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Hybrid Systems Modelers

Program complex discrete systems and
their physical environments in a single language

Many tools and languages exist

I PL: Simulink/Stateflow, LabVIEW, Scicos, Ptolemy, Modelica, etc.

I Verif: SpaceEx, Flow*, dReal, etc.

Focus on Programming Language (PL) issues to improve safety

Our approach

I Build a hybrid modeler on top of a synchronous language

I Recycle existing techniques and tools

I Clarify underlying principles and guide language design/semantics



Recycle existing tools and techniques

Synchronous languages (SCADE/Lustre)

I Used for critical systems design and implementation
I mathematically sound semantics
I certified compiler (DO178C)

I Expressive language for both discrete controllers and mode changes

I But do not support modelling of continuous-time dynamics

Off-the-shelf ODEs numeric solvers

I Sundials CVODE (LLNL) among others, treated as black boxes

I Exploit existing techniques and (variable step) solvers

A conservative extension

I Any synchronous program must be compiled, optimized, and
executed as per usual

I Increase confidence in the simulation code.



The Simulation Engine of Hybrid Systems

Alternate discrete steps and integration steps

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′, y ′ = dσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)

Properties of the three functions

I dσ gathers all discrete changes.

I gσ defines signals for zero-crossing detection.

I fσ and gσ should be free of side effects and, better, continuous.



Zélus, a synchronous language with ODEs [HSCC’13]

Milestones

I A synchronous non-standard semantics [JCSS’12]

I A Lustre language with ODEs [LCTES’11]

I Hierarchical automata, both discrete and hybrid [EMSOFT’11]

I Causality analysis [HSCC’14]; code generation [CC’15]

A validation into the industrial KCG compiler of SCADE

SCADE Hybrid at Esterel-Tech/ANSYS (2014 - 2015)

I Prototype based on KCG 6.4 (now 6.6)

I SCADE Hybrid = full SCADE + ODEs

I Generates FMI 1.0 model-exchange FMUs with Simplorer



Zélus

parsing typing causality
control

encoding
optimization

scheduling
SOL

generation
slicingdeadcode

removal

Sequential code
generation

I Built from scratch.
I Follows the organisation of the Lucid Synchrone compiler
I Recycle and extend several type-based static analysis: typing,

causality analysis, initialization analysis.
I Comp. through reduction into a basic language [LCTES’08, CC’15].

I First prototype around 2011; current version is 1.2.

I Reference manual and tutorial (2015)

I 15kLOC for the compiler (Ocaml 4.02.1).

I Numeric solver: SundialsML (Ocaml binding of SUNDIALS);
ODE23, ODE45.



Distribution

Information on the language (binaries, reference manual, examples):

http://zelus.di.ens.fr

Zélus source code is available on a private svn server.

svn: https://svn.di.ens.fr/svn/zelus/trunk

The SundialsML binding is available on OPAM (source code):

http://inria-parkas.github.io/sundialsml/

http://zelus.di.ens.fr
https://svn.di.ens.fr/svn/zelus/trunk
http://inria-parkas.github.io/sundialsml/


How Zélus behave for programming classical blocks of the
Simulink standard library?



The Simulink Standard Library



Discrete Blocks



Discrete-time blocks: the Integrator

Examples below are checked by the tool of Timothy Bourke:
checklisting.sh 2

type saturation = Between | Lower | Upper

(* forall n in Nat.

* [output(0) = x0(0)]

* [output(n) = output(n-1) + (h * k) * u(n-1)] *)

let node forward_euler(x0, k, h, u) = output where

rec output = x0 fby (output +. (k *. h) *. u)

type saturation = | Between | Lower | Upper

val forward_euler : float * float * float * float -D-> float

(* forall n in Nat.

* [output(0) = x0(0)]

* [output(n) = output(n-1) + h * u(n)] *)

let node backward_euler(x0, k, h, u) = output where

rec output = x0 -> pre(output) +. k *. h *. u

2gitclonegit@github.com:tbrk/checklistings.git

git clone git@github.com:tbrk/checklistings.git


Discrete-time blocks: the Integrator (II)
(* forall n in Nat.

* [output(n) = y(n)]

* [x(0) = x0(0)]

* [x(n) = y(n-1) + h/2 * u(n-1)]

* [y(n) = x(n) + h/2 * u(n)] *)

let node trapezoidal_fixed(x0, k, h, u) = output where

rec x = x0 fby (y +. gain *. u)

and y = x +. gain *. u

and gain = k *. h /. 2.0

and output = y

(* Extended versions with upper/lower limits,

* reset and output ports *)

let node forward_euler_complete(upper, lower, res, x0, k, h, u) =

(output, state_port, saturation) where

rec state_port = x0 fby (output +. k *. h *. u)

and v = if res then x0 else state_port

and (output, saturation) =

if v < lower then lower, Lower

else if v > upper then upper, Upper else v, Between



Discrete-time PID

let node int(x0, h, u) = forward_euler(x0, 1.0, h, u)

let node derivative(h, u) = 0.0 -> (u -. pre(u)) /. h

(* PID controller in discrete time

* p is the proportional gain;

* i the integral gain;

* d the derivative gain;

* h is the time step *)

let node pid(p, i, d, h, u) = c where

rec c_p = p *. u

and i_p = int(0.0, h, i *. u)

and c_d = derivative(h, d *. u)

and c = c_p +. i_p +. c_d



Discrete-time PID (II)

(* The same but where initial conditions

* are given from the arguments *)

let node pid_with_externals(p, i0, i, d, h, u) = c where

rec c_p = p *. u

and i_p = int(i0, h, i *. u)

and c_d = derivative(h, d *. u)

and c = c_p +. i_p +. c_d

(* PID with external reset *)

let node pid_with_reset(r, p, i0, i, d, h, u) = c where

reset

c = pid_with_externals(p, i0, i, d, h, u)

every r

All other forms are programmed the same way. It is possible to add
upper and lower limit.



Discrete blocks

I Most blocks can be programmed in a Lustre-like style with stream
equations and a reset.

I The program is very close to the mathematical specification.

I The causality analysis, that computes the input/output relation of a
node, is very helpful to understand which feebacks are possible.

Yet, Simulink provides (a lot of) features Zélus does not have:
overloading of operators (+ applies to integers, floats, complex, vectors,
matrices, etc.) and arrays.

I Higher order or functors would make the code more generic!

I A comparison of the generated code must be done.

Well, nothing surprising here. Several tools automatically translate a
subset of Simulink discrete-time blocks into Lustre.

But is there some minimal language to define all the blocks precisely?



Continuous Blocks



Continuous-time Integrator

(* regular integration of a signal [u]

* with initial condition [x0]*)

let hybrid int(x0, u) = x where

rec der x = u init x0

val int : float * float -C-> float

(* integrator with zero-crossing and initial condition *)

let hybrid int_with_reset_state_port(x0, res, u) = (x, state_port) where

rec der x = u init x0 reset res -> x0

and state_port = last x

val int_with_reset_state_port : float * zero * float -C-> float * float

Last

I last x is the previous value of x

I When x is a continous state variable, it is its left limit.

I It corresponds to the so-called state port of Simulink.



Continuous-time Integrator (II)
(* integrator with initial condition [x0] with threshold [lower]

* and [upper] *)

let hybrid int_limit(x0, upper, lower, u) =

(x, state_port, saturation) where

rec init x = x0

and automaton

| Between ->

(* regular mode. Integrate the signal *)

do der x = u and saturation = Between

until (xup(x, upper)) then do x = upper in Upper

else (xdown(x, lower)) then do x = lower in Lower

| Upper ->

(* when the speed becomes negative, go to *)

(* the regular mode *)

do saturation = Upper until (down(u)) then Between

| Lower ->

(* when positive, go to the regular mode *)

do saturation = Lower until (up(u)) then Between

end

and state_port = last x



Continuous-time Integrator (III)

The same with parameterized states.

let hybrid int_limit2(x0, upper, lower, u) =

(x, state_port, saturation) where

rec init x = x0

and automaton

| Between ->

(* regular mode. Integrate the signal *)

do der x = u and saturation = Between

until (xup(x, upper)) then do x = upper in Bound(false)

else (xdown(x, lower)) then do x = lower in Bound(true)

| Bound(right) ->

(* when the speed becomes negative, go to the *)

(* regular mode *)

do saturation = if right then Lower else Upper

until (up(if right then u else -. u)) then Between

end

and state_port = last x



Continuous-time Integrator (IV)

(* integrator with zero-crossing, initial condition,

* thresholds, and reset *)

let hybrid int_complete(x0, upper, lower, res, u) =

(x, state_port, saturation) where

rec reset

(x, state_port, saturation) =

int_limit(x0, upper, lower, u)

every res



Continuous-time PID
(* Derivative. Applied on a linear filtering of the input

* n is the filter coef. [n = inf] would mean no filtering.

* transfer function is [N s / (s + N)] *)

let hybrid derivative(n, f0, u) = udot where

rec udot = n *. (u -. f)

and der f = udot init f0

let hybrid int(x0, u) = x where

rec der x = u init x0

(* PID controller in continuous time

* p is the proportional gain;

* i the integral gain;

* d the derivative gain;

* N the filter coefficient *)

let hybrid pid(p, i, d, n, u) = c where

rec c_p = p *. u

and i_p = int(0.0, i *. u)

and c_d = derivative(n, 0.0, d *. u)

and c = c_p +. i_p +. c_d



Continuous-time PID (II)

(* The same but where initial conditions are given from

* the arguments *)

let hybrid pid_with_externals(p, i0, f0, i, d, n, u) = c where

rec c_p = p *. u

and i_p = int(0.0, i *. u)

and c_d = derivative(n, f0, d *. u)

and c = c_p +. i_p +. c_d

(* PID with external reset *)

let hybrid pid_with_reset(r, p, i0, f0, i, d, n, u) = c where

reset

c = pid_with_externals(p, i0, f0, i, d, n, u)

every r



Continuous-time blocks

The programming style is similar than that for discrete-time blocks.

I The dependence-based causality analysis extends directly to ODEs:
I An equation der x = . . .x. . . init x0 is like x = x0 fby (. . .x. . .) in

data-flow: x does not depend on itself.
I E.g., der x = 1.0 −. x init 0.0 is causally correct.
I E.g., der x = 1.0 init 0.0 reset z → 0.2 ∗. x is not.
I last x must be used to break causality loops.

I Same weaknesses as before: no overloading, arrays, etc.

I Again, high-order would make the code more generic.

I Yet, current typing constraints that forbid the use of comparison
operators during integration is a burden.



Discontinuous Blocks



Rising, falling, either

(* Hit crossing *)

let hybrid rising(input, offset) = up(input -. offset)

let hybrid falling(input, offset) = up(-. input +. offset)

let hybrid positive(x) = o where

rec o = present (up(x)) -> true

| (up(-. x)) -> false

init (x >= 0.0)

val rising : float * float -C-> zero

val falling : float * float -C-> zero

val positive : float -C-> bool



Rising, falling, either

let hybrid either(eps, input, offset) = ok where

rec automaton

| AtCrossing ->

do ok = true

unless (up(input -. (offset +. eps))) then Higher

else (up(-. (input -. (offset -. eps)))) then Lower

| Higher ->

do ok = false

unless (up(-. (input +. offset))) then AtCrossing

| Lower ->

do ok = false

unless (up(input -. offset)) then AtCrossing

end

val either : float * float * float -C-> bool



Either (II)

ok = true when abs(x − v) ≤ ε
let hybrid either_abs(eps, x, v) = ok where

rec o = abs_float(x -. v) -. eps and ok = positive(o)

val either_abs : float * float * float -C-> bool

Difficulty

I up(e) only detect that e crosses zero, i.e., from strictly negative to
strictly positive.

I It does not detect that a signal sticked to zero then leaves zero.

I Adding ε (as we do), with or without an hysteresis is not satisfactory.

I The problem is not simple at all!



The Backlash

Three modes (Simulink’s specification)

I Disengaged: “In this mode, the input does not drive the output and
the output remains constant.”

I Engaged in a positive direction: “In this mode, the input is
increasing (has a positive slope) and the output is equal to the input
minus half the deadband width.”

I Engaged in a negative direction: “In this mode, the input is
decreasing (has a negative slope) and the output is equal to the
input plus half the deadband width”

Difficulty

I Detect the change in sign of the derivative.

I But Zélus does not provide the derivative of a signal.



The Backlash

Approximate the derivative, either by sampling or a linear filter.

let hybrid backlash (width, y0, u) = y where

rec half = width /. 2.0

and init y = y0

and automaton

| Disengaged ->

do unless (up(u -. (last y +. half)))

then Engaged_positive

else (up(-. (u -. (last y -. half))))

then Engaged_negative

| Engaged_positive ->

do y = u -. half

unless (up(-. derivative(u))) then Disengaged

| Engaged_negative ->

do y = u +. half

unless (up(derivative(u))) then Disengaged

end



Other blocks

Discontinuous blocks

I Saturation blocks, coulomb friction, dead zone, switch, relay, rate
limiter, etc.

I Their programming is similar to that for previous examples.

I All programming features of Zélus are used: automata, transitions
on zero-crossing, left-limit.

Modeling a second order system with saturation

See: http://blogs.mathworks.com/seth/2014/01/22/

how-to-model-a-hard-stop-in-simulink/

Example: clutch control

DEMO

http://blogs.mathworks.com/seth/2014/01/22/how-to-model-a-hard-stop-in-simulink/
http://blogs.mathworks.com/seth/2014/01/22/how-to-model-a-hard-stop-in-simulink/


The Zélus typing discipline

I All discontinuities are aligned with a zero-crossing.

I Checked during static typing.

I In particular, values with a discrete type (e.g., bool, int) do not
change during integration.

Discrete events

A zero-crossing up(e) returns a value of type zero.

It can be used to trigger a regular Lustre node.



Separation between Discrete and Continuous Time

The type language [LCTES’11]

bt ::= float | int | bool | zero | · · ·
σ ::= bt × ...× bt

k−→ bt × ...× bt
k ::= D | C | A A

D C

Function Definition: fun f(x1,...) = (y1,...)

I Combinatorial functions (A); usable anywhere.

Node Definition: node f(x1,...) = (y1,...)

I Discrete-time constructs (D) of SCADE/Lustre: pre, ->, fby.

Hybrid Definition: hybrid f(x1,...) = (y1,...)

I Continuous-time constructs (C): der x = ..., up, down, etc.



An excerpt of the Pervasives module from Zélus
AD for discrete stateless functions (A < AD < D).

val ( = ) : ’a * ’a -AD-> bool

val ( <> ) : ’a * ’a -AD-> bool

val ( < ) : ’a * ’a -AD-> bool

val ( > ) : ’a * ’a -AD-> bool

val ( <= ) : ’a * ’a -AD-> bool

val ( >= ) : ’a * ’a -AD-> bool

val min : ’a * ’a -A-> ’a

val not : bool -A-> bool

val ( & ) : bool * bool -A-> bool

val ( or ) : bool * bool -A-> bool

val up : float -C-> zero

val disc : ’a -C-> Zero

val ( on ) : zero * bool -> zero

val orz : zero * zero -> zero

...



A program that is rejected

let hybrid wrong(x, y) = x >= y

File "wrong.zls", line 1, characters 25-31:

>let hybrid wrong(x, y) = x >= y

> ^^^^^^

Type error: this is a stateless discrete expression

and is expected to be continuous.

let hybrid above(x) = present

| up(x) -> true

| up(-. x) -> false

init

(x >= 0)

val above : float -C-> bool

Zélus prevents from writting a boolean signal that may change during
integration, even if it is not used.



Zélus vs SCADE Hybrid

SCADE Hybrid is less constraining: Only state changes must be
aligned on a zero-crossing. But, the argument of an up(.) must be
“smooth” (C∞).

The separation between continous-time and discrete-time is done during
the clock calculus.

It is possible to write comparisons and signals that are discontinuous
during integration, whereas Zélus forbids, e.g.:

if x >= high then high else if x <= low then low else x

...

der x = if x >= 0.0 then -1.0 else 1.0 init 0.0

An extra type system indicates whether a signal is piece-wise constant,
smooth or (possibly) discontinuous between two zero-crossings.



Current work

Write other blocks from the standard Simulink library; write complete
examples to exercice the compiler.

I Examples: Backhoe, Bang bang controller, clutch model, etc.

I These experiments exercice all features of the languages.

I Zélus imposes a change in programming style w.r.t Simulink.

I Zélus reject programs that are accepted by Simulink.

I E.g., current typing constraints of Zélus forbids the use of
comparisons during integration (if x >= 0.0 then ... is
forbidden). Use boolean operations instead (if x then ... is
valid).

This is preliminary work: compare efficiency, accuracy, style, in detail.



Some problems we faced (I)

Causality analysis

An output should not depend on a condition when it weak. Zélus is too
constraining, making the output depending on the condition.
In comparison, SCADE Hybrid does better.

Typing discrete/continuous blocks

I We may have been overly constraining as solvers manage
discontinuous signals. Yet, results may be weird.

I SCADE Hybrid is more permissive. It is possible to write
der x = if x >= 0 then −1.0 else 1.0 but impose that e be smooth in
up(e).

I More experiments to be done. An idea is to associate the kind to
type variables. E.g.,:

val (=) : Discrete(’a). ’a * ’a -A-> bool

or use an extra type system as in SCADE Hybrid.



II
What is the minimal mathematical and executable language we need to
define all the blocks, with a description not longer than the Simulink
documentation?

Extensions

I Translate ODEs into difference equations (synchronous code) for
real-time simulation.

I The derivative of a signal is not provided. Should we provide
automatic differentiation or an internal implementation that give an
approximated value (e.g., as Simulink does)?

I Arrays. SCADE Hybrid have them; Implementation in Zélus is
under way with a form of iterator inspired by SISAL.

Verification

I Translate programs into a basic Lustre-like language with ODEs,
used as an input for formal verification.



http://zelus.di.ens.fr

http://zelus.di.ens.fr
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