N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

Albert Cohen¹, Marc Duranton², Christine Eisenbeis¹, Claire Pagetti¹,⁴, Florence Plateau³ and Marc Pouzet³

POPL, Charleston
January 12th, 2006

1: INRIA, Orsay France
2: PHILIPS NatLabs, Eindhoven, The Netherlands
3: University of Paris-Sud, Orsay, France
4: ONERA, Toulouse, France
Context

• Video intensive applications (TV boxes, medical systems)
 tera-operations per second (on pixel components) is typical

• Ensure three properties: hard real-time and performance and safety

Implementations

• Today: specific hardware (ASIC)

• Evolution: multi-clock asynchronous architectures, mixing hardware/software
 because of costs, variability of supported algorithms

Design and programming tools

• General purpose languages and compilers are not well adapted

• Kahn Networks (KN) is common practice in the field
A typical example: the Downscaler

high definition (HD) → standard definition (SD)

1920 × 1080 pixels 720 × 480

horizontal filter: number of pixels in a line from 1920 pixels downto 720 pixels,
vertical filter: number of lines from 1080 downto 480

Real-Time Constraints

the input and output processes: 30Hz.

HD pixels arrive at 30 × 1920 × 1080 = 62,208,000Hz

SD pixels at 30 × 720 × 480 = 10,368,000Hz (6 times slower)
Our Goal

Define a programming language dedicated to those Kahn Networks providing:

- a modular functional description
- a modular description and programming of the timing requirements

with a semantics and a compiler which statically guarantees four important properties. E.g., on the downscaler:

- a proof that, according to worst-case time conditions, the frame and pixel rate will be sustained
- a proof that the system executes in bounded memory
- an evaluation of the delay introduced by the downscaler in the video processing chain, i.e., the delay before the output process starts receiving pixels
- an evaluation of memory requirements, to store data within the processes, and to buffer the stream produced by the vertical filter in front of the output process
What about Synchronous Languages?

- dedicated to hard real-time critical systems
- generation of custom hardware and software system with static guarantees (real-time and resource constraints)
- static analysis, verification and testing tools
- synchrony is ensured by a type-system for clocks: a clock calculus
- it allows to program Synchronous Kahn Networks
But too restrictive for our video applications

• streams must be synchronous when composed \((y+z)\) is rejected by the clock calculus

• adding buffer code (by hand) is feasible but hard and error-prone

• can we compute it automatically and obtain regular synchronous code?

we need a relaxed model of synchrony and relaxed clock calculus
N-Synchronous Kahn Networks

- propose a programming model based on a relaxed notion of synchrony
- yet compilable to some synchronous code
- allows to compose programs as soon as they can be made synchronous through the insertion of a bounded buffer

- based on the use of *infinite ultimately periodic clocks*
- a precedence relation between clocks $ck_1 <: ck_2$
Infinite Ultimately Periodic Clocks

Introduce \mathbb{Q}_2 as the set of infinite periodic binary words. Coincides with rational 2-adic numbers

\[
\begin{align*}
(01) & = 01 01 01 01 01 01 01 01 01 01 \ldots \\
0(1101) & = 0 1101 1101 1101 1101 1101 1101 1101 \ldots
\end{align*}
\]

- 1 stands for the presence of an event
- 0 for its absence

Definition:

\[
w ::= u(v) \quad \text{where } u \in (0 + 1)^* \text{ and } v \in (0 + 1)^+
\]
Causality order and Synchronisability

Precedence relation: \(w_1 \preceq w_2 \)
- “1s from \(w_1 \) arrive before 1s from \(w_2 \)”
- \(\preceq \) is a partial order which abstracts the causality order between streams
- \((\mathbb{Q}_2, \preceq, \sqcup, \sqcap)\) is a lattice

Synchronisability:
Two infinite periodic binary words \(w \) and \(w' \) are synchronisable, noted \(w \blacktriangleright w' \) iff it exists \(d \in \mathbb{N} \) such that \(w \preceq 0^d w' \) and \(d' \in \mathbb{N} \) such that \(w' \preceq 0^{d'} w \).

1. 11(01) and (10) are synchronisable
2. (010) and (10) are not synchronisable since there are too much reads or too much writes (infinite buffers)

Subsumption (sub-typing): \(w_1 \triangleleft: w_2 \iff w_1 \blacktriangleright w_2 \land w_1 \preceq w_2 \)
Multi-sampled Systems (clock sampling)

\[c ::= w \mid c \text{ on } w \quad w \in (0 + 1)^\omega \]

\(c \text{ on } w \) denotes a subsampled clock.

\(c \text{ on } w \) is the clock obtained in advancing in \(w \) at the pace of clock \(c \). E.g., \(1(10) \text{ on } (01) = (0100) \).

<table>
<thead>
<tr>
<th>base</th>
<th>1 1 1 1 1 1 1 1 1 1 1 1 ...</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>1 1 0 1 0 1 0 1 0 1 0 1 ...</td>
<td>1(10)</td>
</tr>
<tr>
<td>base on (p_1)</td>
<td>1 1 0 1 0 1 0 1 0 1 0 1 ...</td>
<td>1(10)</td>
</tr>
<tr>
<td>(p_2)</td>
<td>0 1 0 1 0 1 0 1 0 1 0 1 ...</td>
<td>(01)</td>
</tr>
<tr>
<td>(base on (p_1) on (p_2))</td>
<td>0 1 0 0 0 1 0 0 0 1 0 1 ...</td>
<td>(0100)</td>
</tr>
</tbody>
</table>

Proposition 1 (on-associativity) Let \(w_1, w_2 \) and \(w_3 \) be three infinite binary words. Then \(w_1 \text{ on } (w_2 \text{ on } w_3) = (w_1 \text{ on } w_2) \text{ on } w_3 \).
Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability, equality can be decided in bounded time.

Synchronizability: Two infinite periodic binary words $u(v)$ and $u'(v')$ are synchronizable, noted $u(v) \Join u'(v')$ iff they have the same rate, i.e., $\frac{|v|}{|v'|} = \frac{|v|}{|v'|}$.

Equality: Let $w = u(v)$ and $w' = u'(v')$. We can always write $w = a(b)$ and $w' = a'(b')$ with $|a| = |a'| = \max(|u|, |u'|)$ and $|b| = |b'| = \text{lcm}(|v|, |v'|)$.

Delays and Buffers: can be computed practically after normalisation.

The set of infinite periodic binary words is closed by sampling (on), delaying (pre) and point-wise application of a boolean operation.

\[
\begin{align*}
 w & ::= u(v) \\
 c & ::= w \mid c \text{ on } w \mid \text{not } c \mid \text{pre } c \mid \ldots
\end{align*}
\]
A Synchronous Data-flow Kernel

- Reminiscent to Lustre and Lucid Synchrone
- receive a standard (strictly) synchronous semantics

\[e ::= x | i | e \text{ where } x = e | e(e) \]
\[| e \text{ fby } e | e \text{ when } pe | \text{ merge } pe e e \]

\[d ::= \text{let node } f(x) = e | d; d \]

\[dp ::= \text{period } p = pe | dp; dp \]

\[pe ::= p | w | pe \text{ on } pe | \text{ not } pe | \ldots \]

- \text{fby} is the initialized delay (or register)
- \text{when} is the sampling operator allowing to extract a sub-stream from a stream
- \text{merge} is the combination operator allowing to combine two complementary streams (with opposite clocks)
The Downscaler

let period c = (10100100)

let node hf p = o where
 rec o2 = 0 fby p
 and o3 = 0 fby o2
 and o4 = 0 fby o3
 and o5 = 0 fby o4
 and o6 = 0 fby o5
 and o = f (p,o2,o3,o4,o5,o6) when c

val hf : 'a -> 'a on c

let node main i = o where
 rec t = hf i
 and (i1,i2,i3,i4,i5,i6) = reorder t
 and o = vf (i1,i2,i3,i4,i5,i6)

• The clock signature of each process abstracts its timing behavior

• Clock calculus: what is the clock signature of main?
Clock calculus

\[\sigma ::= \forall \alpha. \sigma | \text{ct} \]
\[\text{ct} ::= \text{ct} \to \text{ct} | \text{ct} \times \text{ct} | \text{ck} \]
\[\text{ck} ::= \text{ck on pe} | \alpha \]
\[H ::= [x_1 : \sigma_1, \ldots, x_m : \sigma_m] \]
\[P ::= [p_1 : w_1, \ldots, p_n : w_n] \]

Judgment: \(P, H \vdash e : \text{ct} \) “expression \(e \) receive clock type \(\text{ct} \) in environments \(H \) and \(P \)”
From 0-Synchrony to \(N \)-Synchrony

0-Synchrony:

- 0-synchrony can be checked using standard Milner-type system \([\text{ICFP'96, Emsoft'03}]\)
- only need clock equality (and clocks are not necessarily periodic)

\[
\begin{align*}
H, P \vdash e_1 : ck & \quad H, P \vdash e_2 : ck \\
\hline
\quad \quad H, P \vdash \text{op}(e_1, e_2) : ck
\end{align*}
\]

N-Synchrony:

- extend the basic clock calculus of a synchronous language with a sub-typing rule:

\[
\begin{align*}
P, H \vdash e : ck \quad \text{on } w & \quad w < : w' \\
\hline
\quad \quad P, H \vdash e : ck \quad \text{on } w'
\end{align*}
\]

- defines the synchronisation points where buffer code should be inserted
An Example

let node \(f(x) = t \) where \(t = (x \text{ when } (1100)) + (x \text{ when } (10)) \)

(1100) and (10) can be synchronized using a buffer of size 1. Indeed:

\[
P, H \vdash x \text{ when } (1100) : \alpha \text{ on } (1100) \quad (1100) <: (10)
\]

\[
P, H \vdash x \text{ when } (1100) : \alpha \text{ on } (10)
\]

Finally, \(f : \forall \alpha. \alpha \to \alpha \text{ on } (01) \)

and the 1-buffer \(\text{buffer}[1] : \forall \alpha. \alpha \text{ on } (1100) \to \alpha \text{ on } (1010) \)
Translation into 0-Synchronous Programs

$$P, H \vdash e : ck \text{ on } w \Rightarrow e' \quad w <: w'$$

(TRANSLATION) $$P, H \vdash e : ck \text{ on } w' \Rightarrow buffer_{w,w'}(e')$$

$$buffer_{w,w'} : \forall \alpha. \alpha \text{ on } w \rightarrow \alpha \text{ on } w'$$

Theorem (correctness): Any well clocked (N-synchronous) program can be transformed into a 0-synchronous program

This is a constructive proof: sub-typing points define where some buffering is necessary

The translated program can be checked with the basic clock calculus
Algorithm (constraint resolution)

The sub-typing system is not deterministic and is thus not an algorithm

Standard solution:

- apply the \((\text{SUB})\) rule at every program construction
- generate a set of sub-typing constraints \(\{ck_1 <: ck'_1, \ldots, ck_n <: ck'_n\}\)
- rely on a resolution algorithm

Resolution amounts to rewriting (simplifying) the set of constraints until we get the empty set

Theorem (completeness): For any expression \(e\), and for any period and clock environments \(P\) and \(H\), if \(e\) has an admissible clock type in \(P, H\) for the relaxed clock calculus, then the type inference algorithm computes a clock \(ct\) verifying \(P, H \vdash e : ct\)
Clock sampling (gating) vs Buffering

In general, there exists an infinite number of solutions.

\[f : \forall \alpha_1. \alpha_1 \rightarrow \alpha_1 \text{ on } (1100) \]
\[g : \forall \alpha_2. \alpha_2 \rightarrow \alpha_2 \text{ on } (10) \]
\[(+) : \forall \alpha_3. \alpha_3 \times \alpha_3 \rightarrow \alpha_3 \]

We have to solve the constraint: \(\alpha_1 \text{ on } (1100) <: \alpha_3 \) and \(\alpha_2 \text{ on } (10) <: \alpha_3 \)

Clock sampling: (unification)

find \(v_1 \) and \(v_2 \) st \(\alpha_1 = \alpha_4 \) on \(v_1 \) and \(\alpha_2 = \alpha_4 \) on \(v_2 \)

Solution: \(\alpha_4 \) on \((10111) \) on \((1100) = \alpha_4 \) on \((10100) = \alpha_3 \)
\(\alpha_4 \) on \((11110) \) on \((10) = \alpha_4 \) on \((10100) = \alpha_3 \)

No buffering but the base clock must be faster

Buffering: (sub-typing)

\(\alpha_1 = \alpha_4 \) and \(\alpha_2 = \alpha_4, \alpha_4 \text{ on } (1100) <: \alpha_3 \) and \(\alpha_4 \text{ on } (10) <: \alpha_3 \)
\(\alpha_4 \) on \((1100) \sqcup (10) = \alpha_4 \) on \((10) = \alpha_3 \)

A 1-buffer is needed
\[S \rightsquigarrow S\left[\frac{\alpha_1 \text{ on } \mathcal{V}(w_1, w_2)}{\alpha_1} \right. \]

(EQUAL)

if \(S = S' + I_1 + I_2 \),
\[
I_1 = \{ \alpha_1 \text{ on } w_1 <: ck_1 \} \text{ or } \{ ck_1 <: \alpha_1 \text{ on } w_1 \}, \quad \alpha_1 \neq \alpha_2
\]
\[
I_2 = \{ \alpha_2 \text{ on } w_2 <: ck_2 \} \text{ or } \{ ck_2 <: \alpha_2 \text{ on } w_2 \}, \quad w_1 \neq w_2
\]

\[
S + \{ \alpha \text{ on } w_1 <: \alpha \text{ on } w_2 \} \rightsquigarrow S
\]

\[\text{(CYCLE)} \]

if \(w_1 <: w_2 \)

\[
S + \{ \alpha \text{ on } w_1 <: \alpha' \}, \alpha \text{ on } w_2 <: \alpha' \} \rightsquigarrow S + \{ \alpha \text{ on } w_1 \sqcup w_2 <: \alpha' \}
\]

\[\text{(SUP)} \]

if \(w_1 \sqsupset w_2 \)

\[
S + \{ \alpha' <: \alpha \text{ on } w_1, \alpha' <: \alpha \text{ on } w_2 \} \rightsquigarrow S + \{ \alpha' <: \alpha \text{ on } w_1 \sqcap w_2 \}
\]

\[\text{(INF)} \]

if \(w_1 \sqcap w_2 \)

\[
S + \{ \alpha_1 \text{ on } w <: \alpha_2 \text{ on } w \} \rightsquigarrow S + \{ \alpha_1 <: \alpha_3 \text{ on } u_1, \alpha_3 \text{ on } u_2 <: \alpha_2 \}
\]

\[\text{(CUT)} \]

if \(\alpha_1 \neq \alpha_2, \ u_1 = U_{\max}(w), \ u_2 = U_{\min}(w) \)

\[
S + \{ \alpha <: \alpha_1 \text{ on } w, \alpha <: \alpha_2 \text{ on } w \} \rightsquigarrow S[\alpha_3 \text{ on } u \text{ on } w/\alpha] + \{ \alpha_3 \text{ on } u <: \alpha_1, \alpha_3 \text{ on } u <: \alpha_2 \}
\]

\[\text{(FORK)} \]

if \(\alpha_1 \neq \alpha_2, \ u = U_{\min}(w) \)

\[
S + \{ \alpha_1 \text{ on } w <: \alpha, \alpha_2 \text{ on } w <: \alpha \} \rightsquigarrow S[\alpha_3 \text{ on } u \text{ on } w/\alpha] + \{ \alpha_1 <: \alpha_3 \text{ on } u, \alpha_2 <: \alpha_3 \text{ on } u \}
\]

\[\text{(JOIN)} \]

if \(\alpha_1 \neq \alpha_2, \ u = U_{\max}(w) \)

\[
S \oplus I \rightsquigarrow S[ck/\alpha]
\]

\[\text{(SUBST)} \]

if \(I = \{ \alpha <: ck \} \) or \(\{ ck <: \alpha \}, \alpha \notin FV(ck) \)
Conclusion

- *N*-Synchronous Kahn Networks introduce a relaxed model of synchrony
- extended synchronous framework: automatic generation of the synchronous buffers which are semantically (as defined by Kahn) guaranteed correct
- a relaxed clock calculus where buffering corresponds to sub-typing
- *N*-synchronous programs can be translated into 0-synchronous ones
- extend the expressive power of synchronous languages, yet allowing to do compilation, simulation and verification after translation
- Lustre programs are 0-Synchronous Kahn Networks
- Kahn networks are ∞-Synchronous Kahn Networks
Current and Future Work

- algebraic characterisation and symbolic representation of clocks
- implementation inside an existing synchronous language
- optimization and architecture considerations (buffer size, locality, clock gating)
- forgetting buffering mechanism, periodic clocks are useful for dealing with several implementations of the same function:
 - parallel vs pipelined vs serial computation
 - going from a version to an other changes clocks
 - how to prove them to be equivalent (or to derive them from the same program) according to resource constraints?