
Programming the Simulink Standard Library with
Zélus: experience report 1

Marc Pouzet
Marc.Pouzet@ens.fr

DI, ENS

ANR Cafein
Les Angles

February 2, 2016

1Joint work with Timothy Bourke (INRIA Paris) and Cédric Pasteur (Esterel-Tech.)

Marc.Pouzet@ens.fr

Hybrid Systems Modelers

Program complex discrete systems and
their physical environments in a single language

Many tools and languages exist

I PL: Simulink/Stateflow, LabVIEW, Scicos, Ptolemy, Modelica, etc.

I Verif: SpaceEx, Flow*, dReal, etc.

Focus on Programming Language (PL) issues to improve safety

Our approach

I Build a hybrid modeler on top of a synchronous language

I Recycle existing techniques and tools

I Clarify underlying principles and guide language design/semantics

Recycle existing tools and techniques

Synchronous languages (SCADE/Lustre)

I Used for critical systems design and implementation
I mathematically sound semantics
I certified compiler (DO178C)

I Expressive language for both discrete controllers and mode changes

I But do not support modelling of continuous-time dynamics

Off-the-shelf ODEs numeric solvers

I Sundials CVODE (LLNL) among others, treated as black boxes

I Exploit existing techniques and (variable step) solvers

A conservative extension

I Any synchronous program must be compiled, optimized, and
executed as per usual

I Increase confidence in the simulation code.

The Simulation Engine of Hybrid Systems

Alternate discrete steps and integration steps

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′, y ′ = dσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)

Properties of the three functions

I dσ gathers all discrete changes.

I gσ defines signals for zero-crossing detection.

I fσ and gσ should be free of side effects and, better, continuous.

Zélus, a synchronous language with ODEs [HSCC’13]

Milestones

I A synchronous non-standard semantics [JCSS’12]

I A Lustre language with ODEs [LCTES’11]

I Hierarchical automata, both discrete and hybrid [EMSOFT’11]

I Causality analysis [HSCC’14]; code generation [CC’15]

A validation into the industrial KCG compiler of SCADE

SCADE Hybrid at Esterel-Tech/ANSYS (2014 - 2015)

I Prototype based on KCG 6.4 (now 6.6)

I SCADE Hybrid = full SCADE + ODEs

I Generates FMI 1.0 model-exchange FMUs with Simplorer

Zélus

parsing typing causality
control

encoding
optimization

scheduling
SOL

generation
slicingdeadcode

removal

Sequential code
generation

I Built from scratch.
I Follows the organisation of the Lucid Synchrone compiler
I Recycle and extend several type-based static analysis: typing,

causality analysis, initialization analysis.
I Comp. through reduction into a basic language [LCTES’08, CC’15].

I First prototype around 2011; current version is 1.2.

I Reference manual and tutorial (2015)

I 15kLOC for the compiler (Ocaml 4.02.1).

I Numeric solver: SundialsML (Ocaml binding of SUNDIALS);
ODE23, ODE45.

Distribution

Information on the language (binaries, reference manual, examples):

http://zelus.di.ens.fr

Zélus source code is available on a private svn server.

svn: https://svn.di.ens.fr/svn/zelus/trunk

The SundialsML binding is available on OPAM (source code):

http://inria-parkas.github.io/sundialsml/

http://zelus.di.ens.fr
https://svn.di.ens.fr/svn/zelus/trunk
http://inria-parkas.github.io/sundialsml/

How Zélus behave for programming classical blocks of the
Simulink standard library?

The Simulink Standard Library

Discrete Blocks

Discrete-time blocks: the Integrator

Examples below are checked by the tool of Timothy Bourke:
checklisting.sh 2

type saturation = Between | Lower | Upper

(* forall n in Nat.

* [output(0) = x0(0)]

* [output(n) = output(n-1) + (h * k) * u(n-1)] *)

let node forward_euler(x0, k, h, u) = output where

rec output = x0 fby (output +. (k *. h) *. u)

type saturation = | Between | Lower | Upper

val forward_euler : float * float * float * float -D-> float

(* forall n in Nat.

* [output(0) = x0(0)]

* [output(n) = output(n-1) + h * u(n)] *)

let node backward_euler(x0, k, h, u) = output where

rec output = x0 -> pre(output) +. k *. h *. u

2gitclonegit@github.com:tbrk/checklistings.git

git clone git@github.com:tbrk/checklistings.git

Discrete-time blocks: the Integrator (II)
(* forall n in Nat.

* [output(n) = y(n)]

* [x(0) = x0(0)]

* [x(n) = y(n-1) + h/2 * u(n-1)]

* [y(n) = x(n) + h/2 * u(n)] *)

let node trapezoidal_fixed(x0, k, h, u) = output where

rec x = x0 fby (y +. gain *. u)

and y = x +. gain *. u

and gain = k *. h /. 2.0

and output = y

(* Extended versions with upper/lower limits,

* reset and output ports *)

let node forward_euler_complete(upper, lower, res, x0, k, h, u) =

(output, state_port, saturation) where

rec state_port = x0 fby (output +. k *. h *. u)

and v = if res then x0 else state_port

and (output, saturation) =

if v < lower then lower, Lower

else if v > upper then upper, Upper else v, Between

Discrete-time PID

let node int(x0, h, u) = forward_euler(x0, 1.0, h, u)

let node derivative(h, u) = 0.0 -> (u -. pre(u)) /. h

(* PID controller in discrete time

* p is the proportional gain;

* i the integral gain;

* d the derivative gain;

* h is the time step *)

let node pid(p, i, d, h, u) = c where

rec c_p = p *. u

and i_p = int(0.0, h, i *. u)

and c_d = derivative(h, d *. u)

and c = c_p +. i_p +. c_d

Discrete-time PID (II)

(* The same but where initial conditions

* are given from the arguments *)

let node pid_with_externals(p, i0, i, d, h, u) = c where

rec c_p = p *. u

and i_p = int(i0, h, i *. u)

and c_d = derivative(h, d *. u)

and c = c_p +. i_p +. c_d

(* PID with external reset *)

let node pid_with_reset(r, p, i0, i, d, h, u) = c where

reset

c = pid_with_externals(p, i0, i, d, h, u)

every r

All other forms are programmed the same way. It is possible to add
upper and lower limit.

Discrete blocks

I Most blocks can be programmed in a Lustre-like style with stream
equations and a reset.

I The program is very close to the mathematical specification.

I The causality analysis, that computes the input/output relation of a
node, is very helpful to understand which feebacks are possible.

Yet, Simulink provides (a lot of) features Zélus does not have:
overloading of operators (+ applies to integers, floats, complex, vectors,
matrices, etc.) and arrays.

I Higher order or functors would make the code more generic!

I A comparison of the generated code must be done.

Well, nothing surprising here. Several tools automatically translate a
subset of Simulink discrete-time blocks into Lustre.

But is there some minimal language to define all the blocks precisely?

Continuous Blocks

Continuous-time Integrator

(* regular integration of a signal [u]

* with initial condition [x0]*)

let hybrid int(x0, u) = x where

rec der x = u init x0

val int : float * float -C-> float

(* integrator with zero-crossing and initial condition *)

let hybrid int_with_reset_state_port(x0, res, u) = (x, state_port) where

rec der x = u init x0 reset res -> x0

and state_port = last x

val int_with_reset_state_port : float * zero * float -C-> float * float

Last

I last x is the previous value of x

I When x is a continous state variable, it is its left limit.

I It corresponds to the so-called state port of Simulink.

Continuous-time Integrator (II)
(* integrator with initial condition [x0] with threshold [lower]

* and [upper] *)

let hybrid int_limit(x0, upper, lower, u) =

(x, state_port, saturation) where

rec init x = x0

and automaton

| Between ->

(* regular mode. Integrate the signal *)

do der x = u and saturation = Between

until (xup(x, upper)) then do x = upper in Upper

else (xdown(x, lower)) then do x = lower in Lower

| Upper ->

(* when the speed becomes negative, go to *)

(* the regular mode *)

do saturation = Upper until (down(u)) then Between

| Lower ->

(* when positive, go to the regular mode *)

do saturation = Lower until (up(u)) then Between

end

and state_port = last x

Continuous-time Integrator (III)

The same with parameterized states.

let hybrid int_limit2(x0, upper, lower, u) =

(x, state_port, saturation) where

rec init x = x0

and automaton

| Between ->

(* regular mode. Integrate the signal *)

do der x = u and saturation = Between

until (xup(x, upper)) then do x = upper in Bound(false)

else (xdown(x, lower)) then do x = lower in Bound(true)

| Bound(right) ->

(* when the speed becomes negative, go to the *)

(* regular mode *)

do saturation = if right then Lower else Upper

until (up(if right then u else -. u)) then Between

end

and state_port = last x

Continuous-time Integrator (IV)

(* integrator with zero-crossing, initial condition,

* thresholds, and reset *)

let hybrid int_complete(x0, upper, lower, res, u) =

(x, state_port, saturation) where

rec reset

(x, state_port, saturation) =

int_limit(x0, upper, lower, u)

every res

Continuous-time PID
(* Derivative. Applied on a linear filtering of the input

* n is the filter coef. [n = inf] would mean no filtering.

* transfer function is [N s / (s + N)] *)

let hybrid derivative(n, f0, u) = udot where

rec udot = n *. (u -. f)

and der f = udot init f0

let hybrid int(x0, u) = x where

rec der x = u init x0

(* PID controller in continuous time

* p is the proportional gain;

* i the integral gain;

* d the derivative gain;

* N the filter coefficient *)

let hybrid pid(p, i, d, n, u) = c where

rec c_p = p *. u

and i_p = int(0.0, i *. u)

and c_d = derivative(n, 0.0, d *. u)

and c = c_p +. i_p +. c_d

Continuous-time PID (II)

(* The same but where initial conditions are given from

* the arguments *)

let hybrid pid_with_externals(p, i0, f0, i, d, n, u) = c where

rec c_p = p *. u

and i_p = int(0.0, i *. u)

and c_d = derivative(n, f0, d *. u)

and c = c_p +. i_p +. c_d

(* PID with external reset *)

let hybrid pid_with_reset(r, p, i0, f0, i, d, n, u) = c where

reset

c = pid_with_externals(p, i0, f0, i, d, n, u)

every r

Continuous-time blocks

The programming style is similar than that for discrete-time blocks.

I The dependence-based causality analysis extends directly to ODEs:
I An equation der x = . . .x. . . init x0 is like x = x0 fby (. . .x. . .) in

data-flow: x does not depend on itself.
I E.g., der x = 1.0 −. x init 0.0 is causally correct.
I E.g., der x = 1.0 init 0.0 reset z → 0.2 ∗. x is not.
I last x must be used to break causality loops.

I Same weaknesses as before: no overloading, arrays, etc.

I Again, high-order would make the code more generic.

I Yet, current typing constraints that forbid the use of comparison
operators during integration is a burden.

Discontinuous Blocks

Rising, falling, either

(* Hit crossing *)

let hybrid rising(input, offset) = up(input -. offset)

let hybrid falling(input, offset) = up(-. input +. offset)

let hybrid positive(x) = o where

rec o = present (up(x)) -> true

| (up(-. x)) -> false

init (x >= 0.0)

val rising : float * float -C-> zero

val falling : float * float -C-> zero

val positive : float -C-> bool

Rising, falling, either

let hybrid either(eps, input, offset) = ok where

rec automaton

| AtCrossing ->

do ok = true

unless (up(input -. (offset +. eps))) then Higher

else (up(-. (input -. (offset -. eps)))) then Lower

| Higher ->

do ok = false

unless (up(-. (input +. offset))) then AtCrossing

| Lower ->

do ok = false

unless (up(input -. offset)) then AtCrossing

end

val either : float * float * float -C-> bool

Either (II)

ok = true when abs(x − v) ≤ ε
let hybrid either_abs(eps, x, v) = ok where

rec o = abs_float(x -. v) -. eps and ok = positive(o)

val either_abs : float * float * float -C-> bool

Difficulty

I up(e) only detect that e crosses zero, i.e., from strictly negative to
strictly positive.

I It does not detect that a signal sticked to zero then leaves zero.

I Adding ε (as we do), with or without an hysteresis is not satisfactory.

I The problem is not simple at all!

The Backlash

Three modes (Simulink’s specification)

I Disengaged: “In this mode, the input does not drive the output and
the output remains constant.”

I Engaged in a positive direction: “In this mode, the input is
increasing (has a positive slope) and the output is equal to the input
minus half the deadband width.”

I Engaged in a negative direction: “In this mode, the input is
decreasing (has a negative slope) and the output is equal to the
input plus half the deadband width”

Difficulty

I Detect the change in sign of the derivative.

I But Zélus does not provide the derivative of a signal.

The Backlash

Approximate the derivative, either by sampling or a linear filter.

let hybrid backlash (width, y0, u) = y where

rec half = width /. 2.0

and init y = y0

and automaton

| Disengaged ->

do unless (up(u -. (last y +. half)))

then Engaged_positive

else (up(-. (u -. (last y -. half))))

then Engaged_negative

| Engaged_positive ->

do y = u -. half

unless (up(-. derivative(u))) then Disengaged

| Engaged_negative ->

do y = u +. half

unless (up(derivative(u))) then Disengaged

end

Other blocks

Discontinuous blocks

I Saturation blocks, coulomb friction, dead zone, switch, relay, rate
limiter, etc.

I Their programming is similar to that for previous examples.

I All programming features of Zélus are used: automata, transitions
on zero-crossing, left-limit.

Modeling a second order system with saturation

See: http://blogs.mathworks.com/seth/2014/01/22/

how-to-model-a-hard-stop-in-simulink/

Example: clutch control

DEMO

http://blogs.mathworks.com/seth/2014/01/22/how-to-model-a-hard-stop-in-simulink/
http://blogs.mathworks.com/seth/2014/01/22/how-to-model-a-hard-stop-in-simulink/

The Zélus typing discipline

I All discontinuities are aligned with a zero-crossing.

I Checked during static typing.

I In particular, values with a discrete type (e.g., bool, int) do not
change during integration.

Discrete events

A zero-crossing up(e) returns a value of type zero.

It can be used to trigger a regular Lustre node.

Separation between Discrete and Continuous Time

The type language [LCTES’11]

bt ::= float | int | bool | zero | · · ·
σ ::= bt × ...× bt

k−→ bt × ...× bt
k ::= D | C | A A

D C

Function Definition: fun f(x1,...) = (y1,...)

I Combinatorial functions (A); usable anywhere.

Node Definition: node f(x1,...) = (y1,...)

I Discrete-time constructs (D) of SCADE/Lustre: pre, ->, fby.

Hybrid Definition: hybrid f(x1,...) = (y1,...)

I Continuous-time constructs (C): der x = ..., up, down, etc.

An excerpt of the Pervasives module from Zélus
AD for discrete stateless functions (A < AD < D).

val (=) : ’a * ’a -AD-> bool

val (<>) : ’a * ’a -AD-> bool

val (<) : ’a * ’a -AD-> bool

val (>) : ’a * ’a -AD-> bool

val (<=) : ’a * ’a -AD-> bool

val (>=) : ’a * ’a -AD-> bool

val min : ’a * ’a -A-> ’a

val not : bool -A-> bool

val (&) : bool * bool -A-> bool

val (or) : bool * bool -A-> bool

val up : float -C-> zero

val disc : ’a -C-> Zero

val (on) : zero * bool -> zero

val orz : zero * zero -> zero

...

A program that is rejected

let hybrid wrong(x, y) = x >= y

File "wrong.zls", line 1, characters 25-31:

>let hybrid wrong(x, y) = x >= y

> ^^^^^^

Type error: this is a stateless discrete expression

and is expected to be continuous.

let hybrid above(x) = present

| up(x) -> true

| up(-. x) -> false

init

(x >= 0)

val above : float -C-> bool

Zélus prevents from writting a boolean signal that may change during
integration, even if it is not used.

Zélus vs SCADE Hybrid

SCADE Hybrid is less constraining: Only state changes must be
aligned on a zero-crossing. But, the argument of an up(.) must be
“smooth” (C∞).

The separation between continous-time and discrete-time is done during
the clock calculus.

It is possible to write comparisons and signals that are discontinuous
during integration, whereas Zélus forbids, e.g.:

if x >= high then high else if x <= low then low else x

...

der x = if x >= 0.0 then -1.0 else 1.0 init 0.0

An extra type system indicates whether a signal is piece-wise constant,
smooth or (possibly) discontinuous between two zero-crossings.

Current work

Write other blocks from the standard Simulink library; write complete
examples to exercice the compiler.

I Examples: Backhoe, Bang bang controller, clutch model, etc.

I These experiments exercice all features of the languages.

I Zélus imposes a change in programming style w.r.t Simulink.

I Zélus reject programs that are accepted by Simulink.

I E.g., current typing constraints of Zélus forbids the use of
comparisons during integration (if x >= 0.0 then ... is
forbidden). Use boolean operations instead (if x then ... is
valid).

This is preliminary work: compare efficiency, accuracy, style, in detail.

Some problems we faced (I)

Causality analysis

An output should not depend on a condition when it weak. Zélus is too
constraining, making the output depending on the condition.
In comparison, SCADE Hybrid does better.

Typing discrete/continuous blocks

I We may have been overly constraining as solvers manage
discontinuous signals. Yet, results may be weird.

I SCADE Hybrid is more permissive. It is possible to write
der x = if x >= 0 then −1.0 else 1.0 but impose that e be smooth in
up(e).

I More experiments to be done. An idea is to associate the kind to
type variables. E.g.,:

val (=) : Discrete(’a). ’a * ’a -A-> bool

or use an extra type system as in SCADE Hybrid.

II
What is the minimal mathematical and executable language we need to
define all the blocks, with a description not longer than the Simulink
documentation?

Extensions

I Translate ODEs into difference equations (synchronous code) for
real-time simulation.

I The derivative of a signal is not provided. Should we provide
automatic differentiation or an internal implementation that give an
approximated value (e.g., as Simulink does)?

I Arrays. SCADE Hybrid have them; Implementation in Zélus is
under way with a form of iterator inspired by SISAL.

Verification

I Translate programs into a basic Lustre-like language with ODEs,
used as an input for formal verification.

http://zelus.di.ens.fr

http://zelus.di.ens.fr

Bibliography

Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano, and Marc Pouzet.

A Type-based Analysis of Causality Loops in Hybrid Systems Modelers.
In International Conference on Hybrid Systems: Computation and Control (HSCC), Berlin, Germany, April 15–17
2014. ACM.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.

A Hybrid Synchronous Language with Hierarchical Automata: Static Typing and Translation to Synchronous Code.
In ACM SIGPLAN/SIGBED Conference on Embedded Software (EMSOFT’11), Taipei, Taiwan, October 2011.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.

Divide and recycle: types and compilation for a hybrid synchronous language.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES’11), Chicago, USA, April 2011.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.

Non-Standard Semantics of Hybrid Systems Modelers.
Journal of Computer and System Sciences (JCSS), 78(3):877–910, May 2012.
Special issue in honor of Amir Pnueli.

Albert Benveniste, Benoit Caillaud, and Marc Pouzet.

The Fundamentals of Hybrid Systems Modelers.
In 49th IEEE International Conference on Decision and Control (CDC), Atlanta, Georgia, USA, December 15-17 2010.

Timothy Bourke, Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet.

A Synchronous-based Code Generator For Explicit Hybrid Systems Languages.
In International Conference on Compiler Construction (CC), LNCS, London, UK, April 11-18 2015.

Timothy Bourke and Marc Pouzet.

Zélus, a Synchronous Language with ODEs.
In International Conference on Hybrid Systems: Computation and Control (HSCC 2013), Philadelphia, USA, April
8–11 2013. ACM.

