Mixing Signals and Modes in Synchronous
Data-flow Systems

Marc Pouzet

LRI
Joint work with Jean-Louis Colaco and Grégoire Hamon (see [Emsoft 06])

Synchron, 29/11/2006

Designing Mixed Systems

Data dominated Systems: continuous and sampled systems, block-diagram
formalisms, data-flow equations
— Simulation tools: Simulink, etc.
— Programming languages: SCADE /Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite
State Machine formalisms, signal emission and testing
— StateFlow, StateCharts
— SyncCharts, Argos, Esterel, etc.

What about mixed systems?
e most systems are a mix of the two kinds: systems have “modes”
e cach mode is a big control law, naturally described as data-flow equations

e a control part switching these modes and naturally described by a FSM

Traditional Approaches: linking mechanisms

two (or more) specific languages: one for data-flow and one for control-flow

“linking” mechanism. A sequential system is more or less represented as a pair:
— a transition function f: S X I — O x §

— an initial memory M : S
agree on a common representation and add some glue code

this is provided in most academic and industrial tools

Ptolemyll, Simulink + StateFlow, SCADE + Esterel Studio SSM, etc.

An example: the Cruise Control (SCADE V4.2)

> =
I 0ff >

| AN RegulON

' L
Resume

Cruise State R
[>
Brake —l— RegulOFF

PedalsPressed

= >

Acsel RequisTDBY

|—>—- SpeedLimit ::D—

Speed

—
L &

Set
- >

QuickAceql Cruise Speed
Cruise Speedhigt R
e — = o
Quick Decel J’ | Throttle Cmd
l AN) 0.0 IJ 0.0 bJ Focel
Speed
. Enabled)
[Regulation)
AcceleratorPressed BrakePressed/
or SpeedOutOffLimits/
Aoy Interrupt
t/R 1_STDE¥
sl #/Riequl_OFF,
not (Speed0utOffLimits “he a
Off? or AcceleratorPressed) /
Resure and
not BrakePressed/
\ y
. S

Observations

automata can only appear at the leaves of the data-flow model

forces the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

the control structure is not explicit and hidden in boolean values: nothing
indicate that modes are exclusive

what is the semantics of the whole?
code certification (to meet avionic constraints)?
efficiency /simplicity of the code?

how to exploit this information for program analysis and verification tools?

Can we provide a finer integration of both styles

inside a unique language?

Extending Synchronous Data-flow with Automata
[EMSOFTO05]

Basis
e Mode-Automata by Maraninchi & Rémond [ESOP98, SCP03]

e SignalGTI (Rutten [EuroMicro95] and Lucid Synchrone V2 (Hamon & Pouzet
[PPDP00, SLAP04])

Proposal
e extend a basic clocked calculus (SCADE /Lustre) with automata constructions

e base it on a translation semantics into well clocked programs; gives both the

semantics and the compilation method
Two implementations

e Lucid Synchrone language and compiler

e ReLuC compiler of SCADE at Esterel-Technologies; the basis of SCADE V6

(released in summer 2007)

The Cruise Control with SCADE 6

On

(6

Regulation

(6

RegulOn

cruise_speed

|_> Speed

Percent

AN

Speed

(6

off

Focel

Percent ™

Throttle Cmd

0.0 n’“—>

Cruise Speed

7/
Throttle Cmd

v

o

On

l;j bool
I_: bool

QuickAccel

<>
off J

Cruise Speedhvigt

|_ bogl

Quick Decel

—

Speed

Spead

\,

bool
Speedlimit

cruise_speed N\

Cruise Speed

1>
accele
not

between / (

StandBy

Fecel

Percent ™\

Throttle Cmd

between

A

Intermupt

Focel

Percent

Throttle Cmd

N
/

>ﬂc|i
Brake

il

PedalsPressed | bool

b

brake

Fecel

accelerator

Semantic principles

only one set of equations is executed during a reaction

two kinds of transitions: Weak delayed (“until”) or Strong (‘“unless”)

o0 O U

both can be “by history” (H* in UML) or not (if not, both the SSM and the

data-flow in the target state are reseted

at most one strong transition followed by a weak transition can be fired during
a reaction

at every instant:

— what is the current active state?

— execute the corresponding set of equations

— what is the next state?

forbids arbitrary long state traversal, simplifies program analysis, better

generated code

New questions and extensions
A more direct semantics
e the translation semantics is good for compilation but...

e can we define a more “direct” semantics which expresses how the program

reacts?
e we introduce a logical reaction semantics
Further extensions

e can we go further in closing the gap between synchronous data-flow and

imperative formalisms?

e Parameterized State Machines: this provides a way to pass local
information between two states without interfering with the rest of the code

e Valued Signals: these are events tagged with values as found in Esterel and
provide an alternative to regular flows when programming control-dominated

systems

Parameterized State Machines

e it is often necessary to communicate values between two states upon taking a

transition

e c.g., a setup state communicate initialization values to a run state

(2

Setup ™~—_ —" " Run

cond/x<-...

e can we provide a safe mechanism to communicate values between two states?
e without interfering with the rest of the automaton, i.e.,

e without relying on global shared variables (and imperative modifications) in

states nor transitions?
Parameterized states:

e states can be Parameterized by initial values which can be used in turn in the

target automaton

e preserves all the properties of the basic automata
10

A typical example

several modes of normal execution and a failure mode which needs some contextual
information

let node controller inl in2 = out where
automaton
| Statel ->
do out = f (inl, in2)
until (out > 10) then State?2
until (in2 = 0) then Fail_safe(1, 0)
| State2 ->
let rec x = 0 -> (pre x) + 1 in
do out = g (inl,x)
until (out > 1000) then Fail_safe(2, x)
| Fail_safe(error_code, resume_after) ->
let rec
resume = resume_after -> (pre resume) - 1 in
do out = if (error_code = 1) then O
else 1000
until (resume <= 0) then State2

end
11

Parameterized states vs global modifications on transitions

Is all that useful?

expressiveness? every parameterized state machine can be programmed with

regular state machines using global shared flows

efficiency? depends on the program and code-generator (though parameters
only need local memory and are not all alive at the same time)

But this is bad!

who is still using global shared variables to pass parameters to a function in a
general-purpose language?

passing this information through shared memory would mean having global
shared variables to hold it

they would receive meaningless values during normal execution and be set on

the transition itself
this breaks locality, modularity principles and is error-prone
making sure that all such variables are set correctly before being use is not

trivial
12

Parameterized states

we want the language to provides a safer way to pass local information
complementary to global shared variables and do not replace them

keep the communication between two states local without interfering with the
rest of the automaton

do not raise initialization problems
reminiscent to continuation passing style (in functional programming)

yet, we provide the same compilation techniques (and properties) as in the case

of unparameterized state machines (initialization analysis, causality, type and
clocks)

13

Example (encoding Mealy machines)

e reduces the need to have equations on transitions

e adding equations on transitions is feasible but make the model awfully

complicated

cl/ ol automaton

@ | S(v) -> do o = v unless c1 then T1(ol)

unless cn then Tn(on)

cn/ on
end

14

Valued Signals and Signal Pattern Matching

in a control structure (e.g., automaton), every shared flow must have a value at

every instant

if an equation for x is missing, it keeps implicitly its last value (i.e.,
x = last x is added)

how to talk about absent value? If x is not produced, we want it to be absent

in imperative formalisms (e.g., Esterel), an event is present if it is explicitly

emitted and considered absent otherwise

can we provide a simple way to achieve the same in the context of data-flow

programming?

15

An example
A part of the Milner coffee machine...

let node vend drink cost v = (ol, 02) where
match v >= cost with
true ->
do emit ol = drink
and o2 = v - cost
done
| false —>
do 02 = v done

end
e 02 is a regular flow which has a value in every branch

e ol is only emitted when (v >= cost) and is supposed to be absent otherwise;

we call it a signal

16

Accessing the value of a valued signal

e the value of a signal is the one which is emitted during the reaction
e what is the value in case where no value is emitted?

e Esterel: keeps the last computed value (i.e., implicitly complement the value

with a register)
emit S(C 7A + 1)

this may be unsafe and raise initialization problems: what is the value if it

has never been emitted?

e need extra methodology development rules (e.g., guarding every access by a

test for presence)

present A then ... emit S(7A + 1)

Propose a programming construct reminiscent to pattern matching and which

forbid the access to a signal which is not emitted

17

Signal pattern matching

e a pattern-matching construct testing the presence of valued signals and
accessing their content

a block structure and only present value can be accessed

let node sum x y = o where
present
| x(v) & y(w) -> do emit o = v + w done
| x(vl) -> do emit o = v1 done
| y(v2) -> do emit o = v2 done
| _ -> do done

end

18

The Recursive Buffer

type ’a option = None | Some of ’a

let node count n = ok where
rec o =0 -> (pre o + 1) mod n
and ok = false -> o =0

(* the 1-buffer with bypass *)
let node bufferl push pop = o where
rec last memo = Nomne
and match last memo with
None ->

do present

push(v) & pop() -> do emit o = v done

| push(v) -> do memo = Some(v) done

end done
| Some(v) ->
do present

push(w) -> do emit o =

v and memo

Some (w) done

| pop() -> do emit o = v and memo = None done

end done

end

19

A n-buffer can be build by putting n buffers of size one in parallel

(* the recursive buffer *)
let rec node buffer n push pop = o where
match n with
o ->
do o = push done
| n ->
let pusho = bufferl push pop in
do
o = buffer (n-1) pusho pop
done

end

20

Signals vs clocked streams

in control structures, an absent definition for x is implicitly completed with an

equation x = last x
this means that we need a memory to keep the value of last x

signals are thus intrinsically more efficient: no memory is needed. x is absent if
nothing defines x

Is all that useful?

signals already exist in synchronous data-flow: we have clocks!
a signal is a flow which is present from time to time with a particular clock
ask a lot for a compiler (and even the user).

we need full dependent types here (the clock of x must keep the control

information defining the instant where x is emitted)

can we rely on more modest (but safe) mechanism while keeping the philosophy

of the basic language?

21

Signals as existential types

let node sum x y = o where
present
| x(v) & y(w) -> do emit o = v + w done
| x(vl) -> do emit o = v1 done
| y(v2) -> do emit o = v2 done
| _ -> do done

end

e o is partially defined and should have clock ck on (?xA?y)V?xV7?y if x and y are

themselves on clock ck

e giving it the existential type X(c : ck).ck on ¢, that is, “exists ¢ on clock ck such

that the result is on clock ck on ¢ is a correct abstraction

22

Signals as Existential Types
Clock type of a signal: a pair ck sig = X(c : ck).ck on ¢ made of:
e a (hidden) boolean sequence ¢ which is itself on clock type ck
e a sequence sampled on ¢, that is, with clock type ck on ¢
The flow is boxed with its presence information

e this is a restriction compared to what can provide a synchronous data-flow

language equipped with a powerful clock calculus
e but this is the way Esterel valued signal are implemented
e mimics the constraints in Lustre to return the clock of a sampled stream
Clock verification (and inference) only need modest techniques

e box/unbox mechanisms of a Milner type system + extension by Laufer &
Odersky for abstract data-types

HFEe:ckonc

HFemitx=c¢:|x:cksig]

23

Translation Semantics

e parameterized state machines and signals can be combined in an arbitrary way
e a translation semantics of the extension into a basic language
Example

let node sum (a,b,7) = o where
automaton
| Await -> do unless a(z)&b(y) then Emit (z + y)

| Emit (v) -> do emit o= v unless r then Await

24

e a signal of type t is represented by a pair of type bool X ¢

e nil stands for any value with the right type (think of a local stack allocated

variable

let node sum (a,b,7) = o where
match pnexistate with
| Await -> match (a,b) with
| ((True,x), (True,z)) -> state = Emit(z + y)
| _ -> state = Await
| Emit(v) -> match r with
| true -> state = Await
| false -> state = Emit(v)
and
match state with
| Await -> o = (False, nil) and nextstate = Await
| Emit(v) -> o= (True, nil) and nextstate = Emit(v)
and
pnextstate = Await -> pre nextstate

25

Conclusion

Automata and control structures

e an extension of a data-flow language with control structures

e various kinds of transitions, yet quite simple

e two semantics: a translation semantics and a logical semantics
Extensions: parameterised states and signals

e transmit local information between states

e signals as a light way to abstract the clock of a flow

e both features combine well

e light to implement in a translation-based compiler

o try it! (www.lri.fr/~pouzet/lucid-synchrone)

26

