (True : cs) = (x : (xs ‘when‘ cs))

(x : xs) ‘when‘ (False : cs) = xs ‘when‘ cs

merge (True : c) (x : xs) y = x : (merge c xs y)

merge (False : c) x (y : ys) = y : (merge c x ys)

6



Recursive Block Diagrams

• Dynamic reconfiguration (i.e., imperative constructs of Esterel) can be encoded
as classical tail-recursive functions

on

on off

off

• More general (dynamic) networks can be considered such as the Eratosthene
sieve, etc.

const false pre true

filter

sieve

- -

-
@

@@-

-

�
���? ?

-
sieve

7



Extending Synchronous Data-flow

• Synchronous data-flow can be characterized as some class of static bounded
memory data-flow networks.

• They are not recursively defined and obey some “synchronous” constraints
(clock calculus).

• Those networks enjoy efficient compilation techniques.

Based on Kahn’s relationship between data-flow and stream functions, synchrony
can be related to Wadler’s listlessness and deforestation techniques ([Wadler, LFP
84, TCS 90])

• Listlessness is a compilation techniques which eliminates intermediate
data-structures from stream programs, e.g., hd (x : y) = x

• avoid the need of a lazy evaluation mechanism

Can we extend the class of static synchronous data-flow to higher-order and
dynamical networks, thus giving sense to a larger class of synchronous data-flow?

8



Synchrony and Listlessness evaluation

But deforestation techniques fail to deforest (i.e., diverge) on some simple programs
such as current v (x ‘when‘ c) c which are trivially accepted in Lustre.

(xo : x) ‘when‘ (True : c) = xo : (x ‘when‘ c)

(xo : x) ‘when‘ (False : c) = x ‘when‘ c

curr v (x0 : x) (True : c) = x0 : (current xo x c)

current v x (False : c) = v : (current v x c)

In Lustre syntax: (current (x when c))

In SCADE: condact(c; v; id) (where id x = x)

Existing deforestation techniques at that time (e.g., “A Short Cut to
Deforestation” [FPCA 93]) failed to deforest many useful synchronous programs

9



Clock Constraints and Synchrony

-

- odd -

&

-

-

The computation of (xn &x2n)n∈IN is not real-time

let odd x = x when half

let non_synchronous x = x & (odd x)

^^^^^^^^

This expression has clock ’a on half, but is used with clock ’a.

Execution with unbounded FIFOs!!!

• Deforestation techniques diverge on those programs

• We should statically reject those programs

• This is the purpose of the clock calculus in synchronous data-flow languages

10



Synchronous Kahn Networks [ISLIP’95, ICFP’96]

Provide an extension of synchronous data-flow by:

• defining a functional kernel with abstraction, application and recursion and
whose first order restriction is reminiscent to Lustre,

• define a synchronous operational semantics for it, generalizing existing ones;
this allows us to characterize “synchronous data-flow behaviors”,

• define a clock calculus for this language and express it as a type-system, which,
in turn, allows us to generalize it to functional features

Property: well clocked program can be executed synchronously

11



From Lustre to Lucid Synchrone
(McGill University, Université Paris 6)

12



A Co-iterative Characterization of Synchronous Stream

Functions [CMCS 98]

These first works with Paul showed that it was possible to implement an extension
of Lustre and it was of course called Lucid Synchrone

• a small functional kernel (higher-order and recursion)

• a dependent type clock calculus

• causality check was trivial (graph based)

• a partial compilation method: this was the hard part (we failed to make it
modular)

We started working on the problem in june 96 (after ICFP), from the work of
Jacob & Rutten (pre-version of “A tutorial on (co)algebras and (co)induction”,
EATCS Bulletin 97

• find a modular compilation technique for the extended kernel

• explain the classical compilation of SCADE in a few lines

• the method is time resistant: it is still in use in the current compiler

13



Functional Programming and Reactive Systems

At about the same period, several projects identified the interest of functional
(data-flow) programming to model reactive systems.

• Mary Sheeran noticed in 84 the interest of functional programming for
describing synchronous circuits in µFP [LFP 84]

• Various embedding of Hardware Description Languages in Haskell: Lava
[Sheeran & all, ICFP 98], Hawk [Launchbury & all, ICFP 99], etc.

• Functional Reactive Programming [Hudak, Petterson, ICFP 99]

• Fran (Functional Reactive Animation) [Elliot & Hudak, ICFP 97]

• Now Multi-stage programming techniques [Taha PhD. 99, etc.], ReFlect (Intel),
etc.

14



Functional Reactive Programming (FRP, FRAN)

• accept too many programs: synchronous and asynchronous

• no guaranty at compile time

• memory leaks, unbounded recursion, etc.

• no compilation (or simply macro-expansion)

• Haskell run-time (but a macro-expansion to C is feasible)

• the type system of Haskell is not sufficient

15



Synchronous circuits (e.g., Lava)

• very elegant and very well adapted to the design of synchronous circuits

• “two stage” approach: the execution of the program produces a net-list

• length-preserving functions only (circuits with a base clock)

• the type system of Haskell is not sufficient

• no static analysis (e.g., causality analysis) nor modular compilation

16



Developping a language (sept. 96 – )
(LIP6, Univ. Paris 6 & LRI, Univ. Paris-Sud 11)

17



Lucid Synchrone

How to extend Lustre in a conservative way (without breaking it)?

Build a “laboratory” language

• study (prototype) extensions of Lustre

• experiment things, manage all the compilation chain and write programs!

• Version 1 (1995), Version 2 (2001), V3 (2006)

Follow a few principles:

• types everywhere

• clock based approach: everything should be explained in term of a basic
clocked language

• modularity everywhere (type analysis, separate compilation)

18



Some developments I

Typing:

• Automatic type inference with polymorphism; various versions (latest
[Emsoft’04])

Clock calculus: Clocks play a central role both on the semantics side and the
implementation side.

• same philosophy as Lustre (differs from the one of Signal)

• clocks as types (provides both polymorphism and inference) making them more
usable

• defined as a dependent type system [ICFP 96]

• start of the collaboration with Jean-Louis Colaço (Esterel-Technologies) on the
design of a prototype compiler for SCADE (∼ 2000)

• the prototype ReLuC compiler uses the first-order version of this calculus

• programming constructs (e.g., merge)

• then a simpler calculus reminiscent to Milner-type system [Emsoft 2003]

19



Some developments II

Type-based program analysis:

• initialization analysis (with JL. Colaço, [SLAP 02, STTT 04]

• both implemented in Lucid Synchrone and ReLuC

• greatly reduces the number of false alarms

Mixing imperative construct and data-flow:

• PhD. thesis of G. Hamon [PPDP 00, SLAP 04]

• work with Colaço & Pagano (ET) on the design of the mix of automata and
data-flow systems

• translation semantics relying on the clock mechanism [Emsoft 05], direct
synchronous semantics [Emsoft 06]

• both implemented in ReLuC and Lucid Synchrone

Recently, we came back to the origins (N-Synchronous Kahn Networks) to relax the
semantics to allows non strictly synchronous systems for the implementation of
video systems (project with Philips semiconductor, now NXP)

20



Main results

• Synchronous Kahn networks [ICFP’96]

• Clocks as dependent types [ICFP’96]

• Modular compilation [CMCS’98]

• Control-structures and data-flow [PPDP’00]

• causality analysis [ESOP’01]

• initialization analysis [SLAP’02, STTT’04]

• ML-like clock calculus [Emsoft’03]

• higher-order and typing [Emsoft’04]

• data-flow and state machines [Emsoft’05, Emsoft’06]

• N-Synchronous Kahn Networks [Emsoft’05, POPL’06]

21



Laboratory language?

Many of these ideas, originally introduce by Paul, are now integrated in two
industrial tools of the field.

• the ReLuC compiler of SCADE is based (and improves) techniques introduced
in Lucid Synchrone

• same philosophy: types everywhere, modularity, etc.

• typing, clock calculus

• program constructs (e.g., merge)

• static analysis (initialization)

• design/semantics of ReLuC (next SCADE)

Athys (Dassault-Systèmes) is developing a programming environment into the
Catia suite for PLC:

• basing it on an imperative kernel (reminiscent to Esterel)

• automatic type synthesis (with polymorphism), module systems

22



Conclusion

This work was initiated in 93 by Paul Caspi and we started our collaboration in
sept. 94

• The direction was clearly drawn from the very beginning and only a few things
really changed.

• Reformulating synchronous data-flow in the functional setting was very fruitful
and many extensions came naturally.

• The language exists and contains most of the features we were looking at at the
very beginning.

• The goal to make it a laboratory language succeed.

• Paul had a strong influence in it (simplicity of constructions, orthogonality of
concept, unified semantics).

23


