N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

Albert Cohen1, Marc Duranton2, Christine Eisenbeis1, Claire Pagetti1,4, Florence Plateau3 and Marc Pouzet3

POPL, Charleston
January 12th, 2006

1: INRIA, Orsay France
2: PHILIPS NatLabs, Eindhoven, The Netherlands
3: University of Paris-Sud, Orsay, France
4: ONERA, Toulouse, France
Context

- **Video intensive applications** (TV boxes, medical systems)

 tera-operations per second (on pixel components) is typical

- **Ensure three properties:** hard real-time and performance and safety

Implementations

- Today: specific hardware (ASIC)

- Evolution: multi-clock asynchronous architectures, mixing hardware/software because of costs, variability of supported algorithms

Design and programming tools

- General purpose languages and compilers are not well adapted

- Kahn Networks (KN) is common practice in the field
A typical example: the Downscaler

high definition (HD) \rightarrow standard definition (SD)

1920 \times 1080 pixels \rightarrow 720 \times 480

horizontal filter: number of pixels in a line from 1920 pixels down to 720 pixels,

vertical filter: number of lines from 1080 down to 480

Real-Time Constraints

the input and output processes: 30Hz.

HD pixels arrive at $30 \times 1920 \times 1080 = 62,208,000$ Hz

SD pixels at $30 \times 720 \times 480 = 10,368,000$ Hz (6 times slower)
Our Goal

Define a **programming language** dedicated to those Kahn Networks providing:

- a modular functional description

- a modular description and programming of the timing requirements

with a semantics and a compiler which **statically guarantees** four important properties. E.g., on the downscaler:

- a proof that, according to worst-case time conditions, the frame and pixel rate will be sustained

- a proof that the system executes in bounded memory

- an evaluation of the delay introduced by the downscaler in the video processing chain, i.e., the delay before the output process starts receiving pixels

- an evaluation of memory requirements, to store data within the processes, and to buffer the stream produced by the vertical filter in front of the output process
What about Synchronous Languages?

• dedicated to hard real-time critical systems

• generation of custom hardware and software system with static guarantees (real-time and resource constraints)

• static analysis, verification and testing tools

• synchrony is ensured by a type-system for clocks: a clock calculus

• it allows to program Synchronous Kahn Networks
But too restrictive for our video applications

- streams must be synchronous when composed ($y+z$ is rejected by the clock calculus)

- adding buffer code (by hand) is feasible but hard and error-prone

- can we compute it automatically and obtain regular synchronous code?

we need a relaxed model of synchrony and relaxed clock calculus
N-Synchronous Kahn Networks

- propose a programming model based on a relaxed notion of synchrony
- yet compilable to some synchronous code
- allows to compose programs as soon as they can be made synchronous through the insertion of a bounded buffer

- based on the use of *infinite ultimately periodic clocks*
- a precedence relation between clocks $ck_1 <: ck_2$
Infinite Ultimately Periodic Clocks

Introduce \mathbb{Q}_2 as the set of infinite periodic binary words. Coincides with rational 2-adic numbers

\[
\begin{align*}
(01) &= 01 01 01 01 01 01 01 01 01 01 \ldots \\
0(1101) &= 0 1101 1101 1101 1101 1101 1101 1101 \ldots
\end{align*}
\]

- 1 stands for the presence of an event
- 0 for its absence

Definition:

\[w := u(v) \quad \text{where } u \in (0 + 1)^* \text{ and } v \in (0 + 1)^+ \]
Causality order and Synchronisability

Precedence relation: $w_1 \preceq w_2$

- “1s from w_1 arrive before 1s from w_2”
- \preceq is a partial order which abstracts the causality order between streams
- $(\mathbb{Q}_2, \preceq, \sqcup, \sqcap)$ is a lattice

Synchronisability:
Two infinite periodic binary words w and w' are synchronisable, noted $w \bowtie w'$ iff it exists $d \in \mathbb{N}$ such that $w \preceq 0^d w'$ and $d' \in \mathbb{N}$ such that $w' \preceq 0^{d'} w$.

1. 11(01) and (10) are synchronisable
2. (010) and (10) are not synchronisable since there are too much reads or too much writes (infinite buffers)

Subsumption (sub-typing): $w_1 :<: w_2 \iff w_1 \bowtie w_2 \land w_1 \preceq w_2$
Multi-sampled Systems (clock sampling)

\[c ::= w | c \text{ on } w \quad w \in (0 + 1)^\omega \]

c on \(w \) denotes a \textit{subsampled clock}.

c on \(w \) is the clock obtained in advancing in \(w \) at the pace of clock \(c \). E.g.,
\[1(10) \text{ on } (01) = (0100). \]

<table>
<thead>
<tr>
<th>base</th>
<th>1 1 1 1 1 1 1 1 1 1 ...</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>1 1 0 1 0 1 0 1 0 1 ...</td>
<td>1(10)</td>
</tr>
<tr>
<td>\text{base on } p_1</td>
<td>1 1 0 1 0 1 0 1 0 1 ...</td>
<td>1(10)</td>
</tr>
<tr>
<td>(p_2)</td>
<td>0 1 0 0 1 0 1 ...</td>
<td>(01)</td>
</tr>
<tr>
<td>\text{(base on } p_1 \text{) on } p_2</td>
<td>0 1 0 0 0 0 1 0 0 0 1 ...</td>
<td>(0100)</td>
</tr>
</tbody>
</table>

Proposition 1 (on-associativity) Let \(w_1, w_2 \) and \(w_3 \) be three infinite binary words. Then \(w_1 \text{ on } (w_2 \text{ on } w_3) = (w_1 \text{ on } w_2) \text{ on } w_3. \)
Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability, equality can be decided in bounded time

Synchronizability: Two infinite periodic binary words $u(v)$ and $u'(v')$ are *synchronizable*, noted $u(v) \bowtie u'(v')$ iff they have the same rate, i.e., $\frac{|v|_1}{|v'|_1} = \frac{|v|}{|v'|}$.

Equality: Let $w = u(v)$ and $w' = u'(v')$. We can always write $w = a(b)$ and $w' = a'(b')$ with $|a| = |a'| = \max(|u|, |u'|)$ and $|b| = |b'| = \text{lcm}(|v|, |v'|)$

Delays and Buffers: can be computed practically after normalisation

The set of infinite periodic binary words is closed by sampling (on), delaying (pre) and point-wise application of a boolean operation

$$w ::= u(v)$$
$$c ::= w \mid c \text{ on } w \mid \text{not } c \mid \text{pre } c \mid \ldots$$
A Synchronous Data-flow Kernel

- Reminiscent to Lustre and Lucid Synchrone
- receive a standard (strictly) synchronous semantics

\[e ::= \quad x \mid i \mid e \quad \text{where} \quad x = e \mid e(e) \]
\[\quad \mid e \ fby \ e \mid e \ \text{when} \ pe \mid \text{merge} \ pe \ e \ e \]

\[d ::= \quad \text{let} \ \text{node} \ f(x) = e \mid d; d \]

\[dp ::= \quad \text{period} \ p = pe \mid dp; dp \]

\[pe ::= \quad p \mid w \mid pe \ \text{on} \ pe \mid \text{not} \ pe \mid \ldots \]

- *fby* is the initialized delay (or *register*)
- *when* is the *sampling* operator allowing to extract a sub-stream from a stream
- *merge* is the *combination* operator allowing to combine two complementary streams (with opposite clocks)
let period c = (10100100)

let node hf p = o where
 rec o2 = 0 fby p
 and o3 = 0 fby o2
 and o4 = 0 fby o3
 and o5 = 0 fby o4
 and o6 = 0 fby o5
 and o = f (p,o2,o3,o4,o5,o6) when c

val hf : 'a -> 'a on c

let node main i = o where
 rec t = hf i
 and (i1,i2,i3,i4,i5,i6) = reorder t
 and o = vf (i1,i2,i3,i4,i5,i6)

• The clock signature of each process abstracts its timing behavior

• Clock calculus: what is the clock signature of main?
Clock calculus

\[\sigma ::= \forall \alpha. \sigma \mid ct \]

\[ct ::= ct \to ct \mid ct \times ct \mid ck \]

\[ck ::= ck \text{ on } pe \mid \alpha \]

\[H ::= [x_1 : \sigma_1, \ldots, x_m : \sigma_m] \]

\[P ::= [p_1 : w_1, \ldots, p_n : w_n] \]

Judgment: \(P, H \vdash e : ct \) “expression \(e \) receive clock type \(ct \) in environments \(H \) and \(P \)”
From 0-Synchrony to N-Synchrony

0-Synchrony:

- 0-synchrony can be checked using standard Milner-type system [ICFP’96,Emsoft’03]
- only need clock equality (and clocks are not necessarily periodic)

\[
H, P \vdash e_1 : ck \quad H, P \vdash e_2 : ck \\
\hline \\
H, P \vdash op(e_1, e_2) : ck
\]

N-Synchrony:

- extend the basic clock calculus of a synchronous language with a **sub-typing** rule:

\[
P, H \vdash e : ck \text{ on } w \quad w <: w' \\
\text{(SUB)} \hline \\
P, H \vdash e : ck \text{ on } w'
\]

- defines the synchronisation points where buffer code should be inserted
An Example

let node \(f(x) = t \) where \(t = (x \text{ when } (1100)) + (x \text{ when } (10)) \)

(1100) and (10) can be synchronized using a buffer of size 1. Indeed:

\[
P, H \vdash x \text{ when } (1100) : \alpha \text{ on } (1100) \quad (1100) <: (10)
\]

\[
P, H \vdash x \text{ when } (1100) : \alpha \text{ on } (10)
\]

Finally, \(f : \forall \alpha. \alpha \to \alpha \text{ on } (01) \)

and the 1-buffer \(\text{buffer}[1] : \forall \alpha. \alpha \text{ on } (1100) \to \alpha \text{ on } (1010) \)
Translation into 0-Synchronous Programs

\[P, H \vdash e : ck \text{ on } w \Rightarrow e' \quad w <: w' \]

(TRANSLATION)

\[P, H \vdash e : ck \text{ on } w' \Rightarrow \text{buffer}_{w,w'}(e') \]

\[\text{buffer}_{w,w'} : \forall \alpha. \alpha \text{ on } w \rightarrow \alpha \text{ on } w' \]

Theorem (correctness): Any well clocked \((N\text{-synchronous})\) program can be transformed into a 0-synchronous program

This is a constructive proof: sub-typing points define where some buffering is necessary

The translated program can be checked with the basic clock calculus
Algorithm (constraint resolution)

The sub-typing system is not deterministic and is thus not an algorithm

Standard solution:

- apply the (SUB) rule at every program construction
- generate a set of sub-typing constraints \(\{ ck_1 <: ck'_1, \ldots, ck_n <: ck'_n \} \)
- rely on a resolution algorithm

Resolution amounts to rewriting (simplifying) the set of constraints until we get the empty set

Theorem (completeness): For any expression \(e \), and for any period and clock environments \(P \) and \(H \), if \(e \) has an admissible clock type in \(P, H \) for the relaxed clock calculus, then the type inference algorithm computes a clock \(ct \) verifying \(P, H \vdash e : ct \)
Clock sampling (gating) vs Buffering

In general, there exists an infinite number of solutions.

\[f : \forall \alpha_1. \alpha_1 \rightarrow \alpha_1 \text{ on } (1100) \]
\[g : \forall \alpha_2. \alpha_2 \rightarrow \alpha_2 \text{ on } (10) \]
\[(+) : \forall \alpha_3. \alpha_3 \times \alpha_3 \rightarrow \alpha_3 \]

We have to solve the constraint: \(\alpha_1 \text{ on } (1100) <: \alpha_3 \) and \(\alpha_2 \text{ on } (10) <: \alpha_3 \)

Clock sampling: (unification)

find \(v_1 \) and \(v_2 \) st \(\alpha_1 = \alpha_4 \text{ on } v_1 \) and \(\alpha_2 = \alpha_4 \text{ on } v_2 \)

Solution: \(\alpha_4 \text{ on } (10111) \text{ on } (1100) = \alpha_4 \text{ on } (10100) = \alpha_3 \)
\(\alpha_4 \text{ on } (11110) \text{ on } (10) = \alpha_4 \text{ on } (10100) = \alpha_3 \)

No buffering but the base clock must be faster

Buffering: (sub-typing)

\(\alpha_1 = \alpha_4 \) and \(\alpha_2 = \alpha_4, \alpha_4 \text{ on } (1100) <: \alpha_3 \) and \(\alpha_4 \text{ on } (10) <: \alpha_3 \)
\(\alpha_4 \text{ on } (1100) \sqcup (10) = \alpha_4 \text{ on } (10) = \alpha_3 \)

A 1-buffer is needed
\[S \rightsquigarrow S' \left[\frac{\alpha'_1 \text{ on } V(w_1, w_2)}{\alpha_1} \frac{\alpha'_2 \text{ on } V'(w_1, w_2)}{\alpha_2} \right] \]

(EQUAL)

if \(S = S' \cup I_1 + I_2 \),

\[I_1 = \{ \alpha_1 \text{ on } w_1 <: c k_1 \} \text{ or } \{ c k_1 <: \alpha_1 \text{ on } w_1 \}, \quad \alpha_1 \neq \alpha_2 \]

\[I_2 = \{ \alpha_2 \text{ on } w_2 <: c k_2 \} \text{ or } \{ c k_2 <: \alpha_2 \text{ on } w_2 \}, \quad w_1 \neq w_2 \]

\[S + \{ \alpha \text{ on } w_1 <: \alpha \text{ on } w_2 \} \rightsquigarrow S \]

(CYCLE)

if \(w_1 <: w_2 \)

\[S + \{ \alpha \text{ on } w_1 <: \alpha', \alpha \text{ on } w_2 <: \alpha' \} \rightsquigarrow S + \{ \alpha \text{ on } w_1 \sqcup w_2 <: \alpha' \} \]

(SUP)

if \(w_1 \triangleright w_2 \)

\[S + \{ \alpha' <: \alpha \text{ on } w_1, \alpha' <: \alpha \text{ on } w_2 \} \rightsquigarrow S + \{ \alpha' <: \alpha \text{ on } w_1 \sqcap w_2 \} \]

(INF)

if \(w_1 \triangleright w_2 \)

\[S + \{ \alpha_1 \text{ on } w <: \alpha_2 \text{ on } w \} \rightsquigarrow S + \{ \alpha_1 <: \alpha_3 \text{ on } u_1, \alpha_3 \text{ on } u_2 <: \alpha_2 \} \]

(CUT)

if \(\alpha_1 \neq \alpha_2, \quad u_1 = U_{\text{max}}(w), \quad u_2 = U_{\text{min}}(w) \)

\[S + \{ \alpha <: \alpha_1 \text{ on } w, \alpha <: \alpha_2 \text{ on } w \} \rightsquigarrow S[\alpha_3 \text{ on } u \text{ on } w/\alpha] + \{ \alpha_3 \text{ on } u <: \alpha_1, \alpha_3 \text{ on } u <: \alpha_2 \} \]

(FORK)

if \(\alpha_1 \neq \alpha_2, \quad u = U_{\text{min}}(w) \)

\[S + \{ \alpha_1 \text{ on } w <: \alpha, \alpha_2 \text{ on } w <: \alpha \} \rightsquigarrow S[\alpha_3 \text{ on } u \text{ on } w/\alpha] + \{ \alpha_1 <: \alpha_3 \text{ on } u, \alpha_2 <: \alpha_3 \text{ on } u \} \]

(JOIN)

if \(\alpha_1 \neq \alpha_2, \quad u = U_{\text{max}}(w) \)

\[S \oplus I \rightsquigarrow S[c k/\alpha] \]

(SUBST)

if \(I = \{ \alpha <: c k \} \text{ or } \{ c k <: \alpha \}, \quad \alpha \notin FV(c k) \)
Conclusion

• *N-Synchronous Kahn Networks* introduce a relaxed model of synchrony

• extended synchronous framework: automatic generation of the synchronous buffers which are semantically (as defined by Kahn) guaranteed correct

• a relaxed clock calculus where buffering corresponds to sub-typing

• *N*-synchronous programs can be translated into 0-synchronous ones

• extend the expressive power of synchronous languages, yet allowing to do compilation, simulation and verification after translation

• *Lustre programs are 0-Synchronous Kahn Networks*

• *Kahn networks are ∞-Synchronous Kahn Networks*
Current and Future Work

- algebraic characterisation and symbolic representation of clocks
- implementation inside an existing synchronous language
- optimization and architecture considerations (buffer size, locality, clock gating)
- forgetting buffering mechanism, periodic clocks are useful for dealing with several implementations of the same function:
 - parallel vs pipelined vs serial computation
 - going from a version to an other changes clocks
 - how to prove them to be equivalent (or to derive them from the same program) according to resource constraints?